
WEAK-HEAD CONVERSION TESTING FOR MTT

DANIEL GRATZER

Abstract. We detail the small set of adaptations required to extend the weak-

head conversion testing algorithm used by Agda to MTT. We pay attention to
the case of preorder-enriched mode theories which are particularly simple and
arise frequently in examples.

Contents

1. Introduction 1
2. Alterations for the preorder-enriched case 2
3. The general case 3
4. Remaining questions 5
References 5

1. Introduction

The normalization result from Gratzer [Gra22] provides the theoretical guarantee
that MTT can be implemented. Unfortunately, it has been consistently observed that
the gap between theory and practice is smaller in theory than in practice. Stassen,
Gratzer, and Birkedal [SGB23] details a defunctionalized normalization-by-evaluation
algorithm inspired by Gratzer [Gra22]. In this note, we detail an alternative

algorithm following Abel, Öhman, and Vezzosi [AÖV17]. Unlike normalization-by-
evaluation, this algorithm does not distinguish between syntactic classes of values,
normals, neutrals, etc. and does not involve closures. This last point appears to be
something of a boon for MTT, where non-trivial 2-cells induce substitutions which
are hard to incorporate the NbE framework.1

Remark 1.1. We endeavor to closely follow the notations and conventions of Abel,
Öhman, and Vezzosi [AÖV17] to minimize friction. ⋄

The rough outline of the algorithm detailed by Abel, Öhman, and Vezzosi [AÖV17]
is as follows:

• We define a type-indexed weak-head reduction judgment Γ ⊢ t −→ u : A.
This presumes that A is in weak-head normal form (whnf)
• We also define a conversion testing judgment Γ ⊢ t ⇐⇒ u : A which
presumes t, u, and A are all in whnf.

Date: Monday 4th December, 2023.
1The issue is comparable to those which arise in the context of cubical type theory and

cofibrations. Some progress has been made by Hu and Pientka [HP23] on the matter in a less
general context.

1

2 DANIEL GRATZER

• Both of the judgments are twinned so as to also apply to types: Γ ⊢ A −→ B
and Γ ⊢ A⇐⇒ B.

Using these four judgments in combination, we are able to define a conversion-
testing algorithm:

Γ ⊢ A −→ Ā Γ ⊢ t −→ t̄ : Ā Γ ⊢ u −→ ū : A0 Γ ⊢ t̄⇐⇒ ū : Ā

Γ ⊢M ⇐̂⇒ N : A

Other judgments arise in the process of defining these four core ones. For instance,
we will require a judgment comparing neutral elements of types like Nat (or ⟨µ | A⟩).

2. Alterations for the preorder-enriched case

Fix a preorder-enriched categoryM. We will discuss the necessary changes to
extend Abel, Öhman, and Vezzosi [AÖV17] to handle MTT instantiated withM.
First and perhaps most obviously, we must extend the grammar of all the syntactic
sorts.

Remark 2.1. The defining characteristic of preorder-enriched mode theories is that
there is no need to explicitly mind 2-cells: they are uniquely determined by their
boundaries. For this reason, we shall have no need to change the syntax of variables.
It also allows us to systematically surpress the syntax of 2-cell substitutions and
the functorial action of −.{µ}. ⋄

Remark 2.2. In Gratzer [Gra23], we have written letν modµ(−)← t inu for elimina-
tor for modal types. In this note, we write modrecν;µ B u t instead to (1) make the

motive B for the eliminator explicit and more closely parallel what Abel, Öhman,
and Vezzosi [AÖV17] write for e.g., the natural numbers. ⋄

(Exp) t, u, v, A,B ::= . . . | modrecν;µ B u t
(Whnf) t̄, Ā ::= . . . | modµ(t) | ⟨µ | A⟩
(Ne) n,m,N,M ::= · · · | modrecν;µ B un
(Ctx) Γ,∆ ::= ϵ | Γ.(µ | A) | Γ.{µ}

We present a few of the typing rules that have changed from the case of Martin-Löf
type theory:

Γ = Γ0, (µ | A),Γ1 |Γ1| = n Locks(Γ1) = ν µ ≤ ν

Γ ⊢ in : A[↑Γ1]

Γ ⊢ σ : ∆ ∆.{µ} ⊢ t : A

Γ ⊢ σ, t : ∆.(µ | A)

µ ≤ ν Γ ⊢ σ : ∆

Γ.{ν} ⊢ σ : ∆.{µ}

Γ.{µ} ⊢ A type

Γ ⊢ ⟨µ | A⟩ type
Γ.{µ} ⊢ t : A

Γ ⊢ modµ(t) : ⟨µ | A⟩

Γ.{ν ◦ µ} ⊢ A type Γ.(ν | ⟨µ | A⟩) ⊢ B type
Γ.(ν ◦ µ | A) ⊢ u : B[↑,modµ(i0)] Γ.{ν} ⊢ t : ⟨µ | A⟩

Γ ⊢ modrecν;µ B u t : B[id, t]

Notice that our typing rules for substitutions add a form of “overloading”; the
functorial action of −.{µ} is entirely silent. This is valid only because all 2-cells with

WEAK-HEAD CONVERSION TESTING FOR MTT 3

the same boundary are equal. In other words, because we have no need to keep track
of the 2-cells on variables, we have need for modal annotations on substitutions. We
shall see this change in Section 3. As substitutions have not changed, there is no
real need to alter the t[σ] aside from the addition of the new cases:

modµ(t)[σ] = modµ(t[σ])

⟨µ | A⟩[σ] = modµ(t[σ])

(modrecν;µ B u t)[σ] = modrecν;µ (B[⇑ σ]) (u[⇑ σ]) (t[σ])

It remains to present the additional rules for weak-head reduction and conversion
testing (the rules for all previous connectives are unchanged):

Γ.(ν | ⟨µ | A⟩) ⊢ B type
Γ.(ν ◦ µ | A) ⊢ u : B[↑,modµ(i0)] Γ.{ν}.{µ} ⊢ t : A

Γ ⊢ modrecν;µ B umodµ(t) −→ u[id, t] : B[id, t]

Γ.(ν | ⟨µ | A⟩) ⊢ B type
Γ.(ν ◦ µ | A) ⊢ u : B[↑,modµ(i0)] Γ.{ν ◦ µ} ⊢ t : A Γ.{ν ◦ µ} ⊢ t −→ t′ : A

Γ ⊢ modrecν;µ B u t −→ modrecν;µ B u t′ : B[id, t]

Γ.{µ} ⊢ A ⇐̂⇒ B

Γ ⊢ ⟨µ | A⟩ ⇐⇒ ⟨µ | B⟩
Γ.{µ} ⊢ A −→∗ Ā Γ.{µ} ⊢ t ⇐̂⇒ u : Ā

Γ ⊢ modµ(t)⇐⇒ modµ(u) : ⟨µ | A⟩

Γ.(ν | ⟨µ | A⟩) ⊢ B0 ⇐̂⇒ B1

Γ.(ν ◦ µ | A) ⊢ u0 ⇐̂⇒ u1 : B0[↑,modµ(i0)] Γ.{ν} ⊢ t0 ←̂→ t1 : ⟨µ | A⟩
Γ ⊢ modrecν;µ B0 u0 t0 ←̂→ modrecν;µ B1 u1 t1 : B0[id, t0]

We do not believe any of these rules offer particular surprises; they follow the
pattern of other connectives.

3. The general case

In this section, we lift the restriction that the mode theory be merely preorder
enriched and consider proper 2-categories. This actually causes some complications:
we can no longer ignore 2-cells and must track them through our algorithm. We
require a few alterations to our syntax in order for this to work. While terms and
contexts remain the same (1) we must change variables so as to record the 2-cell
used to access them (2) we tweak substitutions to record the functorial action of
modalities, and (3) we require an additional operation on terms to “shift” them.
We note that we still do not alter substitutions per se to record modalities, but
rather explicitly separate out the key substitutions induced 2-cells as they are only
required in a few particular places.

(Sb) σ ::= σ, µ
(Ne) n,m,N,M ::= . . . | iαi

Remark 3.1. We emphasize that—unlike with MTT qua GAT—we do not actually
view Γ.{µ ◦ ν} and Γ.{µ}.{ν} as identical. We instead will ensure that there is an
admissible rule ensuring that a term is well-typed in one iff it is well-typed in the
other. However, we will use this more rigid distinction to avoid carrying around

4 DANIEL GRATZER

some information in substitutions. We likewise do not insist that Γ.{id} = Γ, though
this is less pressing. ⋄

In order to make what follows more intelligible, we introduce a new syntactic
category of “skeletal contexts”. These will contain only a small fraction of the
information of an actual context and isolate what is necessary for the shifting
operation:

(SkCx) S, T ::= ϵ | S.{µ} | S.•

In particular, these contexts erase the types and modal annotations, but retain
the information of the modal restrictions and the places where variables appear.
There is an evident erasure operation Γ 7→ ∥Γ∥ which erases the types from Γ to
produce a skeletal context.

The typing rule for a variable must be correspondingly altered to account for this
new syntax:

Γ ⊢ σ : ∆

Γ.{µ} ⊢ σ, µ : ∆.{µ}

Γ = Γ0, (µ | A),Γ1

|Γ1| = n locks(Γ1) = ν α : µ ν ∥Γ0∥;α ⊢ A⇝ A′

Γ ⊢ iαn : A′[↑Γ1]

The first judgment takes the place of the “subtyping” that we used in Section 2.
In the above, we have made use of a new judgment ∥Γ∥;α; ∥∆∥ ⊢ A⇝ B which

roughly takes a type Γ.{dom(α)}.∆ ⊢ A type and uses α to “shift” all the variables
in A to obtain Γ.{cod(α)}.∆α ⊢ B type. In this last expression we have written ∆α

for the pointwise application of this shifting operation to ∆. We now describe the
rules for this judgment along with the corresponding operation for terms.

S;α;T ⊢ t⇝ u S;α;T ⊢ A⇝ B

S;α;T.{µ} ⊢ A⇝ B

S;α;T ⊢ ⟨µ | A⟩⇝ ⟨µ | B⟩
S;α;T ⊢ A⇝ C S;α;T.• ⊢ B ⇝ D

S;α;T ⊢
∏

A B ⇝
∏

C D

S;α;T.{µ} ⊢ t⇝ u

S;α;T ⊢ modµ(t)⇝ modµ(u)

T = T0. • .T1 |T1| = i

S;α;T ⊢ iαi ⇝ iαi

S = S0. • .S1 |S1|+ |T | = i locks(S1) = ξ0 locks(T) = ξ1

S;α;T ⊢ iβi ⇝ i
(ξ0 ⋆α ⋆ ξ1)◦β
i

The last rule is the heart of the judgment. It states that if we are attempting
to shift a variable by α which is presently been accessed by β, we modify β by
post-composing it with α after appropriately whiskering α to have the correct type.

We must also alter the substitution action. In order to accommodate general
2-cells it must also take place with respect to a pair of skeletal contexts. This is
less onerous than it might appear at first blush; all instances of the substitution
judgment have both contexts readily available. All of judgments for the “substitution

REFERENCES 5

judgment” commute the substitution further into a term. The work is, as expected,
done at variables.

t[id, ν̄i : S → T] = t

modµ(t)[σ : S → T] = modµ(t[σ : S.{µ} → T.{µ}])

iαi+1[σ, t, νi : S.{νi} → T.A.{νi}] = iαi [σ, νi : S.{νi} → T. • .{νi}]

iα0 [σ, t, νi : S.{νi} → T. • .{νi}] = u where S;α ⊢ t⇝ u

The rules from Section 2 now adapt after adding appropriate annotations.

Γ.(ν | ⟨µ | A⟩) ⊢ B type
Γ.(ν ◦ µ | A) ⊢ u : B[↑,modµ(i0) : ∥Γ∥.• → ∥Γ∥.•] Γ.{ν}.{µ} ⊢ t : A

Γ ⊢ modrecν;µ B umodµ(t) −→ u[id, t : ∥Γ∥ → ∥Γ∥.•] : B[id, t : ∥Γ∥ → ∥Γ∥.•]

Γ.(ν | ⟨µ | A⟩) ⊢ B type Γ.(ν ◦ µ | A) ⊢ u : B[↑,modµ(i0) : ∥Γ∥.• → ∥Γ∥.•]
Γ.{ν ◦ µ} ⊢ t : A Γ.{ν ◦ µ} ⊢ t −→ t′ : A

Γ ⊢ modrecν;µ B u t −→ modrecν;µ B u t′ : B[id, t : ∥Γ∥ → ∥Γ∥.•]

Γ.{µ} ⊢ A ⇐̂⇒ B

Γ ⊢ ⟨µ | A⟩ ⇐⇒ ⟨µ | B⟩
Γ.{µ} ⊢ A −→∗ Ā Γ.{µ} ⊢ t ⇐̂⇒ u : Ā

Γ ⊢ modµ(t)⇐⇒ modµ(u) : ⟨µ | A⟩

Γ.(ν | ⟨µ | A⟩) ⊢ B0 ⇐̂⇒ B1 Γ.{ν} ⊢ t0 ←̂→ t1 : ⟨µ | A⟩
Γ.(ν ◦ µ | A) ⊢ u0 ⇐̂⇒ u1 : B0[↑,modµ(i0) : ∥Γ∥.• → ∥Γ∥.•]

Γ ⊢ modrecν;µ B0 u0 t0 ←̂→ modrecν;µ B1 u1 t1 : B0[id, t0 : ∥Γ∥ → ∥Γ∥.•]

4. Remaining questions

Of course, the discussion above deals only with the core calculus. It remains to
consider how all of the features of MTT might interact with higher-level operations
like pattern-matching, data types, records, metavariables etc. One feature worth
noting: we should forbid the user from pattern-matching on a variable with a
non-trivial modal annotation in general.

References

[AÖV17] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of
Conversion for Type Theory in Type Theory”. In: Proc. ACM Program.
Lang. 2.POPL (Dec. 2017). doi: 10.1145/3158111 (cit. on pp. 1, 2).

[Gra22] Daniel Gratzer. “Normalization for Multimodal Type Theory”. In: Pro-
ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Com-
puter Science. LICS ’22. Haifa, Israel: Association for Computing Ma-
chinery, 2022. isbn: 9781450393515. doi: 10.1145/3531130.3532398.
url: https://doi.org/10.1145/3531130.3532398 (cit. on p. 1).

[Gra23] Daniel Gratzer. “Syntax and semantics of modal type theory”. To be
submitted. PhD thesis. Aarhus University, 2023 (cit. on p. 2).

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398

6 REFERENCES

[HP23] Jason Z. S. Hu and Brigitte Pientka. “A Categorical Normalization Proof
for the Modal Lambda-Calculus”. In: Electronic Notes in Theoretical
Informatics and Computer Science Volume 1 - Proceedings of MFPS
XXXVIII (Feb. 2023). doi: 10.46298/entics.10360 (cit. on p. 1).

[SGB23] Philipp Stassen, Daniel Gratzer, and Lars Birkedal. “mitten: A flexible
multimodal proof assistant”. In: TYPES 2022 Post-proceedings (2023).
To appear (cit. on p. 1).

https://doi.org/10.46298/entics.10360

	1. Introduction
	2. Alterations for the preorder-enriched case
	3. The general case
	4. Remaining questions
	References

