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Abstract
When working in Homotopy Type Theory and Univalent Foundations, the traditional role of the category
of sets, Set, is replaced by the category hSet of homotopy sets (h-sets); types with h-propositional identity
types. Many of the properties of Set hold for hSet ((co)completeness, exactness, local cartesian closure,
etc.). Notably, however, the univalence axiom implies that Ob hSet is not itself an h-set, but an h-groupoid.
This is expected in univalent foundations, but it is sometimes useful to also have a stricter universe of sets,
for example when constructing internal models of type theory. In this work, we equip the type of iterative
sets V0, due to Gylterud (2018) as a refinement of the pioneering work of Aczel (1978) on universes of sets
in type theory, with the structure of a Tarski universe and show that it satisfies many of the good properties
of h-sets. In particular, we organize V0 into a (non-univalent strict) category and prove that it is locally
cartesian closed. This enables us to organize it into a category with families with the structure necessary
to model extensional type theory internally in HoTT/UF. We do this in a rather minimal univalent type
theory with W-types, in particular we do not rely on any HITs, or other complex extensions of type theory.
Furthermore, the construction of V0 and the model is fully constructive and predicative, while still being
very convenient to work with as the decoding from V0 into h-sets commutes definitionally for all type
constructors. Almost all of the paper has been formalized in Agda using the agda-unimath library of
univalent mathematics.
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1. Introduction
Foundational theories of mathematics are concerned with collections of mathematical objects.
Depending on the specific foundation, these collections might be called sets, classes or types.
Among the many schisms of foundational theories, we find the one between material and
structural. In a material foundational theory, the objects within a collection have an identity inde-
pendent of the collection, and it is a sensible question to compare elements of different collections
by equality. On the other hand, in a structural theory, the elements of a collection have no iden-
tity separate from the collection, and the important aspects of a collection are how its structure
interacts with the other collections, for instance through functional relations.

Traditional set theories, such as Zermelo–Fraenkel set theory (ZF), are material foundational
theories: there is a global elementhood relation and a global identity relation, meaning that all
objects of the theory are possible elements of any set and can be compared to any other ele-
ments. This gives each set an inherent structure of membership relations between its elements,
the elements of its elements, and so on. On the other hand, intensional Martin-Löf type theory
(MLTT) (Martin-Löf, 1975) is a structural theory where the identity type compares only elements
of the same type. Furthermore, in Homotopy Type Theory and Univalent Foundationsa (HoTT/UF)
(The Univalent Foundations Program, 2013) the Univalence Axiom (UA) (Voevodsky, 2010) can
be seen in structural terms as saying that structural equivalence is identity (Awodey, 2013).
HoTT/UF also distinguishes its types into h-levels/n-types: contractible types, h-proposition, h-
sets, h-groupoids, and so on (Voevodsky, 2015). The h-sets correspond to sets as realized by other
structural set theories, while types of higher h-levels are (higher-dimensional) groupoids which
are not primitive objects in other foundational theories.

In type theory, the types are organized into universes, and UA is formulated relative to a spe-
cific universe. Thus, one can have both univalent and non-univalent universes living side by side.
Univalence of a universe is mostly a positive feature: since every definable operation respects
equality, structures can be transported along equivalences using univalence. One immediate obser-
vation is that in a univalent universe containing at least the booleans, the subuniverse of all h-sets
in that universe cannot itself be an h-set. However, there are situations where it would be useful
to have a family of h-sets which itself is an h-set. One such situation is when constructing the
set model of type theory, as for example a category with families (CwF) (Dybjer, 1996), within
HoTT/UF. The natural way of doing this would be to start with a univalent universe U and attempt
to equip the corresponding category of h-sets (hSetU) with a CwF structure. Part of the structure
of a CwF is a presheaf Ty, which is usually formalized in HoTT/UF as a contravariant functor
from the category into h-sets. The objects of the source category are thought of as contexts and
the Ty-functor specifies what the types are in a given context. The natural choice when organizing
hSetU into a CwF would be to let Ty(Γ) := Γ → hSetU. Informally, the types in context Γ are
simply families of h-sets (in U) over Γ. However, since hSetU is not an h-set, this is ill-typed.

The agenda of this paper is to explore how one specific choice of a cumulative hierarchy of
h-sets, namely the hierarchy V0 as defined by Gylterud (2018), can be used as a (non-univalent)
universe in HoTT/UF. In particular, we will study the structural and categorical properties of this
inherently material structure and use it as the basis for a CwF structure. V0 is a good starting point
for our investigation into internal models of type theory since its construction uses only elementary
type-formers: Π-types, Σ-types, W-types and identity types. In particular, neither the type V0 itself
nor the ∈-relation defined on it require higher-inductive types, truncations or quotients. Since V0

aWe will refer to the book Homotopy Type Theory: Univalent Foundations of Mathematics (The Univalent Foundations
Program, 2013) as the “HoTT Book” throughout the rest of the paper.
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is an h-set, and it is closed under the usual type formers, it assembles into a model of MLTT with
uniqueness of identity proofs and function extensionality, constructed within MLTT+UA. In this
work, UA plays an essential role. We use it to, for instance, characterize the identity type of V0.
Using UA can sometimes result in constructions which lack the nice computational properties one
has in bare MLTT. In our case however, since V0 itself is built from elementary type-formers, many
of the crucial equations, such as the ones for decoding type formers in V0, hold definitionally. This
makes V0 extremely ergonomic from a formalization perspective.

Indeed, almost all of this paper has been formalized in the proof assistant Agda (The Agda

Development Team, 2023)—a dependently typed programming language where one can construct
both programs and proofs using the same syntax. Throughout the paper the Agda logo, , next
to a result is a clickable link to the Agda code for that result. For basic results and constructions
in HoTT/UF, we have used the agda-unimath library (Rijke et al., 2021)—a large Agda library
of formalized mathematics from the univalent point of view. Our formalization is in many places
more general than the results presented in this paper as many constructions used here have a gen-
eralization to higher h-levels, and it is these generalized constructions that have been formalized.
They are used for the Univalent Material Set Theory developed by Gylterud and Stenholm (2023).

1.1 Formal meta-theory and assumptions
While our formalization has been carried out in Agda on top of agda-unimath, the results in this
paper can be obtained in a more modest type theory, and are modular in the sense that if you
strengthen the underlying type theory with more types, such as quotients or more universes, these
will be reflected in the internal model. The majority of the results assume that one works in MLTT
extended with UA. By “MLTT” we take an intensional version of MLTT with the same types and
type formers as in (Martin-Löf, 1982, Table 2), namely:

• Π-types, denoted ∏x:A B(x) with application denoted by juxtaposition and λ -abstraction by
λ (x : A).b(x).

• Σ-types, denoted Σx:AB(x) with projections pr1 and pr2.
• W-types, denoted Wx:A B(x) with canonical elements sup A f .
• Identity types, denoted a = a′, sometimes subscripted a =A a′ for clarity, with reflective

elements refla : a = a.
• Binary sum types, denoted A + B with injections inl and inr.
• Base types: empty, unit, bool, N, with tt being the canonical element of unit, true, false the

elements of bool, and elements of N denoted by 0 and s n. We also let Fin n denote the type
with n elements.

• Universes, denoted U, closed under the aforementioned type formers. For constructions
needing more than one universe level, we will subscript them U0,U1, · · · ,Uℓ, · · · .

One important difference to (Martin-Löf, 1982) though is that we of course do not assume
equality reflection and instead have intensional identity types as in (Martin-Löf, 1975). Another
difference is that we, for convenience, assume definitional η for Σ-types. Our system is hence
very similar to Martı́n Escardó’s spartan MLTT (Escardó, 2019) and the basic system used in
UniMath (Voevodsky et al., 2020), but with the addition of W-types. The only construction going
beyond this is the construction of set quotients in Section 3.3, which assumes that the universe
has set quotients. The construction of subuniverses in Section 3.5 also naturally assumes that the
starting universe has subuniverses as well. But even with these extensions, the development is
completely constructive and predicative, in particular we do not rely on LEM, AC, or any resizing
principles (Voevodsky, 2011).
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For convenience, we also rely on definitions and notational conventions from the HoTT Book.
Among these are:

• Definitional/judgmental equality is denoted by ≡.
• Homotopy of functions is denoted f ∼ g, with refl-htpy denoting λa.refl
• Type equivalence is denoted A ≃ B with identity equivalence id-equiv : A ≃ A.
• h-levels/n-types, in this paper we mainly work with types in hPropU and hSetU, i.e. the

h-propositions and h-sets in a given universe.
• We use pattern-matching freely in definitions and proofs, instead of explicit eliminators.

1.2 Contributions of the paper
While Section 2 sets the stage by recounting the definition of V0, the foundation of this paper’s
contributions is built in Section 3: we show that V0 forms a Tarski-style universe closed under Π-
types, Σ-types, identity types, coproducts, set quotients, and that it contains basic types like empty,
unit, bool, N and a hierarchy of subuniverses. Proposition 18 is central to this, as it characterizes
the small types representable in V0 as those which can be embedded into it. Since the decoding
of all type formers is definitional, this gives an ergonomic universe of h-sets which itself is an
h-set, which can be used in HoTT/UF. In Section 4 we shed light on the categorical properties
of V0. In particular, we show that it is a locally cartesian closed category, with finite limits and
colimits, and that there is a full and faithful functor back to hSetU which preserves this structure.
The final technical contribution is the construction of an extensional model of MLTT internal in
MLTT+UA, based on V0. This is done by giving CwF structure to V0. The formalization of this
includes contributions to agda-unimath, in particular the definition of a CwF with associated
structure. A bibliographic contribution can be found in Section 6, where we compare our con-
structions to existing developments on the relationship between set theory and type theory. This
relationship has taken many forms over the years, and goes back to the 1970s.

2. Definition of V0 and its basic properties
The ideas behind V0 trace back to The type theoretic interpretation of constructive set theory
by Aczel (1978). In op. cit., Aczel constructed a model of set theory in dependent type theory
relying upon a non-trivial defined equality relation on the underlying type of the model in order
to (hereditarily) force set-extensionality. This underlying type of the model is what we in modern
parlance would call a W-type. To construct V0, we opt to carve out a subtype of a W-type rather
than take such a quotient. Instead of defining an equivalence relation which identifies the elements
of the W-type which represent the same set, we shall identify a subtype of the W-type which
contains only the canonical representations of each (iterative) set. Thus, we get a model of set
theory in type theory where the equality is interpreted as the identity type and no further non-trivial
identifications are required.

In this section we will review the definition of V0 and prove some properties about it. In partic-
ular, we will show that V0 is an h-set. In order to define V0, we start by recalling the W-type Aczel
used: “the unrestricted iterative hierarchy”. It is the type of well-founded trees with branching
types chosen freely from a fixed universe Uℓ.

Definition 1 ( ). Given a universe Uℓ, we define the type V∞
ℓ as

V∞
ℓ :=WA:Uℓ

A

We will usually omit the universe level ℓ for Uℓ and V∞
ℓ , and write simply U and V∞. When

seeing V∞ as a type of sets, an element sup A f : V∞ represents a set whose elements are indexed

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#2146
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by the type A : U. The function f : A →V∞ picks out the element at each index. Since the function
f need not be injective, the same element can be picked out several times. Indeed, the role of
Aczel’s equivalence relation on this type was to erase this multiplicity. If we instead omit this
further identification V∞ can be seen as a type of multisets (Gylterud, 2020).

Notation 2. Given x : V∞, we follow Aczel (1978) and define a pair of operations x : U and x̃ :
x →V∞, as follows:

sup A f := A sup A f
:

:= f

We present two characterizations of equality in V∞ as both are useful in different contexts. We
note that both characterizations rely on univalence.

The first is an instance of a more general characterization of equality in W-types (Gylterud,
2020, Lemma 1). It states that two elements are equal if they have equivalent underlying indexing
types and this equivalence is coherent with respect to the functions picking out the elements.

Theorem 3 ((Gylterud, 2020, Theorem 1), ). For two elements x, y : V∞ the canonical map

(x = y)→

(
∑

e: x≃y
x̃ ∼ ỹ ◦ e

)
which sends refl to (id-equiv, refl-htpy), is an equivalence.

The second characterization of equality in V∞ states that two elements in V∞ are equal when
the functions picking out the elements are fiberwise equivalent. Intuitively, this means that they
pick out the same elements the same number of times. One can think of this characterization of
equality as a higher level generalization of the axiom of extensionality.

Theorem 4 ((Gylterud, 2020, Theorem 2), ). For two elements x, y : V∞ the canonical map

(x = y)→ ∏
z:V∞

fib x̃ z ≃ fib ỹ z

which sends refl to λ z.id-equiv, is an equivalence.

Proof. We reproduce the proof here for convenience. We have the following chain of equivalences:

(x = y)≃

(
∑

e: x ≃ y
x̃ ∼ ỹ ◦ e

)
≃

(
∏
z:V∞

fib x̃ z ≃ fib ỹ z

)
The first equivalence is the one constructed in Theorem 3. The second equivalence is proven

by Gylterud (2020, Lemma 5). One directly checks that the constructed equivalence computes as
desired for refl.

We will not dwell much on our structures being models of material set theory, but rather focus
on their structural properties in this paper. However, we will define the elementhood relation on
V∞ following Gylterud (2020). This elementhood relation, and its well-foundedness, will be used
in later constructions.

Definition 5 (Elementhood, ). We define ∈ : V∞ →V∞ →U by

x ∈ y := fib ỹ x

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#2806
https://elisabeth.stenholm.one/category-of-iterative-sets/e-structure.from-T-coalgebra.html#1124
https://elisabeth.stenholm.one/category-of-iterative-sets/e-structure.from-T-coalgebra.html#1047
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In particular, for canonical elements we get

(x ∈ sup A f )≡

(
∑
a:A

f a = x

)

The exensionality property of Theorem 4 can now be reformulated as an equivalence

(x = y)≃

(
∏
z:V∞

z ∈ x ≃ z ∈ y

)

By virtue of univalence, we obtain this extensionality result without taking quotients by set exten-
sionality or bisimulation like Aczel does. In particular, we are able to avoid working with quotients
or setoids while still achieving the equivalence above.

Note that x ∈ y need not be an h-proposition, i.e., y could contain several instances of x. This is
because, as discussed above, there is no restriction on the function ỹ and its fibers. We will soon
focus our attention to a subtype of V∞ where these fibers are h-propositions, i.e., where they have
at most one inhabitant. But first, we will look at how some familiar sets can be represented in V∞.

We define the empty set as follows:

/0 := sup empty empty-elim

This represents the empty set since for any x : V∞, the type x ∈ /0 is empty.
Given x : V∞ we can construct the singleton containing x as follows:

{x} := sup unit (λ .x)

The type x ∈ {x} is inhabited by (tt, refl). Indeed, for any y : V∞, there is an equivalence
(y ∈ {x})≃ (y = x).

We can also construct the unordered pair of two elements x, y : V∞:

{x, y} := sup bool (λb.if b then x else y)

For any z : V∞, the type z ∈ {x, y} is equivalent to (z = x) + (z = y). Note in particular that the
type x ∈ {x, x} is equivalent to (x = x) + (x = x), which contains at least two distinct elements.
Thus, {x, x} is a multiset which contains two copies of x. Using images one can whittle this down
to an iterative set, see the forthcoming paper (Gylterud and Stenholm, 2023) for details on the
various types of pairing in higher h-levels.

In order to construct a universe of sets we need to ensure that the ∈-relation is h-proposition
valued, i.e., that any element occurs at most once in a set. As the type x ∈ y is the type of homotopy
fibers of ỹ over x, this type would be an h-proposition if ỹ was an embedding:

Definition 6 ((HoTT Book, Definition 4.6.1), ). A function f : A → B is an embedding if
ap f x y : x = y → f x = f y is an equivalence for all x y : A.

We write is-emb f for the type of proofs that f is an embedding and f : A ↪→ B for
∑ f :A→B is-emb f . A key observation about embeddings is:

Lemma 7 ((HoTT Book, Lemma 7.6.2), ). A function f : A → B is an embedding if and only
if it has h-propositional fibers.

This motivates Gylterud’s definition of iterative sets in HoTT/UF (Gylterud, 2018):

https://elisabeth.stenholm.one/category-of-iterative-sets/foundation-core.embeddings.html#1086
https://elisabeth.stenholm.one/category-of-iterative-sets/foundation-core.propositional-maps.html#2019
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Definition 8 (Iterative sets, ). We define is-iterative-set : V∞ →U as

is-iterative-set (sup A f ) := (is-emb f )×

(
∏
a:A

is-iterative-set ( f a)

)

The idea is to pick out those elements x : V∞ for which the function that selects elements is an
embedding and such that the elements of x satisfy the same criterion, recursively. This means that
any y : V∞ element is a member of x at most once and, consequently, x encode a set rather than a
multiset. For these sets the ∈-relation becomes h-proposition valued by Lemma 7, as desired.

Not all the elements in V∞ are iterative sets. For example, the unordered pair { /0, /0} from
above is not an iterative set as the function in the definition is not an embedding.b On the other
hand, the empty set, /0, is an iterative set, since empty-elim is always an embedding, regardless
of the codomain. Moreover, for any iterative set x : V0, the singleton {x} is an iterative set since
any map from an h-proposition into an h-set is an embedding (we will see that V0 is an h-set in
Theorem 12). Furthermore, if x and y are distinct iterative sets then {x, y} is also an iterative set.
To see this, it suffices to verify that the below map ϕ : bool→V0 is an embedding if it is injective:

ϕ b := if b then x else y

Given b1, b2 : bool, either b1 = b2, in which case we are done, or b1 ̸= b2, in which case we get a
path between x and y, from which the result follows by assumption.

Definition 9 (Type of iterative sets, ). We define the type of iterative sets as follows:

V0 :=∑x:V∞ is-iterative-set x

We will extend the previously introduced notation to apply to iterative sets:

(sup A f , p) := A (sup A f , p)
:

:= f

Moreover, the elementhood relation ∈ defined on V∞ gives rise to an elementhood relation for V0

given by projecting out the underlying elements in V∞ and applying ∈: for any x, y : V0 we let
x ∈ y := pr1 x ∈ pr1 y. We use the same notation for both relations, as it will be clear from context
which one is meant.

Lemma 10 ( ). For all x : V∞, the type is-iterative-set x is an h-proposition.

Proof. This follows by induction on x : V∞, together with the fact that being an embedding is an
h-proposition.

Corollary 11 ( ). The projection pr1 : V0 →V∞ is an embedding, i.e. V0 is a subtype of V∞.

Proof. This is an instance of the fact that for any type A and family P of h-propositions over A,
the first projection pr1 : ∑a:A P a → A is an embedding.

Having an embedding V0 ↪→V∞ means that equality in V0 is exactly equality of the corre-
sponding elements in V∞. Since we have already characterized equality in V∞, we can use this
characterization to show that V0 is an h-set.

Theorem 12 ( ). V0 is an h-set.

bThere is a different way to construct pairs which does yield an iterative set when applied to iterative sets. For details, see
the proof of the the axioms of Myhill’s constructive set theory given by Gylterud (2018).

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#3053
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#3823
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#3205
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#4044
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#17196
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Proof. For (x, p), (y, q) : V0 we have a chain of equivalences:

((x, p) =V0 (y, q))≃ (x =V∞ y)≃

(
∏
z:V∞

z ∈ x ≃ z ∈ y

)
The first equivalence is the characterization of equality in subtypes. The second is Theorem 4. Note
that z ∈ x ≡ fib x̃ z, and x̃ is an embedding by p. Thus z ∈ x is an h-proposition. The same holds
for z ∈ y. Thus, the rightmost type in the chain of equivalences above is a family of equivalences
between h-propositions, and is thus an h-proposition. It then follows that the type (x, p) =V0 (y, q)
is an h-proposition.

Given a type A : U and an embedding f : A ↪→V0, we can construct an element of V0. This
function is the counterpart to sup for V∞, and while it is not formally a constructor it behaves like
one in that the recursion and elimination principles, with fitting computation rules, are provable
for it (Gylterud and Stenholm, 2023).

Remark 13. The underscores in the constructions below denote proof terms for the h-propositions
involved. We omit these for readability, and refer the interested reader to the formalization.

Definition 14 ( ). We define the following function:

sup0 :

(
∑
A:U

A ↪→V0

)
→V0

sup0 (A, f ) := (sup A (π0 ◦ f ), )

Similarly, given an element of V0, we can extract the underlying type and embedding.

Definition 15 ( ). We define the following function:

desup0 : V0 →

(
∑
A:U

A ↪→V0

)
desup0 (sup A f , ) := (A, ( f , ))

By virtue of being a W-type, V∞ is the initial algebra to the polynomial functor

X 7→

(
∑
A:U

A → X

)
Similarly, V0 is the initial algebra for the functor X 7→ (∑A:U A ↪→ X), even though this functor

is not polynomial. The initiality induces an equivalence V0 ≃
(
∑A:U A ↪→V0

)
, realized by the

maps sup0 and desup0 above. These results are due to Gylterud and Stenholm (2023), who extend
this construction to a whole hierarchy of functors X 7→ (∑A:U A ↪→n X), for n : N−1. Each of these
have an initial algebra, given by a higher level generalization of V0.

3. V0 as a universe à la Tarski
The type V0 can be thought of as a type of material sets, in the sense that V0 together with the
binary relation ∈ is a model of constructive set theory (Gylterud, 2018). This section demonstrates
that, more type-theoretically, V0 can be organized into a universe à la Tarski. In this way, V0

becomes a universe of h-sets which is itself an h-set. Furthermore, V0 is a strict universe in the

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#5749
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#6288
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sense that the decoding from codes to types is definitional. For instance, the decoding of the code
for the natural numbers is definitionally equal to the type of natural numbers, and the decoding of
a Π- or Σ-type of a family is the actual Π- or Σ-type of the decoding of the family.

We begin by defining the decoding family for our universe, V0, as the underlying index type for
each of its elements.

Definition 16 (Decoding, ). We define the decoding function El0 : V0 →U by

El0 x := x

It is easy to prove that the decoding of each code in V0 is also an h-set:

Theorem 17 ( ). For every x : V0 the type El0 x is an h-set.

Proof. Recall that x̃ embeds El0 x into V0. By Theorem 12 V0 is an h-set. Since any type which
embeds into an h-set is an h-set, it follows that El0 x is an h-set.

Note that for any A : U and embedding f : A ↪→V0 we have the definitional equality
El0 (sup0 (A, f ))≡ A. That is, if we construct a code for a type in U using sup0 (which is what
we usually do), then the decoding of this code is definitionally equal to the type we started with.
This is very convenient when working with the universe V0, especially for formalization.

As a universe, V0 contains codes of all the traditional type formers as long as they are present
in the underlying universe, U. Using sup0, one can construct a code for a given type A : U in V0

if there is an embedding A ↪→V0. In fact, there is a code for A in V0 precisely when it can be
embedded into V0.

Proposition 18 ( ). For any A : U there is an equivalence(
A ↪→V0)≃(∑

a:V0

El0 a = A

)

Proof. The maps back and forth are

α :
(
A ↪→V0)→ ∑

a:V0

El0 a = A

α f := (sup0 (A, f ) , refl)

β :

(
∑

a:V0

El0 a = A

)
→ (A ↪→V0)

β (a, refl) := ã

We compute as follows:

α(β (a, refl))≡ α(ã)≡ (sup0 (a, ã) , refl) = (a, refl)

pr1 (β (α f ))≡ pr1
(
β (sup0 (A, f ) , refl)

)
≡ pr1

(
sup0 (A, f )
:)

≡ pr1 f

We emphasize that the definitional equation El0 (sup0 (A, f ))≡ A simplifies the definition of
α as we may then use refl for the second argument. Moreover, β ◦ α definitionally preserves the
function underlying the embedding. The same is not true of the witness that this function is an
embedding, but such witnesses belong to a contractible type and can safely be ignored.

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#6525
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#17117
https://elisabeth.stenholm.one/category-of-iterative-sets/fixed-point.internalisations.html#1344


10 The Category of Iterative Sets in HoTT/UF

3.1 Basic types
We now construct codes for some basic types in V0.

Proposition 19 ( ). V0 contains the empty type, unit type and booleans.

Proof. We define the elements empty0, unit0, bool0 : V0 as follows:

empty0 := /0

unit0 := { /0}
bool0 := { /0, { /0}}

There were all verified to be iterative sets in Section 2.

We note that the expected equations hold up to definitional equality:

El0 empty0 ≡ empty, El0 unit0 ≡ unit and El0 bool0 ≡ bool.

Proposition 20 ( ). V0 is closed under the natural numbers.

Proof. By Proposition 18 it is enough to construct an embedding N ↪→V0. Here there is a choice of
encoding of the naturals in V0 and several encodings are possible. We will use the von Neumann
encoding and show that this is an embedding.

First we define the successor function in V0:

suc0 : V0 →V0

suc0 x := sup0 (x + unit, ϕx)

In the above, ϕx : x + unit→V0 is defined as follows:

ϕx (inl a) := x̃ a
ϕx (inr b) := x

To see that the map ϕx is an embedding, note that for any z : V0 the fiber fib ϕx z is equiva-
lent to (z ∈ x) + (x = z). Both summands are h-propositions and they are disjoint: if they were
both inhabited we could derive x ∈ x which contradicts the well-foundedness of ∈ (Gylterud and
Stenholm, 2023).

The von Neumann encoding of the natural numbers is then the function:

f : N→V0

f 0 := /0

f (s n) := suc0 ( f n)

It remains to show that f is an embedding. As N and V0 are both h-sets it suffices that f is
injective. Observe that f x ≃ Fin x, so if f n = f m then Fin n ≃ Fin m from which n = m follows.

Having shown that f : N→V0 is an embedding, we define the (code for the) natural numbers
in V0 as follows:

N0 := sup0 (N, f )

Note, again, that the decoding holds up to definitional equality:

El0 N0 ≡N

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#17436
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#20911
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3.2 Type formers
We now turn to closing V0 under the standard type formers. For these constructions we will need
ordered pairs.

Lemma 21 ( ). There is an ordered pairing operation ⟨ , ⟩ : V0 ×V0 ↪→V0.

Proof. Ordered pairs are constructed using the Norbert Wiener encoding. The details of this
construction can be found in the proof of (Gylterud and Stenholm, 2023, Theorem 7).

Proposition 22 ( ). V0 is closed under Π-types.

Proof. Let x : V0 and y : El0 x →V0. By (Gylterud and Stenholm, 2023, Lemma 12) there is an
embedding:

graphx,y :

(
∏

a:El0 x

El0 (y a)

)
↪→V0

This map sends ϕ : ∏a:El0 x El
0 (y a) to the element sup0

(
El0 x, λa.⟨x̃ a, (̃y a) (ϕ a)⟩

)
. The Π-

type is then defined as follows:

Π
0 x y := sup0

(
∏

a:El0 x

El0 (y a), graphx,y

)

The decoding holds up to definitional equality:

El0
(
Π

0 x y
)
≡ ∏

a:El0 x

El0 (y a)

Corollary 23 ( ). V0 is closed under (non-dependent) function types. Let x →0 y denote the
code for the type El0 x → El0 y.

Proposition 24 ( ). V0 is closed under Σ-types.

Proof. Let x : V0 and y : El0 x →V0. Define a putative embedding as follows:

f :

(
∑

a:El0 x

El0 (y a)

)
→V0

f (a, b) := ⟨x̃ a, (̃y a) b⟩

This is the composition of two embeddings: ⟨ , ⟩ and λ (a, b).(x̃ a, (̃y a) b) and therefore an
embedding. The last function is an embedding because x̃ is an embedding and as is (̃y a) for
every a : El0 x. We may now define the code for Σ-types:

Σ
0 x y := sup0

(
∑

a:El0 x

El0 (y a) f

)

The decoding holds up to definitional equality:

El0
(
Σ

0 x y
)
≡ ∑

a:El0 x

El0 (y a)

https://elisabeth.stenholm.one/category-of-iterative-sets/fixed-point.unordered-tupling.html#10439
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#18781
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#19551
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#19098
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Corollary 25 ( ). V0 is closed under cartesian products. Let x ×0 y be the code for El0 x × El0 y.

In order to construct coproducts in V0 we need two lemmas about embeddings.

Lemma 26 ( ). Given types Y , Z and h-set X with a point x0 : X, any embedding f : X ×Y ↪→ Z
gives rise to an embedding by fixing the first coordinate: f (x0, ) : Y ↪→ Z.

Proof. We need to show that for any z : Z, the fiber of f (x0, ) over z is an h-proposition. But the
following chain of equivalences holds:(

∑
y:Y

f (x0, y) = z

)
≃

(
∑
y:Y

∑
∑x:X (x=x0)

f (x, y) = z

)
≃

(
∑

((x,y),p):fib f z
x = x0

)
The last type is an h-proposition since fib f z is an h-proposition by Lemma 7 and for each
((x, y), p) : fib f z, the type x = x0 is an h-proposition.

Lemma 27 ( ). Given types X, Y , and Z together with embeddings f : X ↪→ Z and g : Y ↪→ Z.
If f x ̸= g y for all x : X and y : Y then the following map is an embedding:

h : X + Y → Z
h (inl x) := f x
h (inr y) := g y

Proof. Let s, t : X + Y . We need to show that ap h : s = t → h s = h t is an equivalence. Using
induction on coproducts, there are two kinds of cases to consider: when s and t lie in different
summands, and when they lie in the same one.

First, suppose without loss of generality that s ≡ inl x and t ≡ inr y. In this case we need to
show that ap h : inl x = inr y → f x = g y is an equivalence. But both types are empty, so any map
between them is an equivalence.

Now, suppose without loss of generality that s ≡ inl x and t ≡ inl x′. We need to show that ap h :
inl x = inl x′ → f x = f x′ is an equivalence. But note that the following diagram commutes:

x = x′ inl x = inl x′

f x = f x′

ap inl

ap f ap h

Since both ap f and ap inl are equivalences it follows that ap h is an equivalence.

Proposition 28 ( ). V0 is closed under coproducts.

Proof. Let x, y : V0. Define the map

f : El0 x + El0 y →V0

f (inl a) := ⟨empty0, x̃ a⟩
f (inr b) := ⟨unit0, ỹ b⟩

By Lemma 26 both λa.⟨empty0, x̃ a⟩ and λb.⟨unit0, ỹ b⟩ are embeddings. Moreover, suppose
⟨empty0, x̃ a⟩= ⟨unit0, ỹ b⟩ for some a : El0 x and b : El0 y. It then follows that empty0 = unit0,
which is a contradiction. Therefore, by Lemma 27 we conclude that f is an embedding.

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#19606
https://elisabeth.stenholm.one/category-of-iterative-sets/foundation.propositional-maps.html#2885
https://elisabeth.stenholm.one/category-of-iterative-sets/foundation.equality-coproduct-types.html#8672
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#19661
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We now define the coproduct:

x +0 y := sup0 (El0 x + El0 y, f )

Note that the decoding holds up to definitional equality:

El0 (x +0 y)≡ El0 x + El0 y

Proposition 29 ( ). V0 is closed under identity types.

Proof. Let x : V0 and a, a′ : El0 x. Define the following map:

f : a = a′ →V0

f p := /0

This is an embedding as it is a map from an h-proposition into an h-set. The identity type in V0 is
then defined as follows:

Id0 x a a′ := sup0 (a = a′, f )

The decoding holds up to definitional equality:

El0 (Id0 x a a′)≡
(
a = a′

)
We emphasize that El0 x is an h-set for any for any x : V0. Accordingly, Id0 x a a′ is necessarily

a proposition for any a, a′ : El0 x. In particular, Id0 x a a′ satisfies UIP. As this identity type repre-
sents internalizes the ambient identity type, other expected properties of the identity type (such as
function extensionality) also hold.

3.3 Set quotients
In order to define set quotients in V0, we must assume that these quotients exist in our starting
universe U. More specifically, we first assume that there is a function of the following type

−/− : ∏
A:U

(A → A →U)→ hSetU

We then ensure that A/R realizes the quotient of A by the relation R by requiring a map
[−]R : A → A/R such that R a b → [a]R = [b]R for all a, b : A. We also assume a suitable elimi-
nation principle: given a family of h-sets P : A/R → hSetU, we can construct a function ∏x:A/R P x
from a function q : ∏x:A/R P [a]R which coheres with the map R a b → [a]R = [b]R. The require that
function we get satisfies a coherence condition, and if we precompose it with the quotient map
[−]R we get back q. (For the exact assumptions, see the formalization .)

While we don’t need to assume that R : A → A →U is an equivalence relation (h-propositional,
symmetric, reflexive, transitive), the constructions below will use the fact any R induces an
equivalence relation |R| : A → A → hPropU defined by |R| a b := ([a]R = [b]R).

To streamline the process, we will use an interesting formulation of equivalence relations:

Lemma 30. Given a relation R : A → A → hPropU, the following are equivalent:

• R is an equivalence relation
• R a b ≃ ∏c:A (R a c ≃ R b c) for all a, b : A
• R a b ≃ (R a =A→U R b) for all a, b : A

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#20985
https://elisabeth.stenholm.one/category-of-iterative-sets/set-quotient.html
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Proof. Since R is an (h-propositional) binary relation, the above statements are all h-propositions.
The last two are equivalent by function extensionality and univalence. It thus remains to show that
being an equivalence relation is equivalent to one of the last two–we choose the middle one.

Assume that R is an equivalence relation. Everything in sight is an h-proposition, so the equiv-
alences are logical equivalences. Thus, assume that R a b. Then we get a map ∏c:A R a c ↔ R b c
by transitivity and symmetry. In the other direction, if ∏c:A R a c ↔ R b c, choose c = a in order to
obtain R a a ↔ R a b. Since R is reflexive, we get R a b.

Conversely, assume R a b ≃ ∏c:A (R a c ≃ R b c) for all a, b : A. To show reflexivity, let b =
a and notice that ∏c:A (R a c ≃ R a c) has a canonical element, from which we obtain R a a.
Symmetry is obtained by observing that ∏c:A (R a c ≃ R b c)≃ ∏c:A (R b c ≃ R a c) and hence
R a b ≃ R b a. For transitivity, remember that R a b gives ∏c:A (R a c ≃ R b c), thus if we have R b c
we get R a c by following the backwards direction of the equivalence.

The property R a b ≃ ∏c:A (R a c ≃ R b c) for all a, b : A essentially states that the equivalence
classes of R behave well. Tangentially, we note that this requirement make sense even when R is a
general binary family, not only of h-propositions. Thus, this property might make for interesting
future study.

Proposition 31 ( ). V0 is closed under set quotients. That is, given a : V0 and R : El0 a →
El0 a →U there is a/0R : V0 such that El0 (a/0R)≡ (El0 a)/R.

Proof. By Proposition 18 it suffices to construct an embedding El0 a/R ↪→V0. We define
f : El0 a →V0 and prove that for any x, x′ : El0 a we have ([x]R = [x′]R)≃ ( f x = f x′). By the
elimination principle for set quotients, this will induce an embedding El0 a/R ↪→V0.

Thus, let f x = sup0
(

∑y:El0 a |R| x y, ã ◦ pr1
)

, and observe the chain of equivalences:

(
f x = f x′

)
≡

sup0

 ∑
y:El0 a

|R| x y, ã ◦ pr1

= sup0

 ∑
y:El0 a

|R| x′ y, ã ◦ pr1


≃ ∑

α:
(

∑y:El0 a |R| x y
)
≃
(

∑y:El0 a |R| x′ y
) ã ◦ pr1 = ã ◦ α ◦ pr1

≃ ∑
α:
(

∑y:El0 a |R| x y
)
≃
(

∑y:El0 a |R| x′ y
) pr1 = α ◦ pr1

≃ ∏
y:El0 a

|R| x y ≃ |R| x′ y

≃ |R| x x′

≡
(
[x]R = [x′]R

)
Note that we have used the characterization of equivalence relations given by Lemma 30 in the

next to last step.

3.4 Using the type formers
Using the types and type formers in V0 we can construct new types. The decoding of these com-
posite types will then hold up to definitional equality. For example, given elements x, y : V0, a map
f : El0 x → El0 y and b : El0 y we can define the code for the fiber of f over b as

fib0 f b := Σ
0 x (λa.Id0 y ( f a) b)

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#23635
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After applying the decoding function, we get obtain the following definitional equality:

El0
(
fib0 f b

)
≡ fib f b

3.5 Universes
The flexible handling of hierarchies of universes is a key feature of dependent type theory. It
makes it easy to formalize higher order concepts, and mathematical structures. Our universe con-
struction retains this ability, and in this subsection we demonstrate that by observing that the types
V0

0,V
0
1, · · · ,V0

ℓ , · · · form a hierarchy of universes, where each universe occurs as a type with a
code in the next.

Proposition 32 ( ). For any universe level ℓ there is a code V0
ℓ -code : V0

ℓ+1 for V0
ℓ with the

definitional equality El0 V0
ℓ -code≡V0

ℓ

Proof. Given a universe level ℓ, we need to construct an embedding V0
ℓ ↪→V0

ℓ+
. For this, we start

by constructing an embedding V∞
ℓ ↪→V∞

ℓ+ . Thus define the map

ϕ : V∞
ℓ →V∞

ℓ+

ϕ (sup A f ) := sup A (ϕ ◦ f )

(Note that we are using cumulative universes in the ambient type theory, so A : Uℓ+ whenever
A : Uℓ.) To show that ϕ is an embedding, let sup A f , sup B g : V∞

ℓ be arbitrary elements. We need
to show that

ap ϕ : sup A f = sup B g → sup A (ϕ ◦ f ) = sup B (ϕ ◦ g)

is an equivalence. First, note that the following diagram commutes:

∑X :Uℓ
X →V∞

ℓ ∑X :Uℓ+
X →V∞

ℓ+

V∞
ℓ V∞

ℓ+

sup

λ (X ,h).(X ,ϕ◦h)

sup

ϕ

The map sup is an equivalence, so ϕ is an embedding if and only if the top map is an embedding.
Thus we need to show the following to be an equivalence:

ap (λ (X , h).(X , ϕ ◦ h)) : (A, f ) = (B, g)→ (A, ϕ ◦ f ) = (B, ϕ ◦ g)

While we might hope to argue that this is a fiberwise embedding and therefore the total map is an
embedding as well. Unfortunately, our induction hypothesis does not state that ϕ is an embedding,
i.e., that ap is an equivalence for all elements. It only ensures that it is an equivalence for some
elements. We must then take a different path and instead note that the diagram below commutes.

(A, f ) = (B, g) (A, ϕ ◦ f ) = (B, ϕ ◦ g)

∑e:A≃B f ∼ g ◦ e ∑e:A≃B ϕ ◦ f ∼ ϕ ◦ g ◦ e

≃

ap (λ (X ,h).(X ,ϕ◦h))

≃

λ (e,H).(e,ap ϕ◦H)

The vertical maps are provided by Theorem 3. Using 3-for-2, the top map is an equivalence if and
only if the bottom one is an equivalence. We now note that it suffices to check this property on
fibers, so we need to show that given e : A ≃ B, the following map is an equivalence:

(λH.ap ϕ ◦ H) : f ∼ g ◦ e → ϕ ◦ f ∼ ϕ ◦ g ◦ e

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.html#16171
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We now recall that postcomposition by a family of maps is an equivalence if it is a family of equiv-
alences. Finally, we must argue that ap ϕ : f a = g (e a)→ ϕ ( f a) = ϕ (g (e a)) is an equivalence
for all a : A. This follows from the induction hypothesis. Thus, we conclude that ϕ : V∞

ℓ →V∞

ℓ+ is
an embedding.

To argue that this equivalence restricts to V0, we must show this equivalence sends iterative sets
to iterative sets. Thus let sup A f : V∞

ℓ be such that f is an embedding and f a is an iterative set for
all a : A. We must argue that sup A (ϕ ◦ f ) is an iterative set. But the map ϕ ◦ f is an embedding as
the composition of two embeddings. Moreover, by the induction hypothesis, for any a : A, ϕ ( f a)
is an iterative set since f a is an iterative set.

Therefore, ϕ is an embedding from V0
ℓ into V0

ℓ+
. The code for V0

ℓ in V0
ℓ+

is thus defined as

V0
ℓ -code := sup0 (V0

ℓ , ϕ)

Note that the decoding holds up to definitional equality:

El0 V0
ℓ -code≡V0

ℓ

Proposition 33. V0 is not a univalent universe.

Proof. For x, y : V0, x = y is an h-proposition as V0 is an h-set, but El0 x ≃ El0 y is in general a
proper h-set.

4. V0 as a category
The universe structure on V0 induces a category with a full and faithful functor into hSetU. In
this section, we define this category and show that it is closed under many essential constructions
(finite limits and colimits, exponentials, and more). This category provides another concrete way
for us to measure the adequacy of V0 as a replacement for hSetU; the former induces a closely
related category to the latter, sharing many similar properties.

Definition 34 ( ). Let V be the category with

• ObV :=V0

• HomV (x, y) := El0 x → El0 y
• id and ◦ are simply the identity function and function composition.

All laws hold by refl as id and ◦ are the identity and composition from the ambient type theory.
For x, y : V0, the type Hom (x, y) is an h-set as it consists of functions into an h-set.

Note that we will take category to denote what the HoTT Book calls “precategory”, univalent
category to denote what the book calls “category”, and strict category to denote a category where
the objects form an h-set. Hence, V is a strict category as V0 is an h-set.

The following holds more-or-less by construction:

Lemma 35 ( ). The map El0 induces a full and faithful functor from V to hSetU.

Clearly, V is not a univalent category since it possesses objects with non-trivial automorphisms,
but the type of objects in V is an h-set. Still, one might ask if El0 is an equivalence of categories.
This does not appear to be true in general, but can be implied by further axioms. For instance, the
axiom of choice implies that El0 is an equivalence. The core of this is whether every type in U can

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.category.html#428
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.category.html#906
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be equipped with an iterative set-structure—a property known as well-founded materialization.
We discuss this further in Section 6.4.

Fortunately, even without additional axioms we are able to show that V retains much of the
essential structure of hSetU and that El0 preserves many important categorical constructions. In
order to show that V is closed under some categorical structure, it therefore suffices to break the
process into two stages:

(1) Show that hSetU is closed under e.g., finite limits, exponentials, etc.
(2) Show that the objects involved land in the image of El0.

Better still, hSetU is well-studied and known to be closed under all the categorical structures
we consider (Rijke and Spitters, 2015). Our task is therefore reduced only to showing that various
objects of hSetU land in the image of El0. For this, we repeatedly capitalize on the fact that the
decoding El0 holds up to definitional equality; it ensures that the final step can be rephrased as
follows: show that there exists an iterative structure on the objects involved. This pattern is used
repeatedly to prove the following result:

Theorem 36 ( ). V is closed under and El0 preserves the following:

(1) initial object,
(2) terminal object,
(3) finite coproducts,
(4) pushouts,
(5) finite products,
(6) pullbacks, and
(7) exponentials.

Proof. As hSetU supports these structures it suffices to show that each of the representing objects
land in the image of El0 . This clearly follows from the results in Section 3, for instance, the
existence of the initial and terminal object follows from Proposition 19, and e.g., pullbacks can be
constructed through Σ0 and fib0 just like in hSetU.

As V has pullbacks/pushouts and terminal/initial object we directly get:

Corollary 37. V has finite limits and colimits. These are preserved by El0.

We defer further categorical considerations of V to future work and instead turn our attention
to slice categories of V, which play an important role in the study of it as a model of type theory.

4.1 Slice categories of V
Similar methods to the ones above also apply when showing that the slice categories V/a are
well-behaved. In particular, El0 induces a full and faithful functor V/a → hSetU/El

0 a. We can
use this fact to deduce, e.g., that V/a is cartesian closed.

Proposition 38 ( ). For any a : V0, V/a has finite limits.

Proof. This can be proved using the standard argument: products in a slice category are realized by
pullbacks in the underlying category and connected limits are realized by limits of the underlying
diagram. We could also argue by noting that hSetU/El0 a is finitely complete and that limits of
diagrams in the image of El0 remain in the image of El0 .

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.category.properties.html
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.category.slices.properties.html
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We give a bit more details in the following proof as it showcases the usefulness of being able
to encode things directly in V0, combined with the fact that El0 strictly decodes to the expected
thing in U.

Proposition 39 ( ). For any a : V0, V/a has exponentials.

Proof. Given (x, f ), (y, g) : Ob (V/a), define their exponential as the element

exp (x, f ) (y, g) := Σ
0 a (λ i. fib0 g i →0 fib0 f i)

Note that we have the following definitional equality:

El0 (exp (x, f ) (y, g))≡ ∑
i:El0 a

fib g i → fib f i

This is the exponential in hSetU/El
0 a, so exp (x, f ) (y, g) is an exponential object in V/a.

Corollary 40. V is locally cartesian closed and El0 is a locally cartesian closed functor.

Finally, the following proposition foreshadows the next section where we build a model of type
theory on V. In that section, we wish to interpret types in context a as elements of V/a and to real-
ize substitution as pullback. It is well-known, however, that the result is merely pseudofunctorial
and therefore insufficient to form a (strict) model of type theory (Seely, 1984; Curien et al., 2014).
In the specific case of hSetU, there is a well-known pseudo-natural equivalence between the slice
category hSetU/a and the functor category [a, hSetU] which remedies the coherence issues. This
equivalence restricts to the full subcategory determined by V:

Proposition 41 ( ). Given a : V0 and writing a for the corresponding discrete category
associated with El0 a, there is a canonical equivalence V/a ≃ [a,V].

Proof. The equivalence is constructed in the standard way. The functor from [a,V] to V/a sends
F : Ob [a,V] to the element Σ0 a F together with the first projection. In the other direction, an
element (x, f ) : Ob (V/a) is mapped to the functor λ i.fib0 f i.

5. V0 as a category with families
Having established that V0 organizes into a well-behaved category, we now take this a step further
by showing that V0 supports a model of extensional type theory. Since our goal is to do this very
formally, our task is threefold: first, we must specify what we mean by a model of type theory. To
this end, we have formalized a particular presentation of a category with families (CwF) (Dybjer,
1996). This extends a category with the additional structure required to interpret dependent type
theory. Next, we show that V can be equipped with this additional structure. Finally, since our
definition of a CwF does not prescribe closure under any connectives, we detail how to extend a
CwF with various connectives and show that the CwF structure on V supports these extensions.

Remark 42. Of these three steps, only the first two are fully formalized. The obstruction to
formalizing closure under all relevant extensions is, surprisingly, completely independent of V0.
Rather, it stems from the fact that the equations governing substitution hold only up to propo-
sitional equality, leading to complicated path and transport computations when defining the
substitution properties of said structure.

https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.category.slices.properties.html#7694
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.category.slices.functor.html#8836
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5.1 The definition of categories with families
In the paper and formalization we rely on the following formulation of categories with families.

Definition 43 (Category with families, ). A category with families (CwF) consists of:

• A category C with a terminal object,
• a presheaf Ty : Cop → hSetU,
• a presheaf Tm :

(´
Ty
)op → hSetU,

• a functor −.− :
´
Ty→C, and

• for each ∆ : ObC and (Γ, A) :
´
Ty a natural equivalence

Hom (∆, Γ. A)≃ ∑
γ :Hom (∆,Γ)

Tm (∆, A · γ)

Here we have written A · γ for Ty (γ A), and
´
Ty for the category of elements of Ty, i.e., the

total space of the right fibration induced by Ty. Intuitively, objects in C interpret the contexts of
our type theory, while morphisms interpret substitutions. The additional presheaves are used to
interpret types and terms. Specifically, the set of semantic types in context Γ : ObC is given by
Ty Γ while the set of terms of type A : Ty Γ is given by Tm (Γ, A). The functoriality of Ty and Tm
is precisely the structure required to interpret the application of substitutions to types and terms.

The terminal object interprets the empty context and the functor from
´
Ty to C interprets

context extension. A context Γ : ObC can be extended by a type A : Ty Γ in that context, to produce
a new context Γ. A : ObC.

Finally, the natural equivalence ties together substitutions and elements of Tm. In par-
ticular, the inverse encodes the ability to extend a substitution with a term. Following this
last observation, we write Γ. a for the element Hom (∆, Γ. A) induced by the element (Γ, a) :
∑γ :Hom (∆,Γ) Tm (∆, A · γ).

5.2 Equipping V with a CwF structure
We now turn to equipping V with a CwF structure. We begin by defining Ty as follows:

Ty X := El0 X →V0

Intuitively, a type in context X is precisely an X-indexed family of sets. There is, however, a
major subtlety in this definition that should be emphasized: the version of the definition where V0

is replaced by hSetU would be incorrect. We have required that Ty X always be an h-set as it is
assumed to be an hSetU valued presheaf. Therefore, it is only after finding an adequate “h-set of
h-sets” that we can define the set model of type theory in this manner.

The definition of the presheaf of terms is also reasonably direct:

Tm (X , A) = ∏
x:El0 X

El0 (A x)

We now show that, along with V, these two definitions assemble into a CwF.

Proposition 44 ( ). V can be equipped with a CwF structure.

Proof. We have given the putative definitions of Ty and Tm. We note that it is straightforward to
ensure that both are suitably functorial. The functorial action is given by precomposition and all
the required equations hold on-the-nose.

It remains to show that these three pieces of data satisfy the required properties of a CwF. We
have already shown that V has a terminal object, so it remains to discuss the interpretation of

https://elisabeth.stenholm.one/category-of-iterative-sets/type-theories.precategories-with-families.html#2067
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.cwf-structure.html#3203
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context extension. Fix X : V0 and A : Ty X . We define X . A : V0 as Σ0 X A. The natural equivalence
then follows from the η principle of dependent sums.

By virtue of Proposition 41, we further note that types A in context X in this model are realized
up to equivalence by families El0 A → El0 X and terms are likewise determined by sections. By
presenting Ty and Tm in terms of (dependent) products rather than families and sections, we are
able to equip both with strictly functorial actions.

We emphasize that the accomplishment here is not in the definition itself; it mirrors the naı̈ve
definition of the set model of type theory as presented by e.g., Hofmann (1997). What is crucial is
that V0 retains enough of the good behavior of hSetU to support such a straightforward definition
of the CwF structure while still managing to be an h-set itself.

Remark 45. We note that there are many closely related presentations of models of type the-
ory (categories with attributes (Cartmell, 1986), contextual categories (Cartmell, 1986; Streicher,
1991), comprehension categories (Jacobs, 1993, 1999), natural models (Fiore, 2012; Awodey,
2018) and so on). We have opted for CwFs because the CwF structure on V0 is particularly sim-
ple and enjoys an exceptional number of definitional equalities. In particular, as opposed to other
models which recover terms indirectly as sections to display maps, CwFs require the presheaf of
terms as part of their data. This allows us to choose a particular definitional representative for the
type of terms in our model and we are then able to explicitly select dependent functions. We shall
see that this makes closing (V,Ty,Tm) under various constructions particularly straightforward,
as most naturality conditions hold definitionally.

5.3 Further structure on V0 as a CwF
While we have constructed a CwF structure on V, we have thus far only shown that the model
interprets the basic structural rules of type theory, but not that it is closed under any connectives.
The process of extending the model with new connectives is essentially modular: for each con-
nective, we specify the relevant structure on top of a CwF necessary to interpret it and then show
that the CwF (V,Ty,Tm) supports this additional structure.

We illustrate the process with Π-types. First, we must define a Π-structure on a CwF.

Definition 46 (Π-structure, ). A Π-structure on a CwF (C,Ty,Tm) is defined by the following:

• An operation pi : ∏Γ:ObC Ty Γ →Ty (Γ. A)→Ty Γ, natural in Γ.
• For any Γ : ObC, A : Ty Γ, and B : Ty (Γ. A) an isomorphism αpi between Tm Γ (pi Γ A B)

and Tm (Γ.A) B, natural in Γ.

Lemma 47 ( ). The CwF (V,Ty,Tm) supports a Π-structure.

Proof. We begin by defining pi as follows:

pi X A B := λ (x : El0 (X)). Π
0 (A x) (λa.B (x, a))

Naturality in X is a straightforward computation. The definition of αpi, after unfolding, reduces to
the manifestly natural equivalence induced by currying:

∏
x:X

∏
y:Y (x)

Z(x, y)≃ ∏
p:∑x:X Y (x)

Z(p)

We have formalized both the definition of Π-structures and the particular Π-structure on
(V,Ty,Tm) in Agda. However, already some small inconveniences emerge. For instance, in the
definition of naturality for αpi, we must specify an equality dependent on the proof witnessing

https://elisabeth.stenholm.one/category-of-iterative-sets/type-theories.pi-types-precategories-with-families.html#869
https://elisabeth.stenholm.one/category-of-iterative-sets/iterative.set.cwf-structure.html#3941
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naturality of pi. The dependence is straightforward in this case, but becomes more complex for
the later structures. Accordingly, we present only paper proofs for them.

Furthermore, (V,Ty,Tm) also supports dependent sums.

Definition 48 (Σ-structure). A Σ-structure on a CwF (C,Ty,Tm) consists of the following two
pieces of data:

• An operation sig : ∏Γ:ObC Ty Γ →Ty (Γ. A)→Ty Γ, natural in Γ.
• For any Γ : ObC, A : Ty Γ, and B : Ty (Γ. A) a natural isomorphism αsig between
Tm Γ (sig Γ A B) and pairs ∑a:Tm(Γ,A) Tm Γ, (B · (id.a)).

Lemma 49. The CwF (V,Ty,Tm) supports a Σ-structure.

Proof. We define sig as follows:

sig X A B := λ (x : El0 X). Σ
0 (A x) (λa.B (x, a))

The remaining structure follows directly. In particular, even though the naturality requires complex
path algebra to state properly in the specific CwF on V all these paths are given by reflexivity.

By similar considerations, we may define and close (V,Ty,Tm) under many other connectives:
extensional identity types, booleans, natural numbers, and universes among others. Putting all of
this together, we conclude the following:

Theorem 50. V supports a model of extensional type theory with the standard connectives.

We note that this result, combined with Proposition 41 and the series of results about El0 pre-
serving various categorical connectives can be summarized by the informal slogan: V supports a
model of type theory which internalizes the set-level fragment of the ambient type theory.

6. Relationship to set models of type theory and other set universes in HoTT/UF
The idea of set theoretic semantics of type theory is of course an old and natural one. An early ref-
erence where this is written down more formally is the master thesis of Salvesen (1984, Chapter 5).
As discussed in the introduction the work presented in this paper goes back to the model of CZF
in type theory of Aczel (1978). Aczel also interpreted extensional type theory with universes in
an extension of CZF with a hierarchy of inaccessible sets (Aczel, 1999). In fact, Aczel’s V occurs
already in the PhD thesis of Leversha (1976) where it was used to represent ordinals construc-
tively. Various earlier work has also relied on Aczel’s V to model type theory. For instance, Werner
(1997) modeled the core system of Coq in ZFC and vice versa, using Aczel’s encoding of sets.
A refinement by Barras (2010, 2012) models the core system of Coq system in intuitionistic ZF,
and formalizes the model in Coq (The Coq Development Team, 2021). More recently, Palmgren
(2019) presented an interpretation of extensional Martin-Löf type theory (Martin-Löf, 1982) into
intensional Martin-Löf type theory via setoids, also relying on Aczel’s V. Palmgren’s work was
also formalized in Agda.

Aczel’s V was revisited in HoTT/UF by Gylterud (2018, 2020) who observed that this gives
a universe of multisets, but that one can restrict it, as in Definition 9, to get a universe of h-sets.
These universes of (multi)sets has recently also been further studied by Escardó and de Jong who
has their own Agda formalization as part of the TypeTopology project (Escardó and de Jong,
2023). Among many other things, they have two more proofs of Theorem 12 formalized. Various
HITs for representing finite multisets have also been considered in HoTT/UF (Basold et al., 2017;
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Frumin et al., 2018; Choudhury and Fiore, 2019; Angiuli et al., 2021; Veltri, 2021; Joram and
Veltri, 2023), however these are of course not sufficient to model full type theory.

We will now discuss other approaches to constructing strict categories of sets in HoTT/UF that
could also serve as internal models of type theory. These often require various extensions of the
quite minimal univalent type theory that we have relied on in this paper.

6.1 The cumulative hierarchy in the HoTT Book
The HoTT Book postulates a universe of sets as a higher inductive type called the cumulative
hierarchy (HoTT Book, Definition 10.5.1). Gylterud (2018, Section 8) establishes an equivalence
between the HoTT Book V and V0, which makes it possible to transfer all of our results over to
V. One remark about the HoTT Book V is that it is h-set truncated, while V0 is not. This means
that the eliminator one gets for the HoTT Book V only lets one directly eliminate into h-sets,
while V0 can be directly eliminated into types of arbitrary homotopy level. Similarly many basic
constructions, like ∈ : V →V →U, is a bit more complicated to define for the HoTT Book V
as it is not sufficient to only define them for point constructors, but one has to check that the
definitions are compatible with the higher constructors as well. A practical and appealing aspect
of V0 is hence that it is easy to define operations by pattern-matching on it. Another is that it is
not postulated, but simply constructed from W-types.

6.2 Inductive-recursive universes
An alternative approach to modeling type theory in type theory is to rely on quotient inductive-
inductive types (QIITs) as considered by Altenkirch and Kaposi (2016). However, they run into
the same problem as discussed above when working in HoTT and trying to eliminate their QIIT
into hSetU. In particular, as the QIIT representation of type theory is h-set truncated they cannot
eliminate directly into hSetU as it is a 1-type (the same issue also applies to the HoTT Book V ).
The authors resolve this by considering an inductive-recursive universe closed under the relevant
structure, which can be shown to be a set without any need to set truncate. This enjoys many of
the nice properties of V0, like El decoding type constructors definitionally, but induction-recursion
is proof theoretically quite strong and it is again interesting to emphasize that we can construct V0

using only W-types.

6.3 Covered Marked Extensional Well-founded Orders (MEWOs)
In their recent paper, de Jong et al. (2023) show that the HoTT Book V is equivalent to the type of
covered marked extensional well-founded orders (MEWOcov), and hence to V0. The results in this
paper thus imply that the type MEWOcov can be equipped with a universe structure. A strength of
the universe V0 is the computational aspect of the decoding function El0 . Unfortunately, the two
underlying maps of the equivalence between V0 and MEWOcov do not compose definitionally
to the identity when going from V0 to MEWOcov and back again. This means that the induced
decoding for MEWOcov given by going to V0 and then applying El0 is not as computationally
well-behaved as El0 on V0, as the decoding will only hold up to propositional equality.

6.4 Relationship to hSetU

One reason to consider the category of iterative sets is to regard it as a replacement for hSetU. As
noted in Section 4, El0 induces a fully-faithful functor, but it may fail to be essentially surjective.
The statement that El0 is essentially surjective corresponds to Shulman’s axiom of well-founded
materialization (Shulman, 2010) and which is, in turn, implied by the axiom of choice.
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If the functor is essentially surjective, it forms a categorical equivalence between V and
a univalent category and thus describes hSetU as the Rezk completion (Ahrens et al., 2015)
of V. Informally, this shows, modulo classical axioms, that V is a more rigid presentation of
hSetU. Moreover, even without additional axioms V and V0 are closed under essentially every
construction of interest.

6.5 Well-ordered sets
Another approach to defining a strict universe of sets, inspired by Voevodsky’s simplicial set
model (Kapulkin and Lumsdaine, 2021), is to consider well-ordered sets. By relying heavily on
Zermelo’s well-ordering principle, and hence choice, one can obtain a strict category of well-
ordered sets with the relevant structure, also as a subcategory of hSetU. This was experimented
with in UniMath (Voevodsky et al., 2020) by Mörtberg (2018). However, this turned out to be
harder to work with formally than expected because of all the propositional truncations and hence
not completed. Furthermore, if completed this would only merely give us the existence of an
internal model and hence lead to a weaker result than Theorem 50.

7. Conclusion and future work
We have constructed a universe of h-sets that is itself an h-set and structured it into an internal
model of extensional type theory. This main result can perhaps also be proven for other h-set
universes of h-sets, such as the ones mentioned in Section 6, but certain properties of our con-
struction makes it very convenient to work with, also formally. First and foremost, the definitional
decoding of type formers means that one avoids complex transports. Secondly, the construction
is carried out using basic type-formers, and has a (provable) elimination principle which directly
allows elimination into general types. This development works in a fairly minimalist univalent
type theory, as long as it has W-types. These W-types can be large, and need only be small if one
wants to reflect a hierarchy of universes, as in Section 3.5. The results should thus have a broad
applicability in models of HoTT/UF.

In the formalization, we stopped short of adding additional structure to the CwF on V after Π-
types. The obstacles are in fact not in providing the structure for our model, such as Σ-structure,
but the general formulation of what that extra structure constitutes on CwFs based on categories
(see Remark 42 in Section 5). To the best of our knowledge there are no other formalizations
of CwFs with Σ-structure out there that do not assume UIP or other axioms and which do not
use setoids or a more extensional equality. It would be interesting to attempt formalizing this in
cubical type theory (Cohen et al., 2018) where equality of Σ-types is easier to work with because
of the primitive path-over types in the form of PathP-types. An experiment along these lines was
performed by Vezzosi (2017) in Cubical Agda (Vezzosi et al., 2021). In this small formalization
Vezzosi considered the CwF structure on h-set valued presheaves. It would of course not have been
possible to fully complete this for the same reason as discussed in this paper, but it turned out that
some of the constructions and equations that one has to check were easier than in a corresponding
formalization in UniMath by Mörtberg (2017). This also suggests a further direction to explore: V
valued presheaves. These should enjoy the same nice properties as hSetU valued presheaves, but
it should be possible to organize also them into a model of type theory internally in HoTT/UF.

Another avenue of further study is to take a closer look at Shulman’s axiom of well-founded
materialization. Just like univalence, it makes sense to formulate this axiom relative to a given
universe of types. The construction of V0 can be carried out on any universe, so a reasonable
reformulation of well-founded materialization in type theory could be: a universe U has well-
founded materialization if El0 : V0

U → hSetU is essentially surjective. As mentioned, this follows
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from AC, but does not seem to be inherently non-constructive. For instance, V0 itself has well-
founded materialization for trivial reasons. The most pertinent question is perhaps whether well-
founded materialization and univalence can constructively coexist. If we start with a univalent U,
one could take the image of El0 in hSetU to obtain a univalent universe which also somewhat
trivially has well-founded materialization. However, it is not immediate that this is closed under
Π-types and Σ-types as a naı̈ve attempt quickly runs into choice problems.
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Escardó, M. and de Jong, T. 2023. Iterative multisets, iterative sets, and iterative ordinals in the TypeTopology library.
Available at https://www.cs.bham.ac.uk/~mhe/TypeTopology/Iterative.index.html.

Escardó, M. H. 2019. Introduction to univalent foundations of mathematics with agda. Available at https://www.cs.
bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html.

Fiore, M. 2012. Discrete generalised polynomial functors. Slides from talk given at ICALP 2012.
Frumin, D., Geuvers, H., Gondelman, L., and van der Weide, N. 2018. Finite Sets in Homotopy Type Theory. In

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, pp. 201–
214, New York, NY, USA. Association for Computing Machinery.

Gylterud, H. R. 2018. From multisets to sets in Homotopy Type Theory. The Journal of Symbolic Logic, 83(3):1132–1146.
Gylterud, H. R. 2020. Multisets in type theory. Mathematical Proceedings of the Cambridge Philosophical Society,

169(1):1–18.
Gylterud, H. R. and Stenholm, E. 2023. Univalent Material Set Theory. arXiv:2312.13024 [math].
Hofmann, M. 1997. Syntax and Semantics of Dependent Types, pp. 79–130. Publications of the Newton Institute. Cambridge

University Press.
Jacobs, B. 1993. Comprehension categories and the semantics of type dependency. Theoretical Computer Science,

107(2):169–207.
Jacobs, B. 1999. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics.

North Holland.

http://www.lsv.fr/~barras/habilitation/
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Iterative.index.html
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html


Mathematical Structures in Computer Science 25

Joram, P. and Veltri, N. 2023. Constructive Final Semantics of Finite Bags. In Naumowicz, A. and Thiemann, R., edi-
tors, 14th International Conference on Interactive Theorem Proving (ITP 2023), volume 268 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 20:1–20:19, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

Kapulkin, K. and Lumsdaine, P. L. 2021. The Simplicial Model of Univalent Foundations (after Voevodsky). Journal of
the European Mathematical Society, 23:2071–2126.

Leversha, G. 1976. Formal Systems for Constructive Mathematics. PhD thesis, University of Manchester.
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