
Syntax and semantics of modal type theory

Daniel Gratzer

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark



Syntax and semantics of modal type theory

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Daniel Gratzer

August 29th, 2023



i

Abstract

One idiosyncratic framing of type theory is as the study of operations invariant
under substitution. Modal type theory, by contrast, concerns the controlled inte-
gration of operations—modalities—into type theory which violate this discipline,
so-called non-fibered connectives. Modal type theory is therefore built around a
fundamental tension: the desire to include modalities and powerful principles for
reasoning with them on one hand, and the need to maintain the conveniences and
character of Martin-Löf type theory which stem from substitution invariance.

In this thesis, we thoroughly explore and discuss this contradiction. We discuss
several different formulations of modal type theory, explore their various syntactic
properties, and relate them through their categorical semantics. In particular, we
show that most modal type theories that have arisen in the last two decades can be
understood through the abstraction of weak dependent right adjoints. We also put
forward a new general modal type theory, MTT, based on this abstraction.

The generality of MTT means that, without any additional work, it can be
specialized to an arbitrary collection of type theories related by modalities and
natural transformations between them. It is therefore easy to obtain a type theory
for a comonad, an adjunction, a local topos, or any other number of complex and
realistic scenarios. In addition to showing that many modal type theories are closely
related to specific instantiations of MTT, we thoroughly explore the syntax and
semantics of MTT itself. We prove that MTT enjoys an unconditional normalization
result and decidable type-checking under mild assumptions. We show how MTT
may be interpreted into a wide variety of structured categories and use this to study
the expressive power of the type theory and various extensions thereof.

Finally, we explore several concrete applications of MTT in the context of
guarded type theory and guarded denotational semantics. We propose a highly usable
language for guarded recursion and explore its particular models and metatheorems.
We show a relatively sharp result bounding the extent to which classical guarded
recursion can be added to any type theory with decidable type-checking and propose
a system to mitigate this issue. Finally, we conduct an in-depth case study using
guarded MTT to obtain a fully synthetic account of the Iris program logic, proving
adequacy in a fully internal manner.



ii

Resumé

Typeteori kan betragtes som studiet af operationer, der er invariante under
substitution. Modal typeteori bekymrer sig derimod om, hvordan operationer, der
bryder med dette princip—s̊akaldte “non-fibered connectives”—kan integreres i
typeteori gennem modaliteter. Modal typeteori er derfor bygget p̊a en fundamental
spænding: modaliteter og deres kraftfulde ræsonneringsprincipper ønskes integreret
i typeteori, men det er nødvendigt at bevare bekvemmelighederne og karakteren af
Martin-Löf typeteori, som stammer fra substitutionsinvariansen.

I denne afhandling udforsker og diskuterer vi dybdeg̊aende denne modstrid. Vi
diskuterer flere formuleringer af modal typeteori, vi undersøger deres syntaktiske
egenskaber, og vi relaterer dem gennem deres kategoriske semantik. Frem for alt
viser vi, at de fleste modale typeteorier, der er opst̊aet i løbet af de sidste to årtier,
kan forst̊as gennem s̊akaldte “weak dependent right adjoints”. Vi fremsætter ogs̊a
en ny generel modal typeteori, MTT, baseret p̊a denne abstraktion.

Generaliteten af MTT betyder, at teorien uden videre kan specialiseres til en
vilk̊arlig samling af typeteorier, der er forbundet gennem modaliteter og naturlige
transformationer mellem dem. Det er derfor nemt at opn̊a en typeteori for en comon-
ade, en adjunktion, en lokal topos, eller i en række andre komplekse og realistiske
scenarier. Udover at vise hvordan mange modale typeteorier er tæt forbundne til
specifikke instantieringer af MTT, s̊a udforsker vi ogs̊a syntaksen og semantikken af
selve MTT. Vi viser, at MTT overholder et uforbeholdent normaliseringsresultat og
afgørligt typecheck under simple antagelser. Vi viser endvidere, hvordan MTT kan
fortolkes i en bred vifte af s̊akaldte “structured” kategorier, og vi benytter selvsamme
til at studere udtrykskraften af typeteorien og flere udvidelser heraf.

Slutteligt udforsker vi adskillige konkrete anvendelser af MTT i kontekst af
“guarded” typeteori og guarded denatotionel semantik. Vi fremsætter et yderst
brugbart sprog for guarded rekursion og udforsker dets modeller og metateori. Vi
viser et forholdsvist skarpt resultat, der afgrænser omfanget af, hvorvidt klassisk
guarded rekursion kan tilføjes i en vilk̊arlig typeteori med afgørligt typecheck, og
vi fremsætter et system, der afhjælper denne problematik. Til sidst udfører vi
en dybdeg̊aende case study ved hjælp af guarded MTT og opn̊ar en fuldkommen
syntetisk redegørelse af programlogikken Iris, der viser logikkens tilstrækkelighed p̊a
fuldkommen intern vis.



Publications

Below is a record of the articles published during my PhD.

1. Iron: Managing Obligations in Higher-Order Concurrent Separation Logic [Biz+19]

2. Cubical Syntax for Reflection-Free Extensional Equality [SAG19]

3. Implementing a Modal Dependent Type Theory [GSB19a]

4. Multimodal Dependent Type Theory [Gra+20a] (Chapters 6 and 7)

5. Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation
Logic [Spi+21]

6. Multimodal Dependent Type Theory [Gra+21] (Chapters 6, 7 and 9)

7. Modalities and Parametric Adjoints [Gra+22] (Chapter 5)

8. A Cubical Language for Bishop Sets [SAG22]

9. Normalization for multimodal dependent type theory [Gra22] (Chapter 8)

10. A stratified approach to Löb induction [GB22] (Chapter 9)

11. A flexible multimodal proof assistant [SGB23a]

12. Under Lock and Key: A Proof System for a Multimodal Logic [KG23]

The following articles were submitted during my PhD and are presently under review.

13. Strict universes for Grothendieck topoi [GSS22]

14. Unifying cubical and multimodal type theory [Aag+22]

15. Denotational semantics of general store and polymorphism [SGB23b]

16. Normalization for multimodal type theory [Gra23]

17. Controlling unfolding in type theory [Gra+23]

18. Free theorems from univalent reference types [SGB23c]

Chapter 8 is a lightly revised version of Gratzer [Gra23] and Section 9.6.4 contains some
significantly revised text from Gratzer and Birkedal [GB22]. Both of these articles were
written either primarily or solely by the author of this thesis. The text of all other
chapters is original though many results appeared in some form in the bolded articles.

iii



To my sister, Anna, for love and inspiration



Acknowledgments

First and foremost, I am indebted to Lars Birkedal for guidance, advice, and encourage-
ment. Though the results of five years of mentorship are difficult to sum up, this thesis
is my best attempt at the task. If my conversations with Lars have taught me anything,
it is the value of a well-motivated example. This work includes far fewer of these than I
would like, but it would have included none at all without Lars’s gentle encouragement.

I have found nothing so important to good research as talented and insightful
collaborators, and I have had more than my fair share of them. My sincere thanks
go to Frederik Lerbjerg Aagaard, Carlo Angiuli, Aleš Bizjak, Evan Cavallo, Thierry
Coquand, Derek Dreyer, Favonia (Kuen-Bang Hou), Lennard Gäher, Adrien Guatto,
Robbert Krebbers, Magnus Baunsgaard Kristensen, Anders Mörtberg, Andreas Nuyts,
Alex Kavvos, Christian Sattler, Michael Shulman, Simon Spies, Bas Spitters, Philipp
Stassen, Jonathan Sterling, and Joseph Tassarotti. Of this exceptional list, I would
like to extend particular thanks to Carlo and Jon whose advice and critique have been
instrumental to my growth and to Alex, who in many ways has served as a second
adviser to me. I am grateful to Carlo Angiuli, Lars Birkedal, Simon Gregersen, Jonas
Kastberg Hinrichsen, Jonathan Sterling, and Simon Friis Vindum for their comments on
this thesis.

My studies have benefited from the incredible Logic and Semantics and Programming
Languages groups at Aarhus University. My thanks for five years worth of thought-
provoking and fun conversations over coffee. I am also grateful to Thierry Coquand and
to the Logic and Types group for hosting me at Chalmers during the Spring of 2022.

On a more personal note, I am truly fortunate to have a mother who has encouraged
and supported my curiosity and passion throughout the years. I hope this thesis will
finally clear up what, exactly, I have been doing all this time. I am similarly blessed
with a wonderful sister, to whom this thesis is dedicated. I hope it will live up to your
standard of writing, but I doubt it.

Lastly, my time in Aarhus has included something outside of research and this is due
to a circle of wonderful people. I’d express my gratitude to Sarafina McPherson Kimø
for love and support alongside witty and biting commentary. Those who know me know
I tend to ramble about mathematics and she has certainly suffered from this the most. I
would also like to acknowledge Alfred, Philipp Haselwarter, Irina Kakhoun, Klara Nymo
Møller, Sydney Paugh, Anna Buhl Pedersen, Thor Bagge, Simon Gregersen, Sabine
Oechsner, Marit Edna Ohlenbusch, Søren Eller Thomsen, and many others. Thank you
all, truly. Without you, I would have been far more productive and far less happy.

Daniel
Aarhus, Denmark

v



Contents

Abstract i

Resumé ii

Publications iii

Acknowledgments v

Contents vi

1 Introduction 1
1.1 Modalities in computer science . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Modalities within mathematics . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Modal type theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Preliminaries 18

2 Type theory 19
2.1 Logical frameworks and syntax, formal and informal . . . . . . . . . . . 19
2.2 The judgments and basic inferences of type theory . . . . . . . . . . . . 21
2.3 A tour of various connectives of Martin-Löf type theory . . . . . . . . . 23
2.4 Metatheorems and their motivation . . . . . . . . . . . . . . . . . . . . . 27

3 Category theory and categorical semantics 32
3.1 Basic notions in category theory . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Universes in categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Examples of categories with universes . . . . . . . . . . . . . . . . . . . 37
3.4 Models of dependent type theory . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Promoting a universe to a model . . . . . . . . . . . . . . . . . . . . . . 46

4 Synthetic Tait computability 52
4.1 Gluing and synthetic Tait computability . . . . . . . . . . . . . . . . . . 53
4.2 Preliminary constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 The canonicity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 The canonicity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



Contents vii

II Modalities in type theory 64

5 Towards multimodal type theory 65
5.1 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Fibered modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 One non-fibered modality . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Dual-context type theories . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Fitch-style/Kripke-style type theories . . . . . . . . . . . . . . . . . . . . 85
5.6 Parametric adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 MTT: multimodal type theory 99
6.1 MTT, informally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 MTT, formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Possible extensions to MTT . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Adjoint modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Semantics of MTT 127
7.1 Natural models of MTT . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 (Weak) dependent right adjoints and models of MTT . . . . . . . . . . . 133
7.3 Independence of various extensions of MTT . . . . . . . . . . . . . . . . 147
7.4 Relating modal type theories to MTT . . . . . . . . . . . . . . . . . . . 149

8 Normalization for MTT 152
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.2 Normal and neutral forms in MTT . . . . . . . . . . . . . . . . . . . . . 158
8.3 Models and cosmoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.4 Multimodal Synthetic Tait computability . . . . . . . . . . . . . . . . . 164
8.5 The normalization cosmos . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.6 The normalization algorithm . . . . . . . . . . . . . . . . . . . . . . . . 179
8.7 Normalization in the presence of extensions . . . . . . . . . . . . . . . . 182

III Applications of multimodal type theory 186

9 Guarded recursion 187
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2 Presheaf models of guarded recursion . . . . . . . . . . . . . . . . . . . . 191
9.3 Mode theories for guarded recursion . . . . . . . . . . . . . . . . . . . . 193
9.4 Extensional guarded MTT . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.5 Decidable conversion and Löb induction . . . . . . . . . . . . . . . . . . 203
9.6 Stratified guarded MTT . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10 A synthetic version of Iris 218
10.1 A type theory for synthetic Iris . . . . . . . . . . . . . . . . . . . . . . . 221
10.2 A language for concurrency and references . . . . . . . . . . . . . . . . . 224
10.3 Cored resource algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



Contents viii

10.4 The type of propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.5 The program logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.6 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

IV Conclusions and outlook 255

11 Conclusions 256
11.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
11.2 Open questions and future work . . . . . . . . . . . . . . . . . . . . . . 260

Bibliography 264



1 Introduction

The time really seems to be ripe
for a fruitful development of
modal logic, if only we take care
to purify and simplify the
foundations.

Dana Scott
Advice on modal logic

While the contents of this thesis are, in all honesty, technical, the goals and problems
which motivate this work are familiar to any type theorist. In this chapter, we endeavor
to give a flavor for the problems that motivate this thesis and an idea of the technical
solutions which provide its substance.

At a core level, we are interested in type theory and like nearly all works on type
theory we are therefore motivated by two distinct but inextricable goals:

1. We want a simpler way to write computer programs while also being certain those
programs perform as intended.

2. We wish to make the process of doing ordinary mathematics more straightforward.

A priori, nothing links these two goals and it is a remarkable fact that problems can
be attacked through the same tool: type theory [Mar82]. This coincidence has sparked
the rich and productive interplay between constructive mathematics and programming.
Our goal is to make type theory into a sharper tool for specific applications both in
mathematics and computer science. In particular, we will study extensions of type theory
by one or more modalities—an operation assigning types to types—to make it better
suited for both of these purposes. Such extensions can lead to particularly short and
elegant constructions, but extending type theory by a modality is a difficult process.

We aim to make it easier to construct modal extensions of type theory in order to
make it possible for ordinary users to benefit from the convenience of such specialized
type theories.

What is a modality? We have just described a modality as a unary connective which
assigns types to types and this is a fair first definition. What really distinguishes a
modality from other connectives of type theory, however, is its poor behavior. Ordinary
connectives in type theory satisfy various properties and modalities are distinguished by
their failure to satisfy one or more of these properties (e.g., stability under substitution).

1



Modalities in computer science 2

This negative characterization of modalities makes the study of type theories with
modalities (modal type theories) a very broad tent. It also means, however, that it is
utterly hopeless to attempt to develop any sort of general framework for modal type
theories. Accordingly, every work on modal type theory must begin by carving out the
class of modalities (or, more often, the single modality) that it is concerned with to
develop their particular extension of type theory. The extension will hinge on some of
the particular properties of their modalities and this has led to a proliferation of different
and incomparable modal type theories. This is to say nothing of the rich interaction
between modalities and different substructural type theories!

As a first step in our goal of providing a general modal type theory that subsumes some
of the more specialized theories, we take a step back to survey some of the applications of
modalities. Our goal is to cultivate some intuition for what reasonable base assumptions
a putative general modal type theory might make on all modalities.

1.1 Modalities in computer science

Modalities are slightly easier to motivate from the point of view of computer science,
so we begin there. We consider three distinct applications: synchronous programming,
distributed computation, and staged programming. We will argue that all three ap-
plications benefit from modalities. Our goal in this section is not to describe precise
systems, but rather to give a flavor for what problems modalities have been applied to
in computer science.

1.1.1 Synchronous programming

Consider the task of writing a program for some reactive system i.e., a program that
must read from a variety of inputs and produce output continuously. A concrete example
of such a program might be the speed control feature on an automobile; the program
must read the vehicle’s present speed and use this to manage the acceleration of the
vehicle.

One useful way to capture this process within a program is to design programs that
operate on streams of values. On one hand, a program accepts the stream of data
produced by the sensors monitoring the vehicle’s speed and, on the other, it produces
a stream of values to adjust the fuel consumption and engine output. In an overly
idealized situation, one value read from the sensor could result in one value outputted to
the engine but this is overly näıve. Perhaps the sensor is noisy and its values must be
averaged over an extended period to ensure accuracy or perhaps the engine responds
slowly and this must be factored into the algorithm. Regardless, reactive programs of
this form have several invariants which are imperative to their correct functioning:

• Responsiveness: even if the ratio is not precisely 1:1, any reactive system must
produce output at some rate determined by the rate of input and must not spin
indefinitely attempting to compute a single value.

• Constant-space: most reactive systems will run for protracted periods and therefore
cannot afford to store space related to all previously received input values. Ideally,
the output at any given stage can depend on only a constant amount of prior input.



Modalities in computer science 3

This is in addition to invariants we insist all programs satisfy (safety, correctness, etc.).
A type system for reactive programs aims to force the first two invariants mentioned

above to hold by construction for any well-typed reactive program. A recent approach
that has proven successful is to provide modifiers on types—modalities— which indicate
the rate at which they are consumed and produced [BGM19; BGM21; Gua18; Jef12;
Jef14; Jel13; KB11; Kri13; KBH12]

For instance, it is generally unsound for a stream M : A to depend on itself; this
might violate the reactivity guarantee and cause the program to spin forever attempting
to produce the next value of M . However, we may allow M to refer to itself only under
a particular modality, ensuring that the present value of M depends not on itself, but
on prior values in the stream. By controlling these modalities more carefully, we may
further tune the dependence to allow for dependence on only the immediately preceding
value, etc.

The result is that we are able to express complex and recursive reactive programs
without compromising the reactivity guarantee. Further considerations on what op-
erations are allowed by modalities can even ensure the constant-space invariant. For
instance, by forbidding streams from being arbitrarily delayed, it is possible to ensure
that memory cannot be accumulated indefinitely [BGM19; BGM21].

Many of these guarantees are provided by existing synchronous languages such as
Lustre [Hal+91]. This modality-centric approach, however, ensures that these systems
can be scaled up to accommodate higher-order programs, including complex nested data
types, etc. without undue complexity or severe restrictions on expressible programs.

1.1.2 Distributed computation

Let us suppose we are designing a programming language for distributed computing. We
will obviously wish to extend our language with primitives for sending and receiving data
as inter-node communication is a fundamental component of distributed computation.
What interface ought we to provide for these operations? Traditional interfaces provide
varying levels of abstraction on top of the API provided by sockets; some might enforce
typed sockets, others might abstract over local intra- and inter-node communication
between threads, etc.

One strikingly higher-level API was proposed by Tom Murphy VII and collabora-
tors [Mur08; MCH05; MCH07; Mur+04]. Essentially, code becomes wholly unaware of
sockets and instead interacts with various nodes through a modal abstraction. At a high
level, the typing judgment is M : A replaced with a new judgment M : A @ w signifying
that M is a computation of type A taking place at a node designated w. Terms and
types at world w can mention those from world w′ through a modality A atw′ whose
elements, in effect, correspond to values of type A which could be computed at world w′.
Various operations on these modalities abstract over the classical operations of sending
and receiving between nodes. Moreover, they do so in a fully-typed and safe manner.

For instance, in order to implement receiving, a new singleton type Addrw is intro-
duced whose (necessarily unique) value is the address needed to send messages to w.
Given elements of Addrw′ and A atw′ at some world w, one can perform a get operation
which produces a normal value of type A. Operationally, this corresponds to sending a
request to a node and receiving a corresponding response, but none of these details are



Modalities in computer science 4

manifested within the code. From the point of view of the user, this behaves like the
ordinary manipulation of certain modalities.

Further enhancement and refinements of the system are used to facilitate richer
forms of distributed computation and communication while simultaneously enforcing
various properties. We refer the reader to the cited work for a full account of the details
and provide only one illustrative example. Note that allowing arbitrary types to be
transported in the manner described is unlikely to be sound; not every value can be
sensibly transported from one node to another (e.g. file pointers or references). Murphy
[Mur08] shows that these limitations can be abstracted over in a simple and conceptual
manner by ensuring that constructing a value of A atw is only possible when A is mobile
and excluding node-local types from mobility.

Such a high-level interface may not be appropriate for all distributed systems, but the
modal discipline given by Murphy [Mur08] gives a remarkably coherent and conceptual
abstraction on top of lower-level primitives.

1.1.3 Staged programming and partial evaluation

We conclude this brief exploration of modalities within computer science with one of
the earliest and longest-running areas of application: staged programming. At a high
level, staged programming is concerned with controlling when code executes to ensure
faster and more predictable evaluation. The impact of staging considerations is hard to
overstate; Haskell introduced the (in)famous monomorphism restriction more-or-less to
ensure better staging of evaluation.

Staging and the control of evaluation is one of the earliest and most widely studied
applications of modalities in computer science [DP01; Jan+22; KI19; Kov22; NP05;
NPP08]. The basic idea is illuminated by Davies and Pfenning [DP01]. Essentially, we
wish to give those programs which are not yet evaluated a different type than those
which are presently being computed. This discipline ensures that no unevaluated code
depends incorrectly on code being evaluated at the current stage.

To separate the two, Davies and Pfenning [DP01] introduce a modality □ and ensure
that □A classifies programs awaiting evaluation. In other words, □A classifies programs
which compute an A rather than simply classifying elements of A directly. Notice that
there is already some benefit to this idea; by rendering this as an ordinary type, a user
can write programs that accept and freely manipulate code.

The relation between □A and A is subtle. Given □A—a piece of syntax which builds
an element of A—we ought to be able to produce A. This precisely corresponds to
evaluation. The reverse direction should not be generally possible; we should not be able
to extract the code of a program currently running. The central thesis of Davies and
Pfenning [DP01] is that there is a logical thread connecting all of the conditions that
□A ought to satisfy: it should be the case that □ satisfies the axioms of the S4 modality
familiar to logicians.

One consequence of this viewpoint is an elegant calculus and Davies and Pfenning
[DP01] show that it behaves as expected. In particular, they endow their calculus with
an operational semantics that realizes the promised staging. Elements of □A are treated
as “stuck code” and the introduction rule for □A does not have a congruence rule. They
prove that this reduction relation satisfies the standard criterion used to judge staged



Modalities within mathematics 5

evaluation [Pal93]. For instance, they show that code is only computed from code and
that their operational semantics evaluates non-code to a value.

Remarkably, aside from the operational semantics nothing in the calculus intrinsically
refers to staging. As a result, a programmer does not need to be overly concerned with
the details of staging; the system does not contain any surprising restrictions which
might confuse a user as all restrictions flow from the statement that □ is an S4 modality.

The robustness of this idea has allowed many subsequent researchers to extend
the work by Davies and Pfenning [DP01] to complex languages and with additional
powerful features. Not only by integrating staging into more realistic languages but by
allowing the user to scrutinize elements of □A as code to provide a logical account of
metaprogramming [Jan+22].

1.2 Modalities within mathematics

While modalities arise frequently in computer science, it is harder to extract precise
assumptions on modalities from these examples. There is so much flexibility in how
one chooses to capture a computational situation within type theory that e.g., crisp
rules for synchronous type systems are far from immediate. In some instances, e.g., with
staged programming, the application is also subject to change so that both endpoints are
unfixed. In order to find some more concrete rules we turn to applications of modalities
within mathematics where the situation is more rigid.

Before diving into our examples, however, we must make a broader observation
about how type theory is used to study mathematics. In particular, we must stress the
difference between approaching mathematics analytically as opposed to synthetically.
The analytical approach is more familiar. We use types as basic building blocks to build
up the familiar objects of mathematics (groups, rings, spaces, sheaves, etc.) more-or-less
as is done classically. In the synthetic approach, by contrast, we regard types as having
additional intrinsic structure and add axioms to the theory to enforce this.

The synthetic approach can often lead to extremely terse and elegant proofs when a
suitable axiomatization can be found. For examples of synthetic mathematics within type
theory, consider the following synthetic versions of homotopy theory [Uni13], differential
geometry [Shu18], algebraic geometry [CCH23], and guarded domain theory [Bir+12].
The formula for carrying this out in type theory is to first identify a good category E

which contains the objects we wish to study as at least as a full subcategory, then to
interpret type theory in E. One then adds axioms and reasoning principles specific to
the category to type theory, forming it into an effective internal language for E.

Modalities enter the picture when we encounter a feature of E which cannot be
internalized merely by postulating a new term or type. Most commonly, this occurs
because we wish to include an operator which cannot be sensibly included with arbitrary
contexts. For instance, an operation which applies only on global points or which cannot
be made to be invariant under pullback. Let us introduce a few examples to illustrate
this phenomenon as it arises in practice.

1.2.1 Synthetic guarded domain theory

Guarded domain theory [Bir+12] is an adaptation of domain theory designed to solve
certain “domain equations” which arise in e.g., the semantics of higher-order references.



Modalities within mathematics 6

Essentially, rather than working with sets equipped with a partial order, each guarded
domain is instrumented with a structured notion of nearness or indistinguishability and
morphisms between guarded domains must preserve nearness. Rather than taking fixed
points of continuous functions, one is able to form (unique!) fixed points of maps between
guarded domains which draw points closer together.

There have been many concrete realizations of guarded domain theory (in complete
bisected bounded ultrametric spaces, complete ordered families of equivalences, sheaves
on well-founded ordinal, etc.). One particularly appealing aspect of the theory is the
comparatively good behavior of synthetic guarded domain theory when compared with
synthetic domain theory.

Roughly, synthetic guarded domain theory takes place inside a topos E equipped
with the following structure:

1. a left exact endofunctor ▶ : E E (pronounced later),

2. a point next : id ▶,

3. and a collection of morphisms loebA : A▶A A along with an identification
between loebA ◦ f and ϵ ◦ ⟨f, next ◦ loebA ◦ f⟩.

Intuitively, each object of E is equipped with an intrinsic notion of nearness respected
by all morphisms and ▶ preserves the global structure of an object while drawing the
points closer together. The ability to take fixed points of contractive functions is then
encoded by the family of constants loeb.

Example 1.2.1. The canonical model of synthetic guarded domain theory is given
by PSh(ω), the topos of trees. In this model, ▶ is realized as the right adjoint to
precomposition by −+ 1. In other words, it sends a presheaf X to a presheaf X ′ such
that X ′(0) = 1 and X ′(n+ 1) = X(n).

Remark 1.2.2. We often ensure that a model of synthetic guarded domain theory is
non-trivial by requiring the global points of ▶X to be canonically isomorphic to those of
X. More precisely, we ask that next induces an isomorphism hom(1, X) hom(1,▶X).
This rules out, for instance, the degenerate model found in PSh([n]) or similar. ⋄

One appealing aspect of this formulation of synthetic guarded type theory is how
well it can be captured by the internal type theory of E. Indeed, one can realize ▶ as a
certain type constructor and add loeb directly as an axiom and carry out substantial
case studies in guarded denotational semantics [Bir+12; PMB15].

This internalization of synthetic guarded domain theory is inadequate, however, for
capturing certain phenomena. Roughly, the internal language allows us to describe only
local properties and is inadequate for global observations. The most frequently cited
example within the context of guarded denotational semantics is termination. Famously,
when working analytically in guarded domain theory, occurrences of the ▶ modality
correlate with steps and one must take advantage of the fact that hom(1,▶X) ∼=
hom(1, X) to “see past” these ▶s to determine if a program does terminate.

The occurrence of hom(1,−) in this process suggests a possible solution: we could
extend the language of synthetic domain theory to include a type constructor which
roughly internalizes hom(1,−). More precisely, if we assume E is cocomplete, there is



Modalities within mathematics 7

a canonical functor ∆ : Set E sending a set S to the colimit
∐

s∈S 1. We can then
hope to internalize □ = ∆ ◦ hom(1,−) and then postulate an isomorphism □ ◦▶ ∼= □.

Unfortunately, □ simply does not internalize as well as ▶; it cannot be modeled
directly as a type constructor because the following rule is not semantically valid:

Γ ⊢ A type

Γ ⊢ □A type

Indeed, if only Γ ⊢ A type it is not at all clear what the global points of A over Γ
should be; what if, for instance, Γ has non-trivial local points but is globally empty?
There are a number of ad-hoc fixes one can propose, but fundamentally there can be no
operation □ : U→ U which correctly internalizes the desired functor [Shu18] and there is
no sensible way to bolt in □ in a manner which is coherent with respect to substitution.

Summarizing, synthetic guarded domain theory internalizes remarkably well, with
the glaring omission of the ability to speak of global behavior through □. In fact, we
shall see that both ▶ and □ are instances of what we will eventually call modalities
and it is possible to alter type theory to include both. While it is possible to directly
postulate ▶, this will certainly disrupt canonicity while also making it extremely difficult
to correctly control the interaction of □ and ▶. We will therefore opt to organize both □
and ▶ through the same mechanism and, consequently, we can derive □▶A ≃ □A rather
than needing to take it as an axiom. Even better, there are a myriad of other modalities
which could permissibly be utilized in the study of guarded domain theory [Gua18] and
we shall eventually see that each of these constitutes a modality.

1.2.2 Cohesive homotopy type theory

Despite the fact that synthetic guarded domain theory is essentially purely mathematical,
its motivations are still drawn from computer science (the denotational semantics of
programming languages). We now turn to an example motivated by more familiar
mathematics: a synthetic account of topology. We will follow Shulman [Shu18] who in
turn draws on many others [Gro+17; Law07; SS20; Sch13; SS12].

As mentioned above, homotopy type theory (HoTT) has proven to be a widely-studied
synthetic account of homotopy theory. While HoTT includes many familiar objects from
geometry, they can behave quite differently as HoTT captures only their underlying
∞-groupoid. For instance, one can define a higher inductive type (HIT) I intended to
represent the closed unit interval, but In ≃ I ≃ 1. These equivalences are perfectly
correct when regarding I as an ∞-groupoid, but quite inadequate for topology where all
three of the aforementioned spaces behave quite differently.

The goal of cohesive HoTT is to allow one to describe the interval as a HIT and
as a space within the same framework. The inspiration for this comes from Lawvere
[Law07]. If we completely disabuse ourselves of the identification of ∞-groupoids with
spaces and instead treat the former more like sets, we are naturally led to wonder if
(smooth) topological spaces can ever be organized into an ∞-topos—a category which
models HoTT—and, if they can, what properties of that ∞-topos can be axiomatized to
reason about spaces. This question is remarkably similar to the very classical question
of embedding smooth manifolds into an (ordinary) topos and several solutions exist.

Schreiber [Sch13] proposes one method which generalizes well to the ∞-categorical
setting: taking (∞-)sheaves Sh(Cart) on a site that contains all the information of the



Modalities within mathematics 8

smooth category (the subcategory of Smth spanned by spaces of the form Rn).1 Certain
well-behaved colimits of representables in this category fully faithfully capture smooth
manifolds. Even better, one can recover much of the reasoning carried out in Sh(Cart)
through the string of four adjoints connecting it to the ∞-category of ∞-groupoids S:

Sh(Cart)

S

⊣⊣⊣

This string is often notated p! ⊣ p∗ ⊣ p∗ ⊣ p! and this general situation is often
summarized by stating that Sh(Cart) is a cohesive ∞-topos. By asking for specific
properties of this adjoint chain, one can recover much of the flavor of Sh(Cart) purely
synthetically. We refer the reader to Schreiber [Sch13] or Shulman [Shu18] for a discussion
of the particular axioms to set up real cohesive homotopy type theory.

Now that we have a putative synthetic theory of topology, it remains to somehow
internalize this into (homotopy) type theory. Shulman [Shu19] has shown how to interpret
HoTT into Sh(Cart), but of course that gets us no closer to internalizing p which ranges
between two distinct categories. Shulman [Shu18]—following Schreiber [Sch13]—solves
this by passing from considering p to the monads and comonads it induces:

∫
= p! ◦ p∗,

♭ = p∗ ◦ p∗, and ♯ = p∗ ◦ p!.
Just as was done with ▶, it turns out that ♯ can be added to type theory rather

directly and the monadic operations on it can then be postulated. The other two ♭ and
∫

are more complex; fortunately, the axioms for cohesion will force
∫

into a more tractable
form, but ♭ is just as resistant to directly adding to type theory as □ proved to be. In
fact, they share many structural properties as both are lex idempotent comonads.

Just as before, we cannot hope to realize ♭ as an operation on the universe. Unlike
before, ♯ offers one potential avenue for escape (we could realize ♭ : ♯U → ♯U). This
formulation is unsatisfactory however; it leaves us the task of axiomatizing and proving
a great deal of structure on ♯U and it does not allow us to ever obtain ♭A : U even in
situations where this would be semantically valid. For this reason, Shulman [Shu18]
modifies the structure of the homotopy type theory to realize both ♭ and ♯ uniformly
as a pair of adjoint modal operators. A major pay-off of this approach is the amount
that can be derived from the relatively little added structure. A secondary pay-off is the
large suite of definitional equalities available which simplifies several of these proofs.

A further wrinkle presents itself in this example. Cohesion properly involves two
distinct categories (S, Sh(Cart)) and it is somewhat unnatural to limit ourselves to just
working with Sh(Cart). In this instance, we were able to limit ourselves to the monads
and comonads induced by an adjunction without losing information, but ideally modal
type theory would allow for modalities linking together distinct internal languages.

1We refer the reader to Sati and Schreiber [SS20] for a more direct account.



Modal type theory 9

1.2.3 Relative realizability

Our final example from mathematics is drawn from Birkedal [Bir00] and concerns
realizability theory. Briefly, ordinary realizability theory enables one to take a description
of a language (a partial combinatory algebra or PCA) and convert it into an elementary
topoi which reflects a certain logic of computable functions relative to the supplied PCA.
These elementary topoi can be useful tools both for the study of type theory and for the
analysis of the underlying PCA.

Relative realizability is concerned with the study of relative PCAs (A,A♯) which
consist of an ordinary PCA A along with a sub-PCA A♯ closed under multiplication and
containing S and K. Intuitively, A♯ consists of the computable objects while A may
include additional infinite and non-computable objects. Having both objects exist within
the same PCA allows us to describe computable processes which act on potentially
non-computable data. For instance, we might extend the ordinary λ-calculus with infinite
choice sequences so A♯ consists of ordinary closed λ-terms and A is extended with these
infinite sequences. By mixing both together, we can state and prove theorems such as
“λ-terms act continuously on choice sequences”.

Of course, both A and A♯ are ordinary PCAs when viewed separately and both
therefore induce realizability topoi RT(A) and RT(A♯). Given the close relationship
between A♯ and A, we may define a realizability topos RT(A,A♯) that mixes the two. In
both RT(A) and RT(A,A♯) objects are given by objects realized by equivalences classes
of objects from A while in RT(A♯) and RT(A,A♯) morphisms are given by functional
relations realized by objects from A♯. This means that RT(A,A♯) is exactly the setting
required to make statements about computable algorithms on non-computable data.

Given the close relationship between A and A♯, it is natural to wonder what the
relationship is between these three topoi. Birkedal [Bir00] shows that the resulting
topoi are connected by a rich network of adjoints and that, in particular, RT(A♯) and
RT(A,A♯) are linked by a localic geometric morphism which gives rise to a structure
similar to that encountered in Section 1.2.2. Op. cit. then shows that this structure can
be incorporated into the internal logic of RT(A,A♯) through a pair of adjoint modalities,
just as in Section 1.2.2.

Just as in cohesive HoTT, presenting these modalities within the logic is challenging.
In Birkedal [Bir00], the author obtains a workable logic but it cannot be scaled up to
dependent types; the rules governing the modalities simply insist that certain inferences be
valid only in an empty context or similar which would cause serious problems within type
theory.2 These modalities in internal logic remain very useful. With them, for instance,
one may state and prove propositions governing computation on non-computational
objects, but without a dependent type theory this is necessarily stratified into two
distinct languages.

1.3 Modal type theory

Thus far we have explored several applications of modal type theories and programming
languages, but we have come no closer to isolating what, exactly a modality should be.
This situation is indicative of a truism in the study of modal type theory: practitioners

2I have it on good authority that Birkedal is aware of this deficiency.



Modal type theory 10

suffer from an abundance of putative semantic models and a lack of good syntax. The
goal of isolating a particular class of modalities is to cut away enough potential models
to allow for a good syntax while ensuring that the motivating examples remain.

Our starting point is the observation that modalities described in Section 1.2 can
be treated as functors on a model of type theory. Now, often such functors descend to
each slice and thereby can be internalized directly as a map on the universe ⃝ : U→ U.
We refer to these operations as fibered modalities and they constitute an important
special class of modalities. The principal appeal of fibered modalities is that they require
no alteration to the structure of the type theory. Consequently, the study of fibered
modalities is presently far more advanced than the study of general modalities and there
is a well-developed theory of such modalities already available [RSS20].

Unfortunately, as Section 1.2 shows, this situation is not universal and not every
functor of interest can be captured by a fibered modality. We are therefore interested in
studying a class of modalities which does not require fiberedness. The contribution of
this thesis is to defend the following pair of hypotheses:

Hypothesis 1. Weak dependent right adjoints are a good class of non-fibered modalities.

Hypothesis 2. Weak dependent right adjoints give rise to a usable general syntax.

Defining weak dependent right adjoints (wDRAs) and justifying these hypotheses
occupies the bulk of this thesis. Both are fundamentally empirical claims and cannot be
either proven or refuted mathematically. Moreover, it seems unlikely that there will ever
be an unequivocal “best” solution to the question these claims aim to answer. Indeed,
we will encounter examples of modalities in the literature which are not wDRAs and we
shall see special cases where the general syntax could be refined.

What we can and will do in this thesis is to develop evidence for both our hypotheses
by the properties of the resulting syntax, exploring the various relevant categories of
models, and examining case studies and examples. If we cannot convince the reader of
our claim that wDRAs form a good level of abstraction, we will surely provide them
with ample evidence from which to draw this conclusion.

1.3.1 From functors to weak dependent right adjoints

Our assumption that F is a functor already provides some leverage even without the
assumption that F descends to slices. For a start, it ensures that modalities come with
an action on contexts and substitutions (□Γ and □γ, respectively). Without anything
further, however, there is no way to parlay this into an action on types and terms.

In order to accomplish this, we must contemplate how types are interpreted in models
like those described in Section 1.2. Roughly, a type Γ ⊢ A is interpreted as a family over
JΓK; a well-behaved morphism or display map JΓ.AK JΓK.3 To lift the action of our
modality F to types, we require that F sends display maps to display maps (types to
types) and take J□AK = F

(
JΓ.AK JΓK

)
. We emphasize that this does not imply that

□A will inhabit the same context as A. Indeed, examining the interpretation again, we
obtain the following formation rule for modal types:

Γ ⊢ A
□Γ ⊢ □A

3Properly speaking, one must employ a coherence theorem to organize display maps into a model of
type theory. We ignore these details in this introduction.



Modal type theory 11

This definition also gives a canonical action of □ on terms. In a model, a term
Γ ⊢M : A corresponds to a section of the canonical map JΓ.AK JΓK. As any functor
preserve sections, our identification of □A with F (JΓ.AK) F (JΓK) ensures that each
term Γ ⊢M : A induces a term □Γ ⊢ mod(M) : □A. We render this as an inference rule:

Γ ⊢M : A

□Γ ⊢ mod(M) : □A

More generally, our chosen interpretation of □A ensures that (by definition) □Γ.□A ∼=
□(Γ.A). This can also be used to obtain something akin to an elimination rule for □A.

What more can be said about □? Precious little without further assumptions. For
instance, we have essentially no control over (□A)[γ]. Semantically, this corresponds to
a pullback of a morphism F (JΓ.AK) F (JΓK) but with our present set of assumptions
all we can conclude is that this is a display family.

In general, connectives in type theory are stable under substitution e.g., (A×B)[γ] =
A[γ]×B[γ]. The above discussion is our first encounter with a phenomenon that will
occur over and over again in our discussion on modalities: modalities do not generally
enjoy stability under substitution.

Examining the formation rule given above for □A it is clear that (□A)[γ] can never
be of the form □B unless the domain of γ is also of the form □∆. As it stands, we do
not even obtain a substitution lemma for □ in this special case but we can obtain one
after imposing a further requirement on F . We will assume that F preserves pullbacks
of display maps. This assumption enables us to validate the following in our model:

∆ ⊢ γ : Γ Γ ⊢ A type

□∆ ⊢ (□A)[□γ] = □(A[γ]) type

In a typical semantic model, all morphisms will be display families and so these
requirements boil down to the assumption that a modality is a pullback-preserving
functor.

Remark 1.3.1. Even this broadest assumption rules out certain examples referred to as
modalities in the literature (e.g., some formulations of contextual types or the leftmost
adjoint in a cohesive situation), but it preserves the examples listed above and the others
we consider in this thesis. ⋄

The assumption that modalities are realized by pullback-preserving functors is fairly
standard, but the syntax which results from it is far from optimal. The resulting
calculus is often termed a calculus of delayed substitutions because □A only enjoys a
substitution lemma for a specific class of substitutions. The remaining substitutions
are then “delayed” on □A and cannot be resolved. The resulting calculus must be
equipped with complex rules for manipulating these substitutions or require the user
to reason about substitutions directly [Bd00], neither of which is optimal. To obtain
a more optimal syntax, each modal type theory in the literature imposes some further
requirements on F or the category of contexts in order to improve the situation. We
could either

1. alter contexts and substitutions to force a better substitution lemma,



Modal type theory 12

2. or assume F satisfies additional properties to obtain a better substitution lemma.

The first approach is exemplified by the so-called dual-context type theories [dR15;
Kav17; PD01; Shu18; Zwa19] and the second by Fitch-/Kripke-style modal type theo-
ries [BGM17; Bir+20; Clo18; Gra+22; GSB19a; HP23; VRT22]. We shall ultimately
see that both approaches are manifestations of weak dependent right adjoints, but we
discuss them separately for now.

Dual-context type theories Roughly, one might summarize the issues with □A and
substitutions with the observation that not every substitution γ is of the form □γ0.
The idea of dual-contexts is to weaken the requirement to ensure that while γ may not
literally be of the form □γ0, there is at least a canonical choice of γ0. To accomplish
this, both contexts and substitutions are split into pairs ∆; Γ and δ; γ.4 Semantically,
∆; Γ represents an object J∆; ΓK equipped with a map to F (J∆K) so that, intuitively,
variables and terms ∆ and δ are treated as though they are under □.

The reward for making this stratification is a more well-behaved interface for the
modality. It is no longer necessary to assume the entire context is of the form □Γ nor is
it necessary to assume a substitution γ = □γ0. Instead, we use the first half of these
dual-contexts and substitutions:

1; ∆ ⊢ A
∆; Γ ⊢ □A

(□A)[δ; γ] = □(A[!; δ])

Returning to our earlier notation with unified context, we can summarize the pay-off
of dual contexts. First, by splitting contexts, there is a canonical map Γ □∆ for
any given context Γ and we can use this to give a version of the formation rule for
□A which applies in any context. Second, by ensuring that substitutions also split,
the aforementioned choice of □∆ is stable under substitution, and this ensures that
□A enjoys an unconditional substitution lemma. The remaining rules of the system,
particularly the elimination rule for □A, allow one to move variables back and forth
between the two contexts.

Fitch-style type theories Dual-context type theories provide for a canonical choice of map
Γ □∆ and Fitch-style type theories extend this further by providing an initial map.
Essentially, having a canonical choice of map is sufficient for ensuring a substitution
lemma, but it has a major downside. It is far from obvious how to scale up this technique
to accommodate more than one modality. One is quickly led to not just having two
context zones, but a context zone for each possible combination of modalities. All too
quickly, this leads to requiring infinitary contexts or similarly complex structures. While
this is mathematically possible and useful in certain coherence theorems [Shu23], it is
not the foundation for a usable syntax.

The idea is that by ensuring that Γ □∆ has a universal property, its existence
can become a property rather than a structure recorded in the context. This should
then scale up to multiple modalities simply by asserting more and more properties hold,
rather than having to add more and more structure to each context.

4That substitutions must be divided along with contexts is often left implicit, but it is vital.



Modal type theory 13

The requirement that there exists a ∆ and substitution Γ □∆ initial among such
pairs can be rephrased in a more familiar categorical manner: we require that F is a
right adjoint upon contexts. Unlike dual-context type theories, this is merely imposing
additional requirements on F and therefore more in line with what the story we have
seen thus far.

Remark 1.3.2. As with any requirement imposed upon a class of modalities, it is worth
examining what examples are lost. In this case, most of the examples presented so far
can be adapted with a few notable exceptions. For instance, in the cohesive situations
detailed in Sections 1.2.2 and 1.2.3, the leftmost adjoint must be excluded. ⋄

Just as we have internalized the action of F on contexts and substitutions (□Γ,
□γ), we will do the same for the left adjoint and denote its action on e.g. Γ by L(Γ).
Remarkably, with just this additional requirement, we are able to derive several seemingly
new rules from the existing rules governing □.

To begin with, the existence of a left adjoint allows us to simplify the formation rule
for □. Just as with dual-context type theories, we are able to allow for an arbitrary
context in the conclusion, though this time we use the left adjoint and unit rather than
a chosen context and substitution. The rules governing terms of □A, however, can also
be simplified into a pair of “transposition-like” rules. All told we arrive at the following:

L(Γ) ⊢ A type

Γ ⊢ □A type

L(Γ) ⊢M : A

Γ ⊢ mod(M) : □A

Γ ⊢M : □A

L(Γ) ⊢ unmod(M) : A

One can take these rules as primitive and ask what structure we then require on the
original functor F to validate them. The resulting structure is called a dependent right
adjoint by Birkedal et al. [Bir+20].

The functoriality of the left adjoint L(−) can be used to give the first two rules a
simple substitution principle, but the last rule for unmod(−) is more difficult. A variety
of approaches are possible [Gra+22; GSB19a; HP23] but each solution either does not
scale to multiple modalities or requires even more properties on the original F than
merely being a right adjoint (an already somewhat stringent requirement).

Weak dependent right adjoints Defining weak dependent right adjoints is a substantial
technical undertaking and we will not attempt it yet. We can, however, already provide
a flavor of what position they occupy in relation to the two approaches to modalities
discussed above.

Essentially, weak dependent right adjoints split the difference between these two
approaches. Historically, weak dependent right adjoints were first isolated when attempt-
ing to generalize Fitch-style type theories to allow for multiple modalities [Gra+21].
Accordingly, op. cit. weakened the elimination rule—the source of trouble—to a
“pattern-matching” rule more reminiscent of the elimination rule from dual-contexts.

In more detail, just like with Fitch-style type theories we assume that each modality
determines a left adjoint which acts on contexts and substitutions. We then adopt the
specialized formation and introduction rules from Fitch-style type theories as-is. Weak
dependent right adjoints deviate in their the elimination rules.

Just as with dual-contexts, we also enrich the context so that variables carry with
them an additional piece of information specifying which modalities modify them. In



Contributions 14

dual-context type theory, this was accomplished by splitting the context into two halves
(annotated with the modality or not). Just as was the case in dual-context type theories,
the elimination rule is then used to pass between variables with a modal type and
variables with a modal annotation.

It turns out that weak dependent right adjoints are then broad enough to encompass
both dual-context type theories and Fitch-style type theories. The former becomes a
special coherence theorem promoting a model of type theory equipped with a lex functor
to a model of type theory with a weak dependent right adjoint. The latter becomes
a strengthening where there is no difference between a modal-annotated variable and
a variable of modal type. In particular, this class of modalities can accommodate the
examples discussed above in Section 1.2. Most importantly—unlike dual-context type
theories or Fitch-style type theories—weak dependent right adjoints can form the basis
for MTT, the first dependent type theory which adapts fluidly to an arbitrary collection
of modalities while maintaining a good substitution lemma.

1.4 Contributions

In this thesis, we offer one possible approach to the foundations of modal type theory
which is exemplified by MTT, general modal dependent type theory. This modal type
theory is the first to simultaneously balance full-spectrum dependent types and arbitrary
collections of interacting modalities. To highlight one example, MTT is the first system
to be able to seamlessly include both □ and ▶ from synthetic guarded domain theory as
described in Section 1.2.1.

The key ingredient to MTT’s flexibility is our proposed foundation of modal type
theory (Hypotheses 1 and 2) which identifies modalities with weak dependent right
adjoints. We shall see how this definition incorporates many of the best aspects of
Fitch-style and dual-context type theories. We systematically develop the categorical
theory of weak dependent right adjoints and use this to characterize the relationship
between MTT and other type theories appearing in the literature. For instance, we
recover dual-context type theories as particular mode of use of MTT. Similarly, Fitch-
style type theories can be systematically described as special cases of MTT extended
with a further definitional identification. We derive these results through purely semantic
methods, thereby avoiding tedious syntactic arguments.

We do more, however than merely providing a common point of generalization
between two strands of research. We also show that MTT is an extremely well-behaved
and usable system. For instance, we show that the syntax of MTT is remarkably well-
behaved and satisfies essentially every metatheorem one could ask for. Among others,
we show that MTT is consistent regardless of which modalities are used to instantiate it.
More than this, we prove that MTT satisfies canonicity at a similar level of generality.
We also develop a novel extension of type-theoretic gluing techniques to prove that MTT
satisfies normalization and conclude that its type-checking problem is decidable when
the underlying collection of modalities is also decidable.

We also explore the usability of MTT through numerous smaller examples. In
particular, we show how the system can be used to internalize various subsystems of IS4
and describe at some length the behavior of adjoint modalities in MTT. In the latter



Structure of this thesis 15

case, we show that many non-trivial results (preservation of colimits by left adjoints,
etc.) can be derived purely within MTT without additional assumptions.

We also explore the behavior of MTT through two in-depth case studies. For instance,
we provide an in-depth study of guarded recursion within MTT. We do this first in a
more classical context: retrofitting MTT with extensional equality and axiomatizing
Löb induction. We then show how to recover many of the classical results in a more
systematic and streamlined manner. It is then trivial to enrich the resulting guarded
type theory with many other modalities which follow naturally from the pair of □ and
▶. This allows us to give cleaner and more conceptual proofs of e.g., the construction
of coinductive types from their guarded counterparts. This last point also relies on
the ability to include multiple distinct type theories (modes) which are connected by
modalities, a possibility that had not been previously explored in this context. In the
same case study, we introduce a novel stratified guarded type theory built on MTT
which features a static/dynamic distinction allowing a user to program in a system with
decidable type-checking, but execute that code in a language with a (guarded) canonicity
result. We are able to prove a crisp no-go theorem showing that the resulting stratified
system occupies a canonical position among strategies to guarded recursion. In both
cases, however, we benefit from the uniform metatheorems of MTT which apply directly
and ensure e.g., the existence of a well-behaved substitution principle and category of
models.

The ability to include multiple interacting modalities also allows us to develop the
first fully synthetic account of the Iris concurrent separation logic [Jun+18]. We work
inside MTT instantiated to connect two distinct type theories: one for guarded recursion
and one where types merely act like sets. Using guarded recursion, we redevelop the Iris
program logic entirely synthetically. The recasting of the logic to use a full dependent
type theory offers many conceptual simplifications and unifications, enabling us to omit
the complex domain equation in favor of a simple guarded fixed-point on the universe.
The inclusion of the set mode is crucial, however, for proving the resulting program
logic adequate. Being the first modal type theory capable of smoothly including all the
necessary modalities, we are able to provide the first synthetic reconstruction of Iris
which includes a proof of adequacy.

1.5 Structure of this thesis

This thesis is divided into three parts: preliminaries (Part I), modalities in type theory
(Part II), and applications of multimodal type theory (Part III).

Preliminaries The first part of this thesis consists of Chapters 2 to 4 and describes some
of the tools and techniques used throughout the remainder of the thesis. Much of this
material has appeared before in the literature and references to longer expositions are
given throughout. Rather than being read linearly and in-depth, this material is best
skimmed and revisited as needed.

Chapter 2 introduces this thesis’s perspective on type theory generally. For instance,
logical frameworks, the relationship between syntax and semantics, and the collection
of type formers we shall include. The chapter also includes a discussion of the various
metatheorems of type theory we return to again and again in this thesis. In particular,



Structure of this thesis 16

it includes an explanation of the importance of canonicity, normalization, and the
admissibility of substitution.

Chapter 3 introduces the basic notations and definitions from category theory we
rely upon. In addition to standard concepts within category theory, a great deal of
attention is paid to the machinery and results of categorical type theory. Among other
topics, categories with families, natural models, coherence theorems, and constructions of
universes are discussed in some depth. As in the discussion above, it is nearly impossible
to separate semantic considerations from syntactic ones in the context of modal type
theory and so this material is used throughout the thesis.

Chapter 4 is more self-contained than the other two chapters. It discusses synthetic
Tait computability, a proof technique used to establish metatheorems like canonicity and
normalization and works through a simple application proving canonicity for Martin-Löf
type theory. This chapter is recommended only for those interested in the applications
of synthetic Tait compatibility in Chapter 8 and Chapter 9.

Modalities in type theory The second part defends Hypotheses 1 and 2 and consists of
Chapters 5 to 8. It is concerned with developing the syntax of MTT and semantics of
weak dependent right adjoints, as well proving several important results such as various
recognition principles for models and a normalization result for the type theory.

Chapter 5 extends the discussion of modalities we began in Section 1.3.1. It gives
a full account of the syntax and semantics of many of the different varieties of modal
type theories proposed in the literature and their relation to each other. In particular,
we describe in some depth the relationship between dual-context type theories and
Fitch-style type theories and their shared relationship to delayed substitutions.

Chapter 6 draws on the ideas outlined in the prior chapter to introduce the syntax
of MTT. The chapter begins with a non-technical and informal introduction to MTT
illustrating how it is used on paper. It then turns to the formal syntax of the type theory
as well as a variety of possible extensions to the system. It concludes with an in-depth
case study covering adjoint modalities to illustrate how the theory is used in practice.

Chapter 7 introduces the semantics of MTT and, with it, the full definition of weak
dependent right adjoints. In addition to a natural model definition of a model of MTT,
this chapter contains numerous recognition theorems for models of MTT. They are then
put to use to prove the independence of a variety of extensions.

Chapter 8 is devoted to the proof of a single result: MTT admits a normalization
function. To this end, we develop multimodal synthetic Tait computability, an extension
of the techniques from Chapter 4 to apply to MTT. We conclude that MTT enjoys
decidable type-checking under mild conditions. We further generalize this result to
include a variety of extensions of MTT.

Applications of multimodal type theory The final part of this thesis deals with two in-
depth case studies of MTT. Chapter 9 is studies MTT as it applies to guarded recursion.
In fact, it includes several different views on guarded recursion. The first uses an
extensional variant of MTT to reproduce and refine several classical results in guarded
type theory, while the second introduces a novel stratified type theory that enjoys
decidable type-checking while also allowing for a limited form of guarded canonicity.
Finally, Chapter 10 uses a version of extensional guarded MTT to give a fully synthetic



Structure of this thesis 17

reconstruction of the Iris program logic, including the all-important adequacy theorem
which has proven to be a sticking point to internalize.



Part I

Preliminaries

18



2 Type theory

What is essential is to single out
important concepts and to
investigate their properties.

Dana Scott
Advice on modal logic

The subject of this thesis is modal type theory. In order to properly situate the
study of modal type theory, we must first have a firm handle on what characterizes
(Martin-Löf) type theory. This is an impossibly broad task for a single chapter, so we
set ourselves two slightly more modest goals:

1. Introduce the overarching assumptions and methods we will use throughout this
thesis to handle type theories (modal or not). The goal is less to introduce type
theory to those without background so much as it is to introduce this thesis’s
perspective on type theory to those reasonably acquainted with the subject.

2. Discuss what aspects of type theory are essential and must be carried forward as we
alter it to accommodate modalities. In particular, the metatheory of ordinary type
theory is rich and well-studied. In order to facilitate an informed discussion of the
trade-offs involved in modal type theory, we will discuss the function of theorems
like canonicity, normalization, decidability of type-checking, and the substitution
lemma.

2.1 Logical frameworks and syntax, formal and informal

We begin by noting that we actually use type theory in two somewhat distinct ways
throughout this thesis; we are generally studying a particular type theory as a mathe-
matical object but in pursuit of this goal, we sometimes work within type theory and
treat it as a concrete and imprecise language.

This dual role is quite common in works on type theory, but unless carefully addressed
it raises a whole host of ambiguities. When studying type theory as a mathematical
object, we want to be able to relate the syntax of type theory to other objects through a
category of models where syntax is initial. At a high level, this essentially states that
we ought to have an induction principle for our type theory, enabling us to state and
prove properties of the theory by showing that each term and type former preserves the
property and that the property respects equality. As one can imagine, without such a
uniform induction principle, proofs about type theory can become quite arduous.

19



Logical frameworks and syntax, formal and informal 20

Unfortunately, the informal discipline used to write type theory when taken literally
cannot be easily connected to the category of models. The informal discipline elides
annotations and other information which can make it difficult to explain how, precisely,
one should interpret a given term into a model. There is, however, a good reason for
these elisions: actually writing out every necessary annotation on every connective would
be incredibly verbose and often superfluous.

This has traditionally caused a great deal of angst among those striving to use
categorical methods to analyze the syntax of type theory; if we treat concrete and
informal syntax as the main object of study, a great deal of difficult and subtle lemmas
must be carried out to connect it to syntax qua initial object in the category of models.
Sometimes in order to construct such an interpretation we require normalization or
similar results to hold for the informal syntax. This is a non-starter if, as in this thesis,
we intend to use semantic methods to establish normalization.

Moreover, informal syntax is a moving target: there are countless different ways of
presenting syntax: more annotations, fewer annotations, restricting application to avoid
cuts, etc. This does not even touch upon the conveniences that a modern proof assistant
like Coq or Agda might implement to facilitate writing terms in type theory (unification,
implicit arguments, type classes, modules, etc.).

In this thesis, we shall make the blanket assumption that when we study formulate
and study type theories, we are studying objects generalized algebraic theories [Car78].1,2

In particular, this means that a type theory is a particular algebraic theory where sorts
may depend on terms of other sorts and operations are equipped with suitable dependent
types.

This assumption ensures that whenever we specify a type theory, there is automatically
a category of models equipped with an initial object which we term syntax. Using the
general results from Cartmell [Car78] (or Kaposi et al. [KKA19]), one can construct this
initial object as as fully-annotated terms or derivations up to definitional equality, but
we will have no need to do this throughout this thesis. All the theorems we wish to
derive about the syntax of a type theory will be derived through its universal property.

Our usual task then when we define a type theory is not to define the syntax and
the category of models, but to give a specification in our logical framework and give a
more concise and digestible formulation of the output of turning the crank to obtain a
category of models.

In contrast, whenever we use type theory we will use a thoroughly informal discipline
which not only elides type annotations but uses implicit arguments, pattern-matching,
and other conveniences. This discipline can be translated into the precise and formal
syntax specifying various type theories, but we will largely leave this to the reader and
not deal with the question of defining a precise elaboration algorithm for the procedure.

Remark 2.1.1. This is similar to the typical discipline adopted by mathematical logicians
studying ZFC or similar. The beginning of the paper will state that they are working
with some formal system to analyze another formal system, but the body of the paper is

1All of the results and properties we require of generalized algebraic theories are satisfied by the
special case of quotient inductive inductive types, so the reader who prefers to do so may also refer to
Kaposi et al. [KKA19] as a reference.

2This is similar to the approach taken by Nordström et al. [NPS90], though we opt for a different
logical framework whose category of models is easier for us to handle.



The judgments and basic inferences of type theory 21

not a nest of formulae in first-order logic. Instead, the contents of the paper are written
in informal mathematics which the authors argue can be converted into formulae if
necessary. ⋄

2.2 The judgments and basic inferences of type theory

We will follow the presentation of Martin-Löf type theory given by Dybjer [Dyb96] and
others. Martin-Löf type theory consists of four judgments, each of which is rendered by
a sort in our underlying logical framework:

• The sort of contexts Cx.

• The sort of substitutions Sb(∆,Γ) which depends on two elements ∆,Γ : Cx.

• The sort of types Ty(Γ) now depending on an element Γ : Cx.

• The sort of terms Tm(Γ, A) depending on Γ : Cx and A : Ty(Γ).

We then animate the type theory by closing each of these sorts under various
operations and stipulating equations that these operators are subject to. For instance,
we will specify that substitutions can be composed through the following composition
operator

comp : (Γ0,Γ1,Γ2 : Cx)(γ1 : Sb(Γ0,Γ1))(γ2 : Sb(Γ1,Γ2))→ Sb(Γ0,Γ1)

We also then specify an equation governing this composition operator to force it to
be associative:

(Γ0,Γ1,Γ2,Γ3 : Cx)(γ1 : Sb(Γ0,Γ1))(γ2 : Sb(Γ1,Γ2))(γ3 : Sb(Γ2,Γ3))

→ comp(Γ0,Γ2,Γ3, comp(Γ0,Γ1,Γ2, γ1, γ2), γ3)

= comp(Γ0,Γ1,Γ3, γ1, comp(Γ1,Γ2,Γ3, γ2, γ3))

Remark 2.2.1. In particular, we note that our equality judgments are typed and
undirected. They do not, for instance, necessarily arise from some untyped rewriting
system defined on preterms and then restricted to well-typed terms. Indeed, by working
within a logical framework as we have done there is no notion of preterm to speak of.

Moreover, this lack of preterms means that all constituents of a type theory—terms,
types, etc—are always regarded up to definitional equality and all operators of the theory
therefore respect definitional equality. This means that principles such as congruence or
the conversion rule (stipulating that a term of type A is automatically of type B if A
and B are equal) are automatic. ⋄

Already with these two small examples, it is clear that this process can become
verbose quite quickly. Accordingly, we adopt some notations to help specify operators
and equations. First, we will often avail ourselves of implicit arguments when these
can be easily inferred by the reader. For instance, we might write γ2 ◦ γ1 rather than
comp(. . . ) as the first three arguments can be inferred from γ2 and γ1. Second, rather
than writing operators and equations as dependent functions, we will use the more



The judgments and basic inferences of type theory 22

standard inference rule and judgment notation. Rather than writing γ : Sb(∆,Γ), we
will write ∆ ⊢ γ : Γ and specify comp and its equation using the following inference rules:

Γ0 ⊢ γ1 : Γ1 Γ1 ⊢ γ2 : Γ2

Γ0 ⊢ γ2 ◦ γ1 : Γ2

Γ0 ⊢ γ1 : Γ1 Γ1 ⊢ γ2 : Γ2 Γ2 ⊢ γ3 : Γ3

Γ0 ⊢ γ3 ◦ (γ2 ◦ γ1) = (γ3 ◦ γ2) ◦ γ1 : Γ3

We adopt similar familiar notations for the other sorts of our type theory and write
⊢ Γ cx, Γ ⊢ A type, and Γ ⊢M : A for Γ : Cx, A : Ty(Γ), and M : Tm(Γ, A) respectively.

Standard rules of type theory The inference rules for these judgments vary depending
on which particular formulation of Martin-Löf type theory we are considering, but a
few rules are ubiquitous. For instance, in addition to the composition operator for
substitutions we have just described, we also include an identity substitution which
serves as a unit for ◦:

⊢ Γ cx

Γ ⊢ id : Γ

Γ ⊢ δ : ∆

Γ ⊢ δ ◦ id = δ : ∆ Γ ⊢ id ◦ δ = δ : ∆

We note that this ensures that contexts and substitutions form a category.
Another important structural principle of dependent type theory is substitution.

There are type and term formers A[γ] and M [γ] which allow one to apply a substitution
to a type or term, shifting it from one context to another:

∆ ⊢ γ : Γ Γ ⊢ A type

∆ ⊢ A[γ] type

∆ ⊢ γ : Γ Γ ⊢M : A

∆ ⊢M [γ] : A[γ]

We impose equations upon this substitution operator to ensure that it respects the
composition and identity substitution operators e.g.:

Γ0 ⊢ γ1 : Γ1 Γ1 ⊢ γ2 : Γ2 Γ2 ⊢ A type

Γ0 ⊢ A[γ2 ◦ γ1] = A[γ2][γ1] type

Γ ⊢ A type

Γ ⊢ A[id] = A type

The two final collections of rules are those governing the formation of contexts. We
specify two operations for creating contexts: the operation creating an empty context
and the operation extending an existing context with a type:

⊢ 1 cx

⊢ Γ cx Γ ⊢ A type

⊢ Γ.A cx

In addition to this pair of operations, we have several auxiliary operations and
equations governing what substitutions into these contexts exist. The class of rules for 1
is the most direct; it specifies that there is a unique substitution mapping into 1:

Γ ⊢ ! : 1

Γ ⊢ δ : 1

Γ ⊢ δ = ! : 1

One can summarize this tersely by stating that 1 is terminal in the aforementioned
category of contexts and substitutions. The rules governing Γ.A are slightly more
complex. Essentially they state that Γ.A behaves like a form of dependent sum such



A tour of various connectives of Martin-Löf type theory 23

that a substitution into Γ.A can be decomposed into a substitution into Γ along with a
term of A:

∆ ⊢ γ : Γ ∆ ⊢M : A[γ]

Γ ⊢ γ.M : Γ.A Γ.A ⊢ p : Γ Γ.A ⊢ v : A[p]

∆ ⊢ γ : Γ ∆ ⊢M : A[γ]

∆ ⊢ γ = p ◦ (γ.M) : Γ ∆ ⊢M = v[γ.M ] : A[γ]

∆ ⊢ γ : Γ.A

∆ ⊢ γ = (p ◦ γ).v[γ] : Γ.A

This basic collection of rules completes the core principles of Martin-Löf type theory
though without any additional operators giving rise to terms or types the theory is
slightly degenerate.

Definition 2.2.2. We will refer to any type theory extending the above rules with
various type and term operators as a Martin-Löf type theory.

2.3 A tour of various connectives of Martin-Löf type theory

In this section, we briefly survey some of the connectives that we will typically work
within this thesis. We also include a somewhat extensive discussion on the different
formulations of universes within type theory, as this is a somewhat complex aspect of
Martin-Löf type theory with several trade-offs available.

2.3.1 The sum, product, and unit types

We begin with three standard connectives in dependent type theory: dependent sums,
dependent products, and unit types. We begin with the formation rules, the operators
constructing elements of Ty:

Γ ⊢ A type Γ.A ⊢ B type

Γ ⊢
∑

AB type Γ ⊢
∏

AB type Γ ⊢ Unit type

As a first instance of what will quickly become a routine matter, we must also impose
equations on these formation operators. Recall that we are always able to apply a
substitution to a type, shifting it from one context to another A[γ]. Each time we specify
an operator of the theory, here formation operators, we will add rules specifying how
substitution interacts with the operator:

∆ ⊢ γ : Γ Γ ⊢ A type Γ.A ⊢ B type

∆ ⊢
(∑

AB
)
[γ] =

∑
A[γ]B[id.γ] type ∆ ⊢

(∏
AB

)
[γ] =

∏
A[γ]B[id.γ] type

Γ ⊢ γ : Γ

∆ ⊢ Unit = Unit[γ] type

These rules, together with all the others we shall eventually add, ensure that substi-
tutions can pass through term and type formers in order to resolve at variables. Even
these three rules illustrate the general pattern for substitution rules, so we shall avoid
mentioning them further in this overview.



A tour of various connectives of Martin-Löf type theory 24

The operators governing terms in all three types are particularly simple to state
because they feature both a computation and unicity equality (a β and η law). Accord-
ingly, we can perfectly well organize the data into an isomorphism. For instance, the
following isomorphisms fully specify the introduction, elimination, computation, and
unicity rules for

∏
,
∑

, and Unit:

Tm
(
Γ,
∏

AB
) ∼= Tm(Γ.A,B)

Tm
(
Γ,
∑

AB
) ∼= ∑M :Tm(Γ,A)Tm(Γ, B[id.M ])

Tm(Γ,Unit) ∼= 1

Of course, it is often more convenient to unpack the data of these isomorphisms to
obtain more familiar syntax and rules. We carry out this process for dependent products
to illustrate the general process:

Lemma 2.3.1. Given an isomorphism α : Tm
(
Γ,
∏

AB
) ∼= Tm(Γ.A,B), the standard

operators for lambda-abstraction and function application are definable and satisfy the
expected equations.

Proof. We begin by defining lam = α−1 : Tm(Γ.A,B)→ Tm
(
Γ,
∏

AB
)
. The definition

of application is only slightly more involved: app(M,N) = α(M)[id.N ]. The calculation
of the β and η rules is routine.

2.3.2 Inductive types

The next class of types to consider are those that have a computation rule but lack a
corresponding unicity rule. For reasons we will address in Section 2.4, these tend to be
types with a mapping-out elimination principle which resembles an induction scheme: to
construct P (x) for all x : A, it suffices to construct P (. . . ). Throughout this thesis, we
will make use of several of these inductive types, but we will not attempt to provide a
general schema for all inductive types here. Instead, we will illustrate the rules for the
booleans and natural numbers and note that the other instances in this thesis can be
incorporated into type theory by similar rules.

Both Bool and Nat have straightforward formation rules and introduction rules:

Γ ⊢ Nat,Bool type Γ ⊢ tt,ff : Bool Γ ⊢ z : Nat

Γ ⊢M : Nat

Γ ⊢ suc(M) : Nat

One might hope that the elimination principle for booleans states something akin to
the elimination rules for dependent products or sums, which ensure that every element of
a type came from one of its introduction rules. Unfortunately, such a rule is not possible
with booleans; we will not typically have an isomorphism 2 ∼= Tm(Γ,Bool) (indeed,
not what if Γ contained a variable of type Bool?). What we can hope for, however, is
that from the perspective of a type, there are only two elements of Bool. This somewhat
informal statement is meant to capture a weak orthogonality condition that we shall
revisit more fully in Chapter 3. For now, we shall be more concrete and specify the



A tour of various connectives of Martin-Löf type theory 25

elimination rule for Bool and Nat as follows:

Γ.Bool ⊢ B type Γ ⊢ N0 : B[id.tt] Γ ⊢ N1 : B[id.ff] Γ ⊢M : Bool

Γ ⊢ if(B,N0, N1,M) : B[id.M ]

Γ.Bool ⊢ B type Γ ⊢ N0 : B[id.tt] Γ ⊢ N1 : B[id.ff]

Γ ⊢ if(B,N0, N1, tt) = N0 : B[id.tt] Γ ⊢ if(B,N0, N1,ff) = N0 : B[id.ff]

Γ.Nat ⊢ B type
Γ ⊢ N0 : B[id.z] Γ.Nat.B ⊢ N1 : B[p2.suc(v[p])] Γ ⊢M : Nat

Γ ⊢ rec(B,N0, N1,M) : B[id.M ]

Γ.Bool ⊢ B type Γ ⊢ N0 : B[id.tt] Γ ⊢ N1 : B[id.ff] Γ ⊢M : Nat

Γ ⊢ rec(B,N0, N1, z) = N0 : B[id.z]
Γ ⊢ rec(B,N0, N1, suc(M)) = N1[id.M.rec(B,N0, N1,M)] : B[id.suc(M)]

2.3.3 Identity types

Thus far the connectives discussed have been relatively uncontroversial; the formulation
of dependent sums, booleans, etc. is essentially ubiquitous. We arrive at our first major
point of divergence with the identity type. This type is meant to internalize the equality
between terms as a type, but there are two distinct formulations of the identity type
(intensional and extensional). The situation is somewhat fraught: extensional identity
types are semantically simpler and more powerful absent additions like univalence, but
have a far inferior proof theory compared with intensional identity types. In particular,
they cannot be implemented in a proof assistant like Coq or Agda, so we are often forced
to work with the intensional formulation instead.3 Within this thesis we shall have use
for both forms of identity type: extensional identity types will be used when reasoning
within type theory, while intensional identity types will be used for the type theories
about which we will reason.

Both the intensional identity type Id and the extensional identity type Eq have
identical formation and introduction rules, so we introduce them together:

Γ ⊢ A type Γ ⊢M,N : A

Γ ⊢ Eq(A,M,N), Id(A,M,N) type

Γ ⊢M : A

Γ ⊢ refl : Eq(A,M,M) Γ ⊢ refl : Id(A,M,M)

Notation 2.3.2. When no ambiguity can arise, we will often suppress the A in Id(A,M,N)
or Eq(A,M,N).

The distinction between the two lies in their respective elimination principles. The
extensional equality type is the simpler of the two, with a principle allowing one to
parlay a proof of Eq(A,M,N) into a definitional equality:

Γ ⊢ P : Eq(A,M,N)

Γ ⊢M = N : A Γ ⊢ P = refl : Eq(A,M,N)

3Somewhat surprisingly, the intensional identity type induces an incredibly rich homotopical structure
within type theory but we shall not pursue this perspective.



A tour of various connectives of Martin-Löf type theory 26

Phrased differently, the extensional identity type has an introduction and elimination
rule which can be bundled into a single isomorphism:

Tm(Γ,Eq(A,M,N)) = {⋆ |M = N}

The intensional identity type, by contrast, has an elimination principle encoding a
weak orthogonality condition similar to Bool or Nat:

Γ.A.A[p].Id(v[p],v) ⊢ B type
Γ.A ⊢ N : B[id.v.v.refl] Γ ⊢M0,M1 : A Γ ⊢ P : Id(M0,M1)

Γ ⊢ J(B,N, P ) : B[id.M0.M1.P ]

Γ.A.A[p].Id(v[p],v) ⊢ B type Γ.A ⊢ N : B[id.v.v.refl] Γ ⊢M : A

Γ ⊢ J(B,N, refl) = N [id.M ] : B[id.M.M.refl]

2.3.4 Universes

The final connective left to describe is the universe of small types. Essentially, this is a
type whose elements codify certain types. Already several points of divergence emerge:
some presentations of type theory insist that elements of the universe are literally types.
In our setting, this is ill-formed: terms are of a different sort. Accordingly, we require
an explicit decoding function converting between an element of the universe and a type
(this is the primordial dependent type):

Γ ⊢ U type

Γ ⊢M : U

Γ ⊢ El(M) type

Ideally, a universe would have a code for every type in the system—El would be
invertible—but this runs afoul of Cantor’s argument. The best we can hope for is a
universe that contains a code for every small type i.e. those which do not mention the
universe itself. Unfortunately, we run into a deficiency of standard non-homotopical type
theory: there is no way to equip the universe with a suitable universal property. The
ideal universal property would ensure that elements of the universe determine types up
to equivalence, but the former is too small to contain the latter. Indeed, in standard
type theory we have only one equality between a pair of elements but we may have
many equivalences. Accordingly, we compromise and merely ensure that we have enough
elements of the universe by requiring it to be closed under various type-formers.

For every connective e.g. dependent products, we add a corresponding operation on
the universe:

Γ ⊢M : U Γ.ElM ⊢ N : U

Γ ⊢ ProdCodeM N : U

The idea is that this simulates the operation of forming dependent products on
elements of the universe. This intuition is given force through the following equation:

Γ ⊢M : U Γ.ElM ⊢ N : U

Γ ⊢
∏

ElM ElN = El(ProdCodeM N) type

This process is then repeated for every connective, save the universe itself.



Metatheorems and their motivation 27

Remark 2.3.3. In some instances, we will have occasion to relax equation governing
El to a specified isomorphism—so-called weak Tarski universes—but this is a technical
detail that can be generally ignored. We will return to it properly in Chapter 8 where
we will actually take advantage of this weakening to simplify certain arguments. ⋄

2.4 Metatheorems and their motivation

We conclude this section by discussing some of the main metatheorems proven about type
theory and what purpose they serve. In particular, we are concerned with decidability
of conversion, canonicity, and admissibility of substitution.

2.4.1 Decidability of conversion

The easiest property to state and motivate is the decidability of conversion:

Property 2.4.1 (Decidability of conversion). The equality in the sorts Ty(Γ) and
Tm(Γ, A) is decidable.

This property is necessary, fundamentally, for implementation purposes. The central
complexity of standard implementions of type theory is the type-checker: the portion
of the implementation which decides whether the input term has the proposed type.
Type-checking dependent type theory is extremely difficult because of the following
conversion rule, enabling one to silently replace a type by an equal type:

Γ ⊢M : A Γ ⊢ A = B type

Γ ⊢M : B

This rule is present in any formal system, dependent or not, but MLTT has an
especially complex theory of type equality owing to dependence. In particular, while
we only require decidability of types in order to implement type-checking, dependence
ensures that this is only possible if the equality of terms is also decidable. To see this in
action, consider the term refl and the type Id(A,M,N). This could only be well-typed
if M = N so that the above conversion rule applies and Id(A,M,N) = Id(A,M,M).
This then places an implementation in the unenviable position of having to decide the
equality of arbitrary terms at arbitrary type, which can quickly become undecidable.

Many of the design considerations for type theory are motivated by decidability
considerations. We have, in fact, already encountered such a trade-off in the formulation of
identity types. Extensional identity types lead to an undecidable type-checking problem,
which is why they are typically eschewed in favor of the less convenient intensional
identity type.

Normalization In practice, one establishes the decidability of conversion through a
normalization function. Tersely, a normalization function embeds the sets of terms, types,
etc. into sets with an equality easily seen to be decidable, thereby yielding the necessary
result. In fact, this process is somewhat reversible:

Lemma 2.4.2. If equality of types is decidable, there is a computable embedding of types
into the natural numbers.



Metatheorems and their motivation 28

Proof. Let us note that types can be presented as a quotient of derivation trees, by
a general result of either GATs or QIITs. We will define a map from Ty(Γ) first at
the level of derivation trees and then argue that it respects the equality and therefore
extends to a map out of Ty(Γ).

Fix a bijective Gödel numbering on derivations (through any of the standard methods).
We define F (D) : Nat to the be minimal natural number n such that the derivation D′

corresponding to n represents the same type as D. This function is computable; we
iterate through the natural numbers starting with 0 and using the assumed conversion
algorithm to test equality at each numeral. By construction, derivations representing
the same type are sent to the same number so this induces a computable function on
types. It follows by definition, moreover, that this function is an embedding.

While the above lemma shows that the existence of some normalization algorithm is
equivalent to the decidability of conversion, we often wish for a more structured algorithm.
Indeed, the embedding and its codomain are often chosen to make other properties easy
to deduce. For instance, in order to minimize the annotations needed in a proof assistant,
one may which to show that

∏
A0
B1 =

∏
A0
B1 implies A0 = A1. This sort of injectivity

result is not a priori a consequence of normalization, but by carefully controlling the
behavior of the normalization function it can fall out more-or-less immediately from the
behavior of the normalization function on

∏
.

2.4.2 Canonicity

Canonicity is a result which applies to closed terms of type theory:

Property 2.4.3 (Canonicity). If 1 ⊢M : Bool then M = tt or M = ff

Intuitively, this result codifies the computational content of type theory. We must
be somewhat indirect in how this is stated; type theory does not come equipped with
some form of operational semantics or reduction relation, only equality. However, by
asking for a constructive proof of canonicity, we are essentially requiring an interpreter.
This enables us to evaluate closed booleans all the way down to either tt or ff. The data
of such an interpreter is a map from Tm(1,Bool)→ 2 and so, from this viewpoint the
requirement that M = tt or M = ff states that the interpreter must be ‘correct’. We are
generally only able to extract such an interpreter from a constructive proof of canonicity
but even without constructivity canonicity does yield useful information.

The computational point of view is the main motivation for proving canonicity: type
theory is intended to be a computational foundation for mathematics and canonicity
provides a concrete check in this regard. More than this, however, canonicity is also a
check to ensure that sufficiently many equations have been added to the type theory.
This is why we insist on obtaining tt or ff in particular: we want to avoid a situation
where the equational theory is decidable through the absence of equations. After all, if
we had refused to include any equations at all the theory, we would certainly be able to
show equality is decidable, but canonicity would fail.

2.4.3 Admissibility of substitution

Canonicity and decidability of conversion are difficult to prove. They usually come from
sophisticated arguments involving logical relations or gluing and often establishing one



Metatheorems and their motivation 29

of these results for a theory is an entire publication’s worth of material on its own. The
last metatheorem under discussion—the admissibility of substitution—is quite different.

Firstly, it is often quickly stated as a lemma and proving that it holds is usually a
simple exercise. More concretely, however, canonicity and decidability of conversion are
properties that can be stated objectively—without reference to a particular presentation
of syntax. One way to see this is that both can be characterized as a property of a
model and the metatheorem can be rephrased as this property holds of the initial model.
Admissibility of substitution is quite different and, thus far, has only been characterized
as a subjective property of a presentation of syntax.

Property 2.4.4 (Admissibility of substitution). Every type and term former in the theory
except v commutes with substitution: for an operator θ accepting n arguments, there is a
collection of operators on substitutions (Fi)i<n such that θ(T0, . . . )[γ] = θ(T0[F0(γ)], . . . ).

In our case, admissibility of substitution holds more-or-less by construction. Each
time we introduce a type former, we specify an equation of precisely the form taken
above.

Unlike canonicity and decidability of conversion, the statement of Property 2.4.4 is
somewhat messy and has been subject to several alterations as type theory has developed.
Broadly, each time the logical framework presenting the theory has changed, some of
the subjective metatheorems like Property 2.4.4 become automatic and those which still
must be proven manually change form. For instance, some presentations of Martin-Löf
type theory did not include a distinguished sort of substitutions. Instead, practitioners
proved a sort of generalized cut result stating something akin to the following:

∆ ⊢ N : A Γ0, x : A,Γ1 ⊢M : B

Γ0,∆,Γ1 ⊢M [N/x] : B[N/x]
================================== (2.1)

In the above, M [N/x] is an operation on raw terms that performs some sort of
capture-avoiding substitution. People eventually passed from individual substitutions
like this to simultaneous substitutions between contexts and, from there, to an algebra of
substitutions formalized in just the same way as types and terms [Mar92]. Having estab-
lished substitutions as a formal object in type theory, M [γ] became a term constructor
like any other and Rule 2.1 became a rule like any other.

Even with this development, the admissibility of substitution did not truly become
automatic. The essential content of Rule 2.1 was not merely that we could change the
context; it was also crucial that changing the context did not change the shape of a term
or type. This latter point is what is captured by Property 2.4.4 and it remains vital. For
instance, it enables users to prove lemmas hypothesizing over variables and use them
later on.

Remark 2.4.5. Historically, the introduction of formal contexts within logic has been a
necessity to avoid contradictions (particularly those around hypothesizing over empty
domains) but it has never been representative of actual informal mathematics. Indeed,
when working on paper one will not typically find explicit binders or the like. Instead,
certain arguments will presuppose the existence of an object to be substantiated by
subsequent argument. In particular, there is no conceptual distinction between an
argument fully instantiated compared to one which presently lacks a parameter. The role



Metatheorems and their motivation 30

of the admissibilty of substitution is to lend some formal foundation to this informal idea.
It ensures that contexts and binding are carefully noted while simultaneously ensuring
that no construction is ever affected by the instantiation of a hypothetical. ⋄

Remark 2.4.6. In light of these arguments, a more provocative third distinction may
be drawn between admissibilty of substitution and the prior metatheorems. If one is
given a type theory which fails to satisfy e.g. canonicity, one might argue that this is
a poorly-behaved type theory. I would argue that a theory which does not satisfy the
admissibility of substitution or an equivalent is simply not a type theory. The ability to
ignore contexts when working in a theory—the fundamental consequence of admissibility
of substitution—is a defining characteristic of type theory. ⋄

For a similar historical evolution, one might consider the congruence of definitional
equality. Traditional presentations of type theory contained various congruence rules
stating that e.g., if M = N then π0(M) = π0(N). These rules are entirely absent
in our presentation of type theory because they are enforced by the principles of our
logical framework; every connective is congruent with respect to equality. Thus, while
historically congruences for equality were debated and enforced explicitly, they have since
faded into the background of the logical framework and become entirely unremarkable.
This is also the case with other metatheorems: subject reduction, presupposition, etc.4

We emphasize that this does not mean that these are not important properties of a type
theory. To the contrary, they are so important that a consensus has been reached to
exclude systems that do not satisfy, e.g., subject reduction from our discourse.

Admissibility of substitution is on a similar path: we have replaced the generalized
cut principle and admissible substitutions with a cleaner formulation rendering Rule 2.1
automatic. It is then natural to ask why substitution has not been folded into the
logical framework entirely so that all connectives are stable under substitution by fiat. In
fact, modern logical frameworks do enforce this! The logical frameworks considered by
Gratzer and Sterling [GS20], Haselwarter and Bauer [HB21], Nordström et al. [NPS90],
and Uemura [Uem21] all enforce stability under substitution automatically. In some
sense, the presentation of type theory given in this chapter is arguably an antiquated
approach.

This choice of approach is deliberate however and not merely an attempt to force the
reader to appreciate the advances of modern logical frameworks. As we consider various
type theories we will immediately fall outside the scope of all the aforementioned logical
frameworks. A key property each of these logical frameworks capitalizes upon to make
substitution automatically admissible is the fact that operators in MLTT only modify
the context through extension. In particular, each connective may bind an additional
variables within its subterms but otherwise Γ is silently carried around. Modal type
theories are not like this: the entire purpose of modal type theory is to study connectives
that cannot be formulated in this manner. It follows immediately that (1) modal type
theories do not fall within the scope of typical logical frameworks and (2) the admissibility
of substitution is a subtle and difficult property to guarantee in the modal setting.

As of the writing of this thesis, no general logical framework for modal type theory
has emerged. It is not yet clear that modal type theory is sufficiently developed for one
to be put forward and so this thesis will work with the more flexible and lower-level

4It is a truism of mathematics that the best proof of a theorem is to make it a definition.



Metatheorems and their motivation 31

logical framework used above. Consequently, we must pay close attention to substitution
and ensure that each connective is stable under substitution as we add to our theory.
We shall see how the desire to maintain the admissibility of substitution in the presence
of modalities is an animating principle of modal type theory and a central contribution
of this thesis is to put forward new techniques for achieving it.



3 Category theory and categorical semantics

Logic now belongs in a category
whose “objects” are the formulas
and whose morphisms are the
proofs.

Jean-Yves Girard
The Blind Spot

Category theory features prominently in this thesis, both as a language for specifying
type theory and as a tool for constructing models. In this chapter, we fix basic notation
and conventions observed throughout for categories and survey the classical theory of
categorical models of Martin-Löf type theory.

Remark 3.0.1. Despite this chapter including a section on basic category theory, it
should not be confused with an introduction to category theory itself. For this, we
recommend any of several excellent books e.g., Awodey [Awo10] or Riehl [Rie16]. We
make use of some of the machinery of presentable categories which is thoroughly described
by the first two chapters of Adámek and Rosický [AR94]. We use some rudimentary
2-category theory as well which is touched on briefly by Riehl [Rie16] and described
more thoroughly by e.g., Lack [Lac09]. Ideas from topos theory are frequently used and
Mac Lane and Moerdijk [MM92] contains all the necessary information. ⋄

3.1 Basic notions in category theory

We begin by fixing the notation and conventions for basic objects of category theory.

Convention 3.1.1. We shall work under the assumption of enough universes throughout
this thesis. By convention, we shall fix a pair of Grothendieck universes V0 ∈ V1 and
refer to elements of V0 as small and those of V1 as large.

Convention 3.1.2. For this thesis, unless specified otherwise a category C is taken to
be locally small and therefore shall have a large set of objects Ob(C) and small sets
hom(c0, c1). We write Mor(C) for the (large) set of all morphisms.

Example 3.1.3. The following examples of categories will be used frequently:

1. Any preorder P induces a small category P whose set of objects is P itself and
such that hom(p0, p1) = {⋆ | p0 ≤ p1}.

2. Set is the category of small sets where hom(X,Y ) is the set of functions X to Y .

32



Basic notions in category theory 33

3. Cat is the category of small categories and functors between them.

4. hom(C,D) is the category whose objects are functors from C to D and whose
morphisms are natural transformations.

5. Cop is category whose objects are the same as C but whose set of morphisms
homCop(c0, c1) is defined to be homC(c1, c0).

6. We write PSh(C) = hom(Cop,Set) for the category of presheaves on C.

7. Given a Grothendieck topology J on C, we write Sh(C, J) for the category of sheaves
on C.

8. Given an object c : C, we write C/c for the slice category over c.

9. Given a presheaf X : PSh(C), we write
∫
X for the category of elements of X.

Notation 3.1.4. We fix several pieces of notation for standard categorical concepts:

• We write limi:I ci and colimi:I ci for the limit and colimit of a diagram c : I C

when such a (co)limit exists.

• We write 0 and 1 for the initial and terminal objects, respectively. We denote the
universal morphism from and to them by ! and !.

• We write C→ for the category of arrows and commuting squares within C.

• We write c0 ×c1 c2 for the pullback of c0 along c2 c1.

• Given f : c0 c1 in a category C with pullbacks, we write f∗ : C/c1 C/c0 for
the pullback functor.

• Given a replete subcategory D ⊆ C→, we write Dcart for the wide subcategory of
D spanned by pullback (i.e., Cartesian) squares.

• Given a functor f : C D, we write f! ⊣ f∗ ⊣ f∗ for the adjoint triple between
PSh(C) and PSh(D). In particular, f! and f∗ are determined by left and right
Kan extension while f∗ sends X to X ◦ f .

Convention 3.1.5. We will frequently have occasion to work with (strict) 2-categories,
bicategories, pseudofunctors and strict 2-functors. By convention, we refer to the strict
variants by default so e.g., 2-category should be interpreted as strict 2-category.

Remark 3.1.6. We shall frequently make use of the fact that any bicategory can be
strictified to a 2-category and any pseudofunctor between 2-categories can be strictified
to a 2-functor. We refer the reader to Lack [Lac09] for a proof (of a far more general
version of this theorem). ⋄

Notation 3.1.7. We write • for horizontal composition of 2-cells within a 2-category and
◦ for vertical composition. In the special case of horizontally composing α with the
identity 2-cell f f we write α⋆ f or f ⋆α.



Universes in categories 34

Definition 3.1.8. A pair of morphisms f : c d and g : d c within a 2-category
E are said to be adjoint f ⊣ g when there exist a pair of 2-cells η : id G ◦ F and
ϵ : F ◦G id such that (ϵ ⋆ F ) ◦ (F ⋆ η) = id and (G⋆ ϵ) ◦ (η ◦G) = id (the so-called
triangle identities).

Remark 3.1.9. A pair of functors are adjoint in Cat just when they are adjoint in the
classical sense. ⋄

3.2 Universes in categories

We now begin the transition from discussing purely categorical matters to categorical
type theory. An important step along this road is the notion of a categorical universe
inspired by Streicher [Str05].1 Given the importance that categorical universes play in
our theory of semantics of dependent type theory, we afford ourselves a somewhat more
in-depth exposition of the theory.

Definition 3.2.1. A universe in a category C is a (large) set of morphisms S ⊆ Mor(C)
which is stable under pullback: if f : c0 c1 ∈ S and g : d c1 is an arbitrary
morphism, then d×c1 c0 exists and g∗f : d×c1 c0 d ∈ S.

Remark 3.2.2. Assuming C has all pullbacks, we can define a universe more concisely
as a subfibration of the cartesian fibration cod : C→ C. ⋄

To motivate this definition, we begin by considering how one might encode a family
of objects in category theory. Dependent type theory is designed to handle families of
objects well as types themselves are taken over a context. In other words, to define a
family of e.g. groups indexed by the natural numbers, one simply considers an ordinary
group in a context containing Nat. This is quite distinct from category theory, as objects
do not depend on other objects. This mismatch is the quintessential difficulty in the
semantics of dependent type theory but, fortunately, well-studied solutions are available.

Let us begin by considering Set where a family is relatively easy to describe. Suppose
we are given a family of sets (Yx)x∈X over X. While the family is not itself a set, we
can package it into a set by taking the disjoint sum Y =

∑
x∈X Yx. There is an evident

projection function Y X sending inxy 7→ x. We now note that there is a bijection
between families of sets over X and display maps, morphisms of the form • X. We
have already described the assignment of family to a display map and the reverse comes
from taking preimages:

(
f : Y X

)
7→ (f−1(x))x∈X .

Picking out the set over x ∈ X can be accomplished by taking the pullback along
x : 1 X. Given any subsetX ′ ⊆ X more generally, taking the pullbackX ′ ×X Y X ′

corresponds to the restriction of the family (Y )x∈X to X ′. More generally, pulling back
along any morphism X ′ X allows us to relabel a family over X to one over X ′.

Remark 3.2.3. We can again relate this to type theory: a family is a type Γ ⊢ A type
while a display map becomes the substitution Γ.A ⊢ p : Γ. ⋄

1Streicher [Str05] differs slightly in what constitutes a universe as Streicher reserves the term universe
for a universe in our sense equipped with additional structure.



Universes in categories 35

After switching attention from genuine families to display maps, it becomes straight-
forward to generalize to arbitrary categories; a family is simply another name for a
morphism. We will refer to the codomain X of a family Y X as the base and the
domain Y as the total space. Pulling back this family allows one to change the base and,
in particular, pulling back to 1 allows one to extract the particular object over some
global point of the base.

Remark 3.2.4. The display map definition of a family is commonly used in geometrical
settings where one wishes for the index of a family to be some form of space and for the
family of spaces to vary continuously over the base. This is automatically encoded in
the display family definition. For a concrete theorem to this effect, we refer the reader
to the equivalence between sheaves on a space X and étale spaces over X. ⋄

Having adopted this perspective on families, the definition of a universe of a category
is less mysterious: it is isolating some collection of families which is stable under relabeling.
The stability under relabeling, in particular, ensures that if a family lies within a universe
each of the individual members of that family are likewise contained in the universe.

Some caution is required when making the transition to families and universes in
arbitrary categories: in the case of families in Set all the information of a display map
Y X was contained in the collection of pullbacks Y ×X 1 for all 1 X. This is a
rather special feature of Set: generally knowing the fibers of 1 is neither enough to
reconstruct or separate families over a general object X. In a general category C, even if
there is a terminal object there is no reason why hom(1,−) : C Set should be either
full or faithful, and therefore no reason to believe that the information of a display map
over 1 is generally sufficient.

We are generally interested in working with universes that are closed under various
operations, akin to how types are closed under dependent sums, dependent products,
etc.. We now review a few of the most essential closure conditions.

Definition 3.2.5. A universe (C, S) contains the terminal object if C contains a terminal
object and 1 1 lies within S. More generally, a universe is said to contain some object
X when X 1 ∈ S.

Definition 3.2.6. A universe (C, S) is closed under dependent sums when S is closed
under composition.

This definition is surprising at first glance: why should closure under composition
have any bearing on dependent sums. First, let us ensure that this definition corresponds
to the expected result in Set.

Lemma 3.2.7. For any universe S in Set the following are equivalent

1. S is closed under composition

2. If (Yx)x∈X ∈ S and that (Zx,y)(x,y)∈Y ∈ S then
(∑

y∈Yx
Zx,y

)
x∈X ∈ S.

Proof. Let us first prove (1) implies (2). Fix X, Y , and Z as above. Note that by
assumption Z Y ∈ S and by definition, Z ∼=

∑
x∈X

∑
y∈Yx

Zx,y. Accordingly, by
closure under composition π1 : Z X ∈ S and passing back to a family presentation
this is precisely what is required by (2). The proof of that (2) implies (1) is similar.



Universes in categories 36

A more categorical intuition for the above definition is also available. It is well-known
that dependent sum along f : Y X can be categorically recast as the left adjoint to the
pullback functor f∗ : C/X C/Y and this adjoint is given by f ◦ −. The requirement
that S be closed under composition is therefore equivalent to asking that S is closed
under this left adjoint.

This last motivation leads to the next definition. Just as dependent sums along f
are the left adjoint to f∗, dependent products are the right adjoint. Accordingly, we
formulate the following condition for closure under dependent products:

Definition 3.2.8. A universe (C, S) is closed under dependent products if whenever
f : X Y and g : Y Z are elements of S the pushforward g∗f exists and is also
contained in S.

Definition 3.2.9. We shall refer to a category C with a universe S closed under the
unit type, dependent sums, and dependent products as a category with display maps. In
this situation, we shall refer to elements f ∈ S as a display map.

The definition of a universe as a class of maps may have been surprising to type
theorists for a different reason: within type theory a universe is a single object and maps
into the universe classify types. A universe (C, S) in our sense is nothing like this: there
is no single display map E B codifies S. This choice is deliberate: it turns out that
the choice of any such map is highly non-canonical and so, while such a structure is
useful in type theory the categorical definition of universe is better behaved if S is taken
as primitive rather than some choice of map which generates it.2

That said, the existence of such a generic map is an important property to impose
upon a universe:

Definition 3.2.10. A generic map E B for a universe (C, S) is an element of S such
that every map in S is a pullback of E B.

Notation 3.2.11. In due course, we shall become sloppy about the distinction between
a universe and the generic map generating it. We shall, however, be careful about the
distinction for the present.

The properties of a universe can be captured by imposing pieces of structure on
a generic map E B. However, there is a switch from mere property to non-unique
chosen structure. For instance, consider the closure of a universe under 1. This can be
rephrased as requiring a chosen pullback square of the following shape:

1

1

E

B

However, while asking 1 1 ∈ S is a mere property, there can be many different
choices of pullback squares of the above form.

2Conceptually, the assignment of an object B to collection • B ∈ S lands most naturally in
groupoids and not in sets. Consequently, a representation for this functor is “too large” to fit inside C.
A generic family is a poor approximation of this functor being represented.



Examples of categories with universes 37

The same process can be carried out for dependent sums and products, though with
some additional complexity. For dependent products, for instance, We essentially reduce
the problem of showing g∗f ∈ S for every suitable f, g ∈ S to the requirement that this
be the case for a single pair of morphisms and then encode that single requirement
through a pullback square. For this, we need the following result:

Definition 3.2.12. Given a morphism f : c0 c1 in a category C such that c∗0 :
C C/c0 and f∗ : C/c0 C/c1 exist, we define polynomial functor Pf = (c1)!f∗c

∗
0 [GK13].

Lemma 3.2.13 (Awodey [Awo18]). A universe (C, S) with a generic map τ : E B is
closed under dependent products just when the pushforward Pτ (τ) ∈ S

Accordingly, we may replace the property “(C, S) is closed under dependent products”
with the structure of a pullback square Pτ (τ) τ . We can similarly formulate the
existence of dependent sums as a choice of pullback square of a certain shape.

Remark 3.2.14. One way to view this distinction between chosen pullback square or
closure conditions is analogous to the distinction between a category with finite limits
and a category with chosen finite limits. In the presence of choice one can pass back and
forth between these two situations, but only the former is invariant under equivalence.
As a purely academic matter, passage to ∞-categories offers a potential resolution to
this dilemma. In this setting, some categories admit true object classifiers : generic maps
for whom the choice of classifying pullback square is unique. In such a setting, both
closure under dependent products and the choice of code witnessing this fact are mere
properties. See Nguyen and Uemura [NU22] for systematic exploitation of this fact. ⋄

We conclude this section with the notion of a hierarchy of universes.

Definition 3.2.15. A hierarchy of universes with generic maps with C consists of a
sequence of universes Si such that each has a generic map Ei Bi, for each i there is
an inclusion Si ⊆ Si+1 and for each i the base of the generic map Bi lies in Si+1.

Suppose that S0 ⊆ S1 and that both universes have generic families τi : Ei Bi. As
an immediate consequence of the definition of generic map, we may choose a Cartesian
square u : τ0 τ1. We emphasize, however, that this choice is necessarily arbitrary
and it need not commute with the chosen cartesian squares closing τ0 and τ1 under e.g.,
dependent products. When we have chosen all necessary squares and u does commute
strictly with these cartesian squares we shall say that the inclusion S0 ⊆ S1 commutes
with e.g. dependent products. When this holds for all connectives, we shall simply say
that the hierarchy of universes is strictly cumulative.

3.3 Examples of categories with universes

We conclude the material on purely categorical topics by constructing several examples of
categories with universes that will feature prominently in the semantics of type theory. Of
particular importance are those in Grothendieck topoi where we can construct extremely
well-behaved generic families. These results are explored at length in the expository
paper by Gratzer et al. [GSS22]. Accordingly, we will content ourselves with stating the
key theorems and refer the reader to op. cit. for detailed proofs.



Examples of categories with universes 38

All of the universes we will consider in this section are collections of maps in some
Grothendieck topos E satisfying some size constraint on their fibers. Intuitively, this
constraint is meant to model a family of small sheaves with a potentially large indexing
sheaf. We note that some constraint of this form is necessary if we wish to have a
universe with a generic family without running into size issues. To generalize some
notion of size to arbitrary Grothendieck topoi, we use the notion of compact objects.

Definition 3.3.1 (Definition 1.13, Adámek and Rosický [AR94]). In a category E, an
object X is said to be κ-compact when hom(X,−) commutes with κ-filtered colimits.3

Example 3.3.2. A set is κ-compact just when it has cardinality strictly smaller than
κ. A presheaf X : PSh(C) is κ compact if X(c) is κ-compact for each c : C, though the
converse need not be true unless C is κ-small.

To use κ-compactness as a defining property for a universe, we must a notion of
compactness which applies to morphisms.

Definition 3.3.3 (Shulman [Shu19]). A map f : X Y is said to be relatively κ-
compact when if the pullback X×Y Z is κ-compact for any Z Y where Z is κ-compact.

For our purposes, the details of relative κ-compactness are less important than its
closure properties. In particular, for a given Grothendieck topos E there exists arbitrarily
large cardinals κ such the class of relatively κ-compact enjoys excellent closure properties.
Moreover, since every map is relatively κ-presentable for sufficiently large κ, a hierarchy
of well-behaved universes will be large enough to include any family of interest in E.

Theorem 3.3.4. Given Grothendieck topos E, there exists a cardinal regular λ such for
any inaccessible κ ▷ λ4, the class of relatively κ-compact forms a universe Sκ enjoying
the following properties:

• The universe contains the terminal object and indeed contains all monomorphisms.

• The subobject classifier and the natural number object are both contained within the
universe.

• The universe is closed under dependent sums and dependent products.

Moreover, there are multiple distinct ways of constructing generic families for these
universes. Some depend on the specific realization of the topos as a particular left-exact
localization of a presheaf topos:

Theorem 3.3.5 (Awodey [Awo22] and Hofmann and Streicher [HS97]). In a presheaf
topos PSh(C), one can define a generic family Eκ Bκ for Sκ for any κ ≥ |C| where
B is defined as follows:

B(c) = PShVκ(C/c)

In the above, Vκ is the Grothendieck universe spanned by sets of rank less than κ.

3If the notion of filtered diagrams is unfamiliar, it suffices to consider colimits indexed by a κ-directed
partial order.

4The relation ▷ is pronounced “sharply larger than”. It is a technical necessity in the theory of
accessible categories and is discussed by Adámek and Rosický [AR94, Chapter 2].



Examples of categories with universes 39

The essential advantage of the Hofmann–Streicher generic families is the direct
definition. This enables us to choose well-behaved operators witnessing the closure of
the universe under various operations such that, in particular, they organize into a
cumulative hierarchy.

Corollary 3.3.6. For any sequence of inaccessible cardinals · · · > κi > κi−1 > · · · > |C|,
the universes Sκi of relatively κi-compact morphisms with Hofmann–Streicher generic
families organize into a strictly cumulative hierarchy.

Obtaining well-behaved generic families in arbitrary Grothendieck topoi is more
subtle than it may appear. Given a sheaf topos Sh(C), the most direct approach would
be to consider a subobject of the Hofmann–Streicher generic family spanned by those
small presheaves PShVκ(C) which happen to be sheaves. While this does induce a map
of presheaves generic for relatively κ-compact families of sheaves, it is not itself a sheaf.
Essentially, the resulting presheaf satisfies enjoys amalgamation only up to coherent
isomorphism [XE16]. While one can pursue this further and develop this construction
into a 2-sheaf (a stack) [CMR17],5 one can also pursue an alternative construction for a
generic family of sheaves. For instance, Streicher [Str05] observed that one could sheafify
the entire family rather than attempting to cut down the Hofmann–Streicher generic
map:

Theorem 3.3.7 (Streicher [Str05]). Given a sheaf topos Sh(C) ⊆ PSh(C), there exists
a λ such that the sheafification map applied to the Hofmann-Streicher generic family
a
(
Eκ Bκ

)
is a generic family for the universe of relatively κ-compact sheaves Sκ for

every κ ▷ λ.

Unfortunately, constructing the generic family in this manner loses many of the
conveniences of the Hofmann–Streicher construction. In particular, it is no longer clear
that the maps witnessing closure under dependent products, dependent products, etc.
can be chosen in a cumulative manner.

Corollary 3.3.8. For any sheaf topos Sh(C) there exists a λ such that for any sequence
of strongly inaccessible cardinals . . . κi ▷ κi−1 . . . ▷ λ, the universes Sκi of relatively
κi-compact maps together with the generic families constructed in Theorem 3.3.7 form a
hierarchy of universes.

While this is perfectly sufficient categorically, in the denotational semantics of type
theory strict cumulativity plays an outsized role. We are therefore interested in improving
Corollary 3.3.8 to support a strictly cumulative hierarchy of universes.

In certain special cases, a more refined construction for a generic family in a sheaf
topos is available. For instance, Zwanziger [Zwa22] shows that the Hofmann–Streicher
generic family can be adapted directly to account for sheaf topoi with enough points.
We opt for a slightly different approach, choosing instead to focus on a key property of
the Hofmann–Streicher generic family which accounts for much of its good behavior.

5In fact, this pattern continues until one eventually concludes that sub-presheaf of the ∞-categorical
Hofmann-Streicher construction spanned by those small ∞-presheaves which are sheaves is, in fact, a
proper ∞-sheaf [Lur09; RSS20].



Examples of categories with universes 40

Definition 3.3.9. A generic family τ : E B for a universe S is said to satisfy
realignment whenever it is weakly right-orthogonal to all monomorphisms in Scart, the
subcategory of C→ spanned by elements of S and cartesian transformations between
them.

More explicitly, given a pair of families f, g ∈ S along with a cartesian monomorphism
α : f g, it is possible to extend a choice of classifying square for f to a classifying
square for g:

f

g

τ

Lemma 3.3.10 (Orton and Pitts [OP18]). The Hofmann–Streicher generic family
satisfies realignment.

Realignment has been used in a variety of contexts. It was explicitly introduced by
Shulman [Shu15a] to replicate part of the construction of the universal Kan fibration
constructed by Kapulkin and Lumsdaine [KL21]. It has also appeared outside of type
theory in, e.g., Cisinski [Cis19] and Lurie [Lur22] in the construction of various classifying
families. The essence of realignment is to give some control over the choice of classifying
square associated to some element of the universe; there is no way to ensure a unique
classifying square generally but with realignment we can ensure that the otherwise
arbitrary choice satisfies at least some constraints. We shall capitalize frequently on
realignment in Chapter 4 but our interest in it for now comes from the following
observation:

Theorem 3.3.11 (Gratzer et al. [GSS22] and Shulman [Shu15a]). Given a hierarchy
of universes Si whose generic families τi : Ei Bi satisfy realignment such that the
cartesian squares τi τi+1 are monomorphisms, it is possible to choose codes witnessing
closure under all connectives which organize into a strictly cumulative hierarchy.

In other words, while the sheafified Hofmann–Streicher generic family is too wild to
manually construct a strictly cumulative choice of codes, it suffices instead to construct
any generic family in Sh(C) which satisfies realignment. Such a construction is essentially
provided by Shulman [Shu15a] through a small-object argument with further details
spelled-out by Gratzer et al. [GSS22]:

Theorem 3.3.12. For any Grothendieck topos E, there exists a λ such that for all κ ▷ λ
there is a generic family satisfying realignment for the universe of relatively κ-compact
morphisms.

Corollary 3.3.13. For any Grothendieck topos, there exists a regular cardinal λ such
that for any sequence of strongly inaccessible cardinals . . . κi ▷ κi−1 . . . ▷ λ, the universes
of relatively κi-compact families Sκi together with the generic families constructed in
Theorem 3.3.12 form a strictly cumulative hierarchy of universes.



Models of dependent type theory 41

Remark 3.3.14. We note that Theorem 3.3.12 does not fully supplant the other construc-
tions of generic families discussed in this section. While the Hofmann–Streicher generic
family and those others derived from it is definable within a fairly weak constructive
setting, Theorem 3.3.12 relies on choice. In settings where we strive to work purely
constructively (e.g., Chapters 4 and 8), the constructively-valid generic families are
essential.

We further note that Lemma 3.3.10 has a constructive analog: realignment is valid just
when the base of the Cartesian morphism f g is a level-wise decidable monomorphism.
Explicitly, realignment for this family is constructively valid when the characteristic map
cod(g) Ω factors through the subobject Ωdec of level-wise decidable propositions. See
Orton and Pitts [OP18] for further details. ⋄

3.4 Models of dependent type theory

We now transition from discussing pure category theory to type theory. We begin by
defining a model of type theory along with a homomorphism of models. As mentioned
already in Chapter 2, at this point this process is entirely mechanical; we took a signature
in a logical framework as our definition of type theory and an immediate consequence of
this is a definition of model. In fact, this process has already been carried out by Dybjer
[Dyb96], who repackaged the definition to arrive at the well-known notion of a category
with families (CwF). In this section, we will therefore define CwFs and discuss their
reformulation into the language of natural models [Awo18]. As a consequence of this
process, we shall see that the key difference between category theory and the categorical
semantics of type theory is whether one chooses to focus on a universe within a category
or on its generic family.

Following Dybjer [Dyb96], we define a model of Martin-Löf type theory as follows:

Definition 3.4.1. A category with families (CwF) consists of the following data:

1. A category C,

2. a presheaf T : PSh(C),

3. a presheaf T• : PSh(
∫
T)

4. C has a chosen terminal object

5. For each c : C and A ∈ T(c), there exists a chosen object d : C equipped with a
map p : d c and an element of q ∈ T•(d,A · p) which together induce a bijection
between morphisms hom(•, d) and pairs f : • d and M ∈ T•(•, A · f).

Remark 3.4.2. Spelling out the details, objects C represent contexts while morphisms
are substitutions. The presheaf T sends a context to the set of types in that context,
while the functorial action corresponds to the substitution operation on types. The
presheaf T• sends a context and a type in that context (an element of

∫
T) to the set of

terms of that type. Once again, the functorial action interprets substitution. The two
additional properties stipulate the existence of the empty context and context extension,
respectively. ⋄



Models of dependent type theory 42

Notation 3.4.3. We will write c.A for the chosen context extension of c : C by A ∈ T(c).

Definition 3.4.4. A morphism between (C,TC,T
•
C,1C,−.−) and (D,TD,T

•
D,1D,−.−)

consists of a functor F : C D together along with a natural transformations αT :
TC F ∗TD and αT• : T•C (F, αT)∗T•D which preserve the chosen terminal objects, send
c.A to F (c).αT(A), etc.

We note that the definition of a CwF is phrased almost entirely in terms of well-known
categorical requirements except the last requirement used to model context extension.
As it happens, this too can be recast as a more standard construction following [Awo18;
Fio12]. In particular, we begin by noting that a presheaf T• : PSh(

∫
T) is equivalent to

a morphism τ : T• T via the canonical equivalence between PSh(
∫
T) and PSh(C)/T.

In this case, the structure modeling context extension is equivalent to asking τ to be a
representable map in the following sense:

Definition 3.4.5. A morphism f : X Y in a presheaf category is said to be repre-
sentable when each fiber of a representable object is itself representable. That is, for
each y(c) Y , there exists d fitting into the following pullback diagram:

y(d)

y(c)

X

Y

Remark 3.4.6. There are several useful reformulations of the above definition: f is a
representable morphism if and only if f is representable in PSh(C)/Y if and only if the
induced map

∫
X

∫
Y has a right adjoint. ⋄

Asking for a choice of objects c.A for each c : C and A ∈ T(c) is precisely equivalent
to asking for a choice of objects d representing the fiber over ⌊A⌋ : y(c) T. Accordingly,
we may repackage the definition of a CwF as follows:

Lemma 3.4.7. A category with family is precisely determined by a category C with a
terminal object and a representable morphism τ : T• T : PSh(C).

Definition 3.4.8. Given a CwF τ : T• T on C, there is a universe [τ ] = {f∗τ |
f ∈ hom(•,T)} in PSh(C) where τ is a generic map.

Thus far we have discussed models of MLTT with no connectives, so it remains only
to discuss the closure of a CwF under various connectives. Specifying the closure under
connectives like dependent sums, dependent products, booleans, etc. is essentially a
piecemeal business. Each connective comes with a few additional pieces of structure
which can be added independently of each other. We can also specify this structure
either in terms of the classical formulation of CwFs discussed first or phrase it in terms
of the natural model. We shall opt for the latter in this introduction as it is generally
much more expeditious. We refer the reader to Awodey [Awo18] for a detailed exposition
linking the two perspectives.



Models of dependent type theory 43

Definition 3.4.9. A model of type theory
(
C, τ : T• T

)
is closed under unit types

when there exists a map 1 T fitting into the following pullback diagram:

1

1

T•

T

Remark 3.4.10. It is helpful to view this definition as a categorical rephrasing of the
concise “isomorphism” definition of the unit type given in Chapter 2. The existence
of this pullback square specifies (1) a closed type Unit such that (2) there is exactly
one element of Unit. From this perspective, the square itself codifies the formation and
introduction rules of the unit type. The fact that it is a pullback square yields the
elimination principle along with the β and η laws. ⋄

The remaining negative connectives—those with η laws—are specified in much the
same way:

Definition 3.4.11. A model of type theory
(
C, τ : T• T

)
is closed under dependent

products when there exists a pullback diagram of the following shape:

Pτ (T•)

Pτ (T)

T•

T

More concisely, there is a cartesian square Pτ (τ) τ .

Definition 3.4.12. A model of type theory
(
C, τ : T• T

)
is closed under dependent

sums when there exists a pullback square τ2 τ where τ2 is the map satisfying Pτ2 =
Pτ ◦Pτ [GK13].

Definition 3.4.13. A model of type theory
(
C, τ : T• T

)
is closed under extensional

identity types when there is a pullback square δ τ where δ : T• T• ×T T• is the
diagonal map.

We note that all of these requirements can be phrased entirely in terms of [τ ]:

Theorem 3.4.14. A model of type theory (C, τ) is closed under dependent products
(respectively dependents sums or unit types) if and only if the universe [τ ] is closed under
dependent products (resp. dependent sums or unit types).

Unfortunately, this pattern does not continue for types like booleans, the natural
numbers, or intensional identity types. Indeed, for the latter, we note that coproducts like
booleans or natural number objects in PSh(C) are never representable, so 2 1 ∈ [τ ]
will never hold.

This parallels our experience with the syntax of type theory, where we saw that
defining types like booleans or intensional identity types is a more involved affair. When



Models of dependent type theory 44

working purely with type theory, we directly wrote out elimination principles and their β
rules and the same process is available to us when working with CwFs. However, doing
so requires dropping back down to the lower level of abstraction and switching away
from natural models. Accordingly, we must opt for a more complicated definition which
states that there exists an object X in [τ ] along with a suitably anodyne map 2 X.

Definition 3.4.15. A map i : A B is said to be anodyne if for each square i τ
there exists a lift:

A

B

T•

T

(3.1)

More generally, we shall say i is anodyne for a universe S if each square i f has a
lift for each f ∈ S. A map is stably anodyne if each pullback of that map is anodyne.

Asking for such an anodyne map 2 X is equivalent to asking that X and 2 be
isomorphic from the perspective of a type and the resulting lifts can be used to interpret
the elimination principle. This is almost enough to capture booleans, but there is a final
wrinkle. The elimination rule for booleans is stable with respect to substitution, but if
we merely ask for a (stably) anodyne map, there is no reason why the resulting family of
lifts will be suitably natural. We will rectify this by introducing the machinery of lifting
structures to bundle the data of these elimination rules into a more categorical form:

Definition 3.4.16. In a finitely complete cartesian closed category C, a lifting structure
s : m ⋔ f between two maps m : A B and f : X Y is a section to the canonical
map XB → Y B ×Y A XA. Diagrammatically, such a section corresponds to a natural
family of lifts for diagrams of the following shape:

Z ×A

Z ×B

X

Y

Roughly, we will encode an elimination principle as lifting structure s : m ⋔ τ for
some well-chosen m : A B. As an extremely rough approximation A encodes the
hypotheses of the base case—the data of the introduction rules—while B is the general
case. The first conjunct of TB ×TA T•A then provides the motive to the elimination rule
while the second provides the base case. The requirement that the lifting structure s
be a section corresponds to the β rule of the putative elimination principle. In reality,
this simple intuition is complicated by the need to allow the map A B to depend on
additional

Definition 3.4.17. A model of type theory (C, τ) is closed under booleans when it is
equipped with the following pieces of structure:



Models of dependent type theory 45

1. A commutative diagram of the following form:

2

1

T•

T
B

(3.2)

2. A lifting structure s : m ⋔ τ where m : 2 1 ×T T• is the canonical map induced
by the above diagram.

Example 3.4.18. It is worth unfolding the last point in the above definition slightly.
Recall that s : m ⋔ τ corresponds to a family of lifts for diagrams of the following shape:

Z × 2

Z × (1 ×T T•)

T•

T

It suffices to consider the case where Z = y(C) is representable. In this situation, the
bottom map corresponds to a type A in the context C extended by a boolean—we leave it
to the reader to convince themselves the relevant diagram is a pullback. Inspecting the
top map, we see that it corresponds to two distinct terms: an element of A instantiated
with tt and one with ff. A lift of this diagram then corresponds exactly to the output of
boolean elimination: it gives us an element of A over an arbitrary element of the booleans
which agrees with the two base cases specified by the top map.

Definition 3.4.19. A model of type theory (C, τ) is closed under intensional identity
types when it is equipped with the following pieces of structure:

1. A commutative diagram of the following form:

T•

T• ×T T•

T•

T
B

(3.3)

2. A lifting structure s : m ⋔ T × τ in PSh(C)/T where m : T• (T• ×T T•)×T T•

is the canonical map induced by the above diagram.

Finally, we note that closing a model under a universe is a relatively routine process.
There is no elimination rule to speak of, so it amounts to specifying a pair of maps 1 T

and 1 ×T T• T and then choosing (coherent) codes for the display family induced by
pulling by τ along the latter morphism.



Promoting a universe to a model 46

Definition 3.4.20. We extend Definition 3.4.4 to models of type theory with various
connectives by requiring that the natural transformations αT and αT• strictly commute
with each type former. We defer to e.g., Castellan et al. [CCD20] for a more in-depth
description.

Remark 3.4.21. Often we will be in the position where we are given a model of type
theory (C, τ) and we wish to use this structure to reason about C. Some of this is
immediate. For instance, we can use the more convenient syntax for dependent products
offered by type theory to reason about pushforwards in C.

Often, however, we will require some specific objects or principles from C in order to
carry out a construction. To do this, we note that we can extend type theory by any
type, term, or equation present in (C, τ) and (C, τ) will remain a model for this extended
theory. This process of extending type theory to better match a particular model is
often referred to as using type theory as an internal language. One can make this into a
precise mathematical process that constructs a certain bi-equivalence between structured
categories and certain type theory [CD14; Uem21]. For our purposes, however, the
slightly more informal process of extending type theory with constants and equations is
sufficient.

To make this more concrete, consider the work by Orton and Pitts [OP18]. Their
goal is to use type theory to construct a model of a cubical type theory by using ordinary
type theory as a tool for constructing and reasoning about objects in cubical sets. To
this end, they extend type theory with a handful of axioms and equations are then
interpreted by important objects such as the interval object within cubical sets. ⋄

3.5 Promoting a universe to a model

Thus far we have discussed the definition of a model of type theory. We now show two
general techniques for promoting a categorical universe to a model of type theory: one
which presupposes the universe comes equipped with a generic family and one which
does not. The former is often referred to as the universe construction [Voe14] and the
latter as the local universes construction [LW15] (though we will follow the presentation
of Awodey [Awo18]).

The goal of both of these procedures is the same: given a category with a universe
(C, S), produce a model of type theory τ : T• T : PSh(C) in which types correspond
to elements of S and terms correspond to sections.

3.5.1 A model of type theory from a generic family

This process can be carried out relatively directly when (C, S) comes equipped with a
generic family π : E B. In this case, we will argue that τ = y(π) gives rise to the
desired model of type theory.

Lemma 3.5.1. τ is representable.

Proof. We must show that given any map y(C) y(B), the pullback y(C)×y(B) y(E)
is representable. As the Yoneda embedding is fully faithful, the supplied morphism
y(C) y(B) is induced by a map C B : C. Moreover, as π ∈ S, the pullback C×BE



Promoting a universe to a model 47

of π along C B exists. As the Yoneda embedding preserves limits, y(C ×B E) is the
necessary representation of y(C)×y(B) y(E).

This already shows that τ is a valid model of type theory, but it remains to close
τ under all the connectives of type theory. We can essentially link closure under each
connective to a specific requirement on (C, S). For instance, if S contains the unit type
then so does τ , etc.

Lemma 3.5.2. If (C, S) is closed under the unit type, dependent sums, extensional
identity types, or dependent products, then τ is closed under the unit type, dependent
sums, extensional identity types, or dependent products respectively.

Proof. We know that S has a generic family π, so each of the closure conditions can be
reformulated in terms of a certain pullback square involving π. Moreover, these pullback
squares use only locally cartesian closed operations (pullback, pushforward along π, etc.).
Accordingly, they are all preserved by the Yoneda embedding and they immediately give
rise to the required structure on y(π) = τ .

The process of closing τ under booleans is slightly more complex; 2 is never preserved
by the Yoneda embedding so we cannot argue directly as before. However, it turns
out that we can change the data required to close τ under booleans to avoid directly
mentioning 2.

Lemma 3.5.3. A model of type theory
(
C, τ : T• T

)
supports booleans when it is

equipped with a map B : 1 T, a pair of maps 1 T• over B, and a section the
canonical morphism T•τ [B] → Tτ [B] ×T×T (T• × T•) where τ [B] is the fiber of τ over B.

Proof. This follows immediately by unfolding the requirements of a boolean and observing
that X2 = X ×X.

In particular, we are able to phrase the requirement that τ is closed under booleans
using only operations preserved by the Yoneda lemma. In particular, we conclude the
following:

Corollary 3.5.4. If (C, S) has finite products and contains the coproduct 2 = 1 +1 such
that 2 is contained within S then τ is closed under booleans.

Proof. In this situation, we fix a classifying map B : 1 B for 2 1 with respect
to the generic map π : E B. The two maps 1 E over B follow immediately
from this data and the required lifting structure is a consequence of the fact that
Eτ [B] → Bτ [B] ×B×B (E × E) is an isomorphism.

From the above results, we obtain the following theorem:

Theorem 3.5.5. If (C, S) has finite products and S is closed under all connectives and
has a generic map π for S then y(π) is a model of type theory with all connectives.

We note that if C has a strictly cumulative hierarchy of universes, this model can be
improved to have a strictly cumulative hierarchy as well.

Corollary 3.5.6. There is a model of type theory in any Grothendieck topos E with a
hierarchy of strictly cumulative universes.



Promoting a universe to a model 48

Proof. This is a consequence of the above and Corollary 3.3.13.

Remark 3.5.7. A useful consequence of Corollary 3.5.6 is the ability to use type theory
to specify structure in a sheaf category. For instance, the specification of closure under
dependent sums in a model is somewhat tedious. If we allow ourselves to use type theory
to specify the diagram, it becomes far more succinct:∑

A:T

∑
B:Tτ(A)

∑
a:AB a

∑
A:T B : Tτ(A)

∑
A:T τ A

T

Here we have taken advantage of the fact that we can represent τ : T• T as a type
T and a dependent family A : T ⊢ τ a. Similar considerations can make the definition of
lifting structures or other complex facets of the model simpler. For instance, to realize
s : m ⋔ τ it suffices to construct an element of the following type:∏

C:B→T

∏
f :(a:A)→τ(C(ma))

∑
l:(b:B)→τ(C b)

∏
a:A f a = l(ma)

⋄

3.5.2 Constructing a model without a generic family

While the above shows that one can leverage a generic family to promote a universe into
a model of type theory, the same can be done without such an assumption. Essentially,
even though (C, S) may not have a generic family, S does induce a universe in PSh(C)
satisfying all the same properties as S while additionally supporting a generic family.
Since a model of type theory really only requires a universe in PSh(C), this is sufficient
to construct a model. This construction was introduced by Lumsdaine and Warren
[LW15] as a means of splitting a subfibration of the codomain fibration. However, we
will follow Awodey [Awo18] and emphasize its role as an operation upon universes.

For the remainder of this subsection, fix (C, S) to be a locally cartesian closed category
with a universe closed under dependent sums, dependent products, extensional identity
types, etc. We shall construct a model of type theory τ : T• T on C such that a type
corresponds to an element of S.

The construction of the putative model of type theory τ : T• T is relatively
straightforward:

τ =
∐

f∈S y(f) :
∐

f∈S y(dom(f))
∐

f∈S y(cod(f))

Unfolding definitions, a morphism y(C) T corresponds to a map f : Y X ∈ S

and a morphism C X. If we are viewing Y X as a type over a context X, this
data determines a type along with a “pending substitution” C X. This pending
substitution intuitively is used to ensure that T determines a presheaf rather than a
pseudofunctor of groupoids.

Lemma 3.5.8. τ is a representable morphism.



Promoting a universe to a model 49

Proof. We must argue that each fiber of τ over a representable is itself representable. To
this end, note that any map y(C) T must factor through some y(cod(f)) T with
f ∈ S. Computing the pullback in two steps using this factorization, we see that it is
represented by C ×cod(f) dom(f).

Remark 3.5.9. In fact, if S = C→ then τ is the generic map for the class of representable
morphisms. More generally, it is the generic map for the universe of representable maps
whose fibers land within S. ⋄

Closing τ under the connectives of type theory is a more arduous task than when we
were given a generic family. The idea is similar in principle: use the relevant structure on
S to construct the desired classifying square on τ . The complication arises from the more
intricate structure of τ . We present a few representative cases and defer the remainder
to Lumsdaine and Warren [LW15] or Awodey [Awo18].

Lemma 3.5.10. τ supports dependent products.

Proof. We must construct a cartesian square Pτ (τ) τ . We begin by construct-
ing the base of such a square: a map Pτ (T) T. To this end, let us consider
a point y(C) Pτ (T). After unfolding definitions, this corresponds to two pairs
of maps

(
f0 : C X0, π0 : Y0 X0 ∈ S

)
and

(
f1 : Y0 ×X0 C X1, π1 : Y1 X1 ∈ S

)
.

We must construct a pair
(
f : C X, π : Y X ∈ S

)
naturally in C and such that

maps C Y over f correspond to maps Y0 ×X0 C Y1 over f1.
To this end, we begin by construction π using π0 and π1 along with the closure of S

under dependent products. We begin by transposing f1 to obtain f̂1 : f0 (A0 ×X1)
π

within C/X0. Pulling back π along the structure map D = (A0 ×X1)
π A0 we obtain

the following diagram:

W = Z ×X0 Y0

Z

σ0

Y0

X0C
f̂1

The bottom composite is f0. Next, we note that there is an evaluation map
W X1 and we thereby obtain σ1 : Y1 ×X1 W W by pulling back π1. We claim that

(f = f̂1, π = (σ0)∗σ1) is the desired pair.
To this end, we begin by noting that (σ0)∗σ1 is contained with S as the latter is

assumed to be closed under dependent products. It is also evidently natural in C—this
follows directly from the naturality of transposition. That lifts of f along π correspond
to lifts of f1 along π1 follows by calculating and standard adjoint yoga.

Lemma 3.5.11. τ is closed under extensional equality.

Proof. As before, we must construct a cartesian square δτ τ . We begin by con-
structing a map T• ×T T• T. We will again construct a map between these two
presheaves at C : C and observe it to be natural after the fact. To this end, fix a pair(
f : C X, π : Y X

)
along with a pair of lifts g0, g1 : C Y so that it suffices to



Promoting a universe to a model 50

construct
(
h : C Z, σ : W Z ∈ S

)
naturally in C such that there is a unique lift

of h along σ if and only if g0 = g1. We consider the map δπ : Y Y ×X Y which
is contained within S by assumption. We claim that that

(
⟨g0, g1⟩ : C Y ×X Y , δπ

)
satisfies the necessary criteria. We note that the construction is clearly natural in C. A
lift of ⟨g0, g1⟩ along δπ is unique if one exists, as δπ is a monomorphism. Moreover, such
a lift exists just when g0 = g1.

Lemma 3.5.12. Assume C contains the coproduct 2 = 1 + 1 and suppose further
that there is a factorization of 2 1 into a morphism b : 2 B and B 1 such
that B 1 ∈ S and b is stably anodyne.6 Under these assumptions, τ is closed under
booleans.

Proof. Unlike the prior examples, we must exhibit more than a certain cartesian square
to show that τ is supports booleans. We begin with the required square in PSh(C):

2

1

T•

T

[tt,ff]

Bool
(3.4)

To construct Bool, it suffices by Yoneda to define a pair 1 X and f : Y X
where f ∈ S. We choose

(
id, B 1

)
. To construct tt,ff : 1 T• and ensure that the

diagram commutes, we must produce a pair of sections for this map. We set tt = b ◦ in1
and ff = b ◦ in2 and note that these are both trivially sections of B 1 because any
map into the terminal object is equal to any other.

We must now construct a lifting structure in PSh(C) showing that the induced
map 2 τ [Bool] is internally orthogonal to τ . It is easiest to proceed by unfolding
this requirement slightly whereby we may assume that we are given an object Z : C
along with a pair

(
f : Z ×B X, π : Y X ∈ S

)
along with a pair of morphisms

ltt : f ◦ ⟨id, tt⟩ π and lff : f ◦ ⟨id,ff⟩ π in C/X. We must construct a map l : f π
which extends both ltt and lff and this must be natural in Z.

To do this, we follow the usual template of choosing a universal lift and then pulling
it back to each specific instance to ensure coherence. This is slightly involved, and so we
avail ourselves of the internal language of C and define V as follows:

V =
∑

C:XB Y (C tt)× Y (C ff)

We then consider the pullback Y ×X (V ×B) V ×B which, as the pullback of
Y X, resides in S. Using the second and third components of V along with the fact
that V × 2 V ×B is anodyne, we obtain a section s : V ×B Y ×X (V ×B).

Finally, l = π1 ◦ s ◦ (⟨f̂ , ltt, lff⟩, id) yields the desired extension. Its naturality is
immediate, as the only choices where made in the construction of s and did not depend
on Z, ltt, lff , or f .

Gathering these results together, we conclude the following:

6In many cases of interest, may be taken to be b = id.



Promoting a universe to a model 51

Theorem 3.5.13. Under the above assumption that (C, S) is a locally cartesian closed
category with a universe closed under all connectives, τ is a model of type theory with all
connectives.



4 Synthetic Tait computability

In as much as intuitionists are
willing to believe in a formal
language, they do believe in the
disjunction property

J. Lambek and P. J. Scott
Introduction to higher order

categorical logic

We conclude Part I with a discussion of synthetic Tait computability, a technique
which we will use in Chapters 8 and 9. We shall see how this ties together nearly all of
what has been discussed in Chapters 2 and 3: we shall capitalize on the idea of syntax
as an initial object in a category of models to derive a concrete and useful metatheorem
of ordinary type theory. Along the way, we shall have occasion to take advantage of type
theory as an internal language of a presheaf topos with its particularly well-behaved
generic family as discussed in Chapter 3.

Our goal is to prove the following for type theory with all standard connectives:

Theorem 4.0.1. If 1 ⊢M : Bool then either M = tt or M = ff.

Remark 4.0.2. While all of the machinery used in this proof will seamlessly scale to
type theory with all the standard connectives, we shall only give details for dependent
products and booleans. This is a compromise to strike a balance between concision in
this preliminary material and giving the reader a representative flavor of the proofs. ⋄

In Section 4.1 we introduce the concept of Artin gluing at a high level and explain
how STC can be used to further streamline gluing arguments to prove theorems like the
above. In Section 4.2 we introduce the prerequisites of the main construction and in
Section 4.3 we carry out the construction of the gluing model. In Section 4.4 we show
how to actually extract the desired conclusion from the existence of the gluing model.

Crucially, our techniques extend apply to dependent type theories equipped and can
account for the presence of universes. These two features together are the source of
much of the complexity in proofs of metatheorems.

Remark 4.0.3. The reader interested in further expository material on synthetic Tait
computability is encouraged to consult Sterling [Ste21] or Sterling [Ste22]. The latter
in particular presents a far more elementary account of the ideas behind synthetic Tait
computability. ⋄

52



Gluing and synthetic Tait computability 53

4.1 Gluing and synthetic Tait computability

At its heart, the proof of Theorem 4.0.1 is a proof by induction. What, however, the
induction ought to scrutinize and what the motive of the induction ought to be are more
subtle questions than they might appear at a glance. As those familiar with proofs of
termination-like properties might predict, one cannot simply induct on the size of a term
when attempting to show it terminates.1 One will immediately run into the fact that an
equation or step like β-reduction will increase the size of a term. In such a situation,
one then frequently turns to the idea of a logical relation, motivated by the idea that
one can proceed by defining a “stronger induction hypothesis” by induction on the size
of the type of a term. Unfortunately, this metric is unavailable to us in type theory with
universes: any measure on a type will be just as flawed as attempting to induct on the
size of a term.

Fortunately, the way out of this situation is offered by the initiality of syntax in the
category of models. The force of initiality is precisely an induction principle allowing us
to define an operation on syntax by specifying its behavior on each operator. Let us see
how this plays out in a far simpler setting.

Lemma 4.1.1. Every natural number is either even or odd.

Proof. This is straightforward to prove by induction, but we will take a slightly circuitous
route to it. Let us begin by noting that (Nat, [z, suc]) is initial in a category of types X
equipped with a map 1 +X X (intuitively, objects equipped with zero and successor)
and morphisms of carriers commuting with these maps. We will construct a particular
object and use initiality to derive the claim.

Consider the following object:

X =
∑

n:Nat oddx+ evenx

We can then equip X with the necessary structure map:2

α : 1 +X → X
α(in1(⋆)) = (z, zeroEven)
α(in2(n, in1(p))) = (sucn, in2(evenOdd p))
α(in2(n, in2(p))) = (sucn, in1(oddEven p))

There is an evident map π1 : (X,α) (Nat, [z, suc])—a routine calculation shows
that it commutes appropriately with α. Since Nat is initial in this category, we also
have a map i : (Nat, [z, suc]) (X,α) and the unicity of maps out of Nat ensures that
π1◦i = id. Accordingly, the π2◦i has the type (n : Nat)→ evenn+oddn as required.

Our proof of canonicity will essentially boil down to this proof, just with a far more
sophisticated (generalized) algebraic structure. In total, we consider the following steps:

1. Define a model which equips each object in the syntactic model with some additional
data or properties.

1In our position, the size of a term is not an entirely well-defined concept as we are only working with
equivalences classes of terms up to definitional equality. This could be worked around if the argument
based on such a metric was not already hopeless.

2We have assumed a number of basic terms governing even and odd here.



Gluing and synthetic Tait computability 54

2. Show that the projection map forgetting this data is a homomorphism of models.

3. Use initiality to construct a section to the projection and thereby obtain the claim.

Remark 4.1.2. The concept of a model decorating another model with additional
structure is often referred to as a displayed model or displayed algebras. While we do
not explore the concept systematically here, others have done so in prior work [KHS19;
KKA19]. ⋄

The category of contexts in the sought-after displayed model for our proof is con-
structed using a standard construction of category theory: Artin gluing.

Definition 4.1.3. Given a functor F : C D, the Artin gluing Gl(F ) of F is the
category whose objects are triples

(
C : C, D : D, f : D F (C)

)
. Morphisms in Gl(F )

are given by pairs of maps (x, y) : (C0, D0, f0) (C1, D1, f1) fitting into a square:

D0

F (C0)

D1

F (C1)

y

F (x)

One then defines a model of type theory atop this category such that the projection
automatically induced by Artin gluing constitutes a homomorphism of models. Thus,
this approach to proving metatheorems is often referred to simply as gluing.

Remark 4.1.4. The idea of using Artin gluing to construct models to prove metatheorems
for logic predates type theory. The earliest applications [Fre78] used gluing to analyze
higher-order logic (viewed as the internal logic of an elementary topos). A textbook
account of this application of gluing is given by Lambek and Scott [LS88]. ⋄

Gluing has been extensively used in type theory for decades [AHS95; AK16; Coq19;
Fio02; MS93; Str98], largely following the above proof-sketch. A distinguishing feature
of our approach here compared to these prior works is the method by which we build
the model of type theory atop the results of gluing. Generally once one has finished
using Artin gluing to obtain a category of contexts, it becomes necessary to roll up
one’s sleeves and manually construct the rest of the structure. This can be quite taxing,
especially in the case of complex type theories like those analyzed in this thesis.

In order to simplify this portion of the construction, we utilize synthetic Tait com-
putability (STC), a technique developed primarily by Sterling in collaboration with Carlo
Anguili, Robert Harper, the author, and others [Gra22; GB22; Niu+22; Ste21; SA21;
SH21; SH22]. The role of STC is to reduce the tedious construction of the model of
type theory atop the glued category of contexts into a series of programming exercises
in the internal language of a particular presheaf category. As the internal language of a
presheaf category, we have access to a rich extensional type theory and, in particular, all
the necessary tools to make the construction of the model simple and uniform. Working
internally, we avoid some of the difficulties endemic to prior gluing proofs: the need to
carry around substitutions, check complex naturality requirements, etc.



Preliminary constructions 55

4.2 Preliminary constructions

We begin the actual proof of Theorem 4.0.1 by constructing the relevant categories and
functors for this situation.

4.2.1 Structured categories and CwFs

We begin with an issue particular to this thesis and modal type theory: since we will
primarily be concerned with applying STC to modal type theories, we must deal with a
logical framework not well-adapted for working purely categorically. Phrased differently,
while type theory is modeled by a category with families, we would rather regard syntax
not as an initial CwF, but as an initial structured category. If we were only concerned
with Martin-Löf type theory, we could opt for a more convenient logical framework
that would make this automatic. For the sake of consistency of what is to come, we
define an ad-hoc notion of structured category to work with and then use initiality of
syntax among CwFs to show that syntax still occupies a privileged position among such
categories.

Definition 4.2.1. A Martin-Löf structured category E is a locally Cartesian closed
category equipped with the following structure:

1. A map τ : T• T equipped with codes closing the resulting universe under
dependent sums, dependent products, and a unit type. We will write e.g., Sig and
Prod for the classifying maps associated with the first two conditions.

2. τ is also equipped with the commuting squares and lifting structures closing it
under booleans and intensional identity types as described in Section 3.4.

3. There is a morphism Uni : 1 T and a map El : U = 1 ×T τ T such that the
pullback υ of τ along the latter is weakly closed under all connectives.

Remark 4.2.2. Some prior work has referred to similar structures as higher-order models
of type theory [BKS23]. These structures are explored from the perspective of 2-monad
theory by Gratzer and Sterling [GS20]. ⋄

Remark 4.2.3. We illustrate the last requirement explicitly for booleans and dependent
products. We require a map 1 U such that the composite map 1 T classifies the
same family as the map code for booleans Bool : 1 T. We do not, however, require
that they are the same map.

For dependent products, we require a map P̂rod : Pυ(U) U such that the composite

El ◦ P̂rod classifies the same family as composite of Pυ(U) Pτ (T) and the code for
dependent products.

We note that we do not require υ to be strictly cumulative within τ in the sense of
Section 3.2. This is more convenient technically, but the distinction is not essential. ⋄

In essence, a Martin-Löf structured category is a model of type theory à la natural
models, but where one neglects to require that (1) τ is a morphism of presheaves and (2)
that τ is representable. In particular, since all the structure defined on τ uses only the
operations of a locally Cartesian closed category, one can define what it means for τ to
be equipped with connectives in any LCCC.



Preliminary constructions 56

Every model of type theory induces an ML category (C, τ) precisely by “forgetting”
C and considering (E = PSh(C), τ). In particular, the syntactic model of type induces
the following:

Definition 4.2.4. We denote by (S, τS) the ML category induced by the initial model
of type theory constructed from syntax.

Definition 4.2.5. A morphism of ML categories F : E F is a locally Cartesian closed
functor which strictly sends τE to τF and strictly preserves all relevant codes.

Theorem 4.2.6 (Quasi-projectivity). Given a morphism F : (E, τE) (S, τS) of ML
categories, the following conditions hold:

1. Given any representable y(Γ) : S, there exists JΓK : E along with a canonical
isomorphism α : y(Γ) ∼= F (JΓK).

2. Given any morphism ⌊A⌋ : y(Γ) TS or ⌊M⌋ : y(Γ) T•S, there exists JAK :
JΓK TE or JMK : JΓK TE such that F (JAK) ◦ α = ⌊A⌋ or F (JMK) ◦ α = ⌊M⌋

Proof. The proof is a routine exercise in constructing a displayed model. We define a
model whose category of contexts is given by triples (Γ : Cx, E : S, α : y(Γ) ∼= F (E)) and
morphisms are pairs of a substitution and a morphism in E fitting into the expected
commuting square. Likewise, the presheaf of types is defined by sending (Γ, E, α) to the
set of pairs

(
A ∈ TS(Γ), f : E TE

)
such that F (f) ◦ α = ⌊A⌋. The definition of terms

is analogous.
We close this model under the usual connectives of type theory using the fact that E

is an ML category. The forgetful functor projecting out Γ from (Γ, E, α), A from (A, f),
etc. is then easily seen to be a morphism of CwFs.

The conclusion then follows from the initiality of the syntactic model.

With all of this machinery to hand, we can revise our goal slightly: we will no
longer aim to construct a displayed model, but instead a displayed ML category. We
will then replace our application of initiality to construct a section to projection with
Theorem 4.2.6 which provides a certain “local” section.

4.2.2 Artin gluing and global sections

We now return to the main story and consider constructing the category of contexts
for the displayed ML category. As previously mentioned, this is done through Artin
gluing the S—presheaves on the syntactic category of contexts—along a certain functor.
The exact functor chosen depends on what metatheorem is being proven and choosing
the correct one is the main source of creativity in a proof done in this style. In
essence, each metatheorem characterizes terms in a particular subset of contexts and the
characterization is stable under some subset of substitutions. These two considerations
induce a (non-full) subcategory of the category of contexts homi(C,Cx), and we will glue
along the induced functor i∗ : S PSh(C). Intuitively, this gluing category allows us
to speak about (proof-relevant) predicates on terms and types in contexts drawn from
ObC provided those predicates are stable under the morphisms of C.



Preliminary constructions 57

In this case, we hope to prove a result about closed terms. Thus the subcategory
under consideration is generated by 1 and so it is the terminal category. Unfolding the
associated nerve functor, we will glue along the global sections functor Γ = hom(1,−).

Definition 4.2.7. We define G = Gl(Γ : S Set).

Lemma 4.2.8. The projection map π : G S is a logical functor with both left and
right adjoints.

We immediately reap some rewards from choosing to glue along a continuous functor
out of S—a presheaf category—rather than manipulating the category of contexts directly;
the resulting category is extremely well-behaved.

Theorem 4.2.9 (Carboni and Johnstone [CJ95]). G is a presheaf category.

We isolate one particular object in G for future use:

Lemma 4.2.10. There is a subterminal object U 1 in G such that π is equivalent to
the pullback functor G G/U .

Proof. The subterminal in question is (1S,0Set, !). That restricting by U has the desired
effect follows directly from calculation.

4.2.3 The language of synthetic Tait computability

In light of Theorem 4.2.9, only one task remains in our construction of a displayed ML
category: we must construct a morphism τG in G which is sent to τS by π and close τG
under all the connectives of type theory in a manner compatible with τS. Rather than
constructing these externally, we will take advantage of the fact that G is a presheaf
topos and therefore admits a rich internal language as a result of Corollary 3.3.6.

Theorem 4.2.11. G admits a model of extensional type theory with a strict universe of
propositions Ω and a hierarchy of cumulative universes.

We will now set about extending this language with various constants to better shape
it into an internal language for G. We begin by internalizing U 1.

Extension 4.2.1. We postulate a proposition syn : Ω internalizing U 1.

This proposition proves to be tremendously useful in light of the equivalence between
G G/U and G S. In particular, by assuming syn within this type theory we can
reason within S. Moreover, weakening by syn corresponds precisely to π so that we can
describe the behavior of objects in G under π by analyzing their properties with respect
to the following open modality [Joh02; RSS20]:

�A = syn→ A

Remark 4.2.12. It is illuminating to compute a more explicit form of the functor
X 7→ XU based on the definition of G given in Definition 4.1.3. In this case, we may
represent X as a morphism S hom(1, X) for some X : S. Noting that X1 ∼= X and
S0 ∼= 1, we see that XU is represented by the map id : hom(1, X) hom(1, X).

In other words, the effect of hypothesizing syn is to erase the portion of X which
comes from Set and leave only the S component. ⋄



Preliminary constructions 58

Notation 4.2.13. We will often work with an element of �U (recall that U is the universe
of small types) and will need a convenient syntax for the dependent modality �̂ : �U→ U.
We will take advantage of the fact that this particular dependent modality can be realized
by an ordinary dependent product and write �zAz as shorthand for (z : syn)→ Az.

Capitalizing on the idea that terms and types in a context with z : syn correspond
to terms and types in S, we import a suite of contexts internalizing the ML structure of
(S, τS) for use within our type theory. For the sake of concision, we shall specify only
dependent products and booleans.

Extension 4.2.2. Under the assumption z : syn, there exist types Ty : U and Tm :
Ty → U. We further assume constants structure (Ty,Tm) as a universe closed under
various connectives:

Prod : (A : Ty)→ (Tm(A)→ Ty)→ Ty

αProd : (A : Ty)(B : Tm(A)→ Ty)→ ((a : TmA)→ Tm(B a)) ∼= Tm(ProdAB)

Bool : Ty

true, false : Tm(Bool)

if : (B : TmBool→ Ty)→ Tm(B true)→ Tm(B false)→ (b : TmBool)→ Tm(B b)

: (B : TmBool→ Ty)(N0 : Tm(B true))(N1 : Tm(B false))→ if BN0N1 true = N0

: (B : TmBool→ Ty)(N0 : Tm(B true))(N1 : Tm(B false))→ if BN0N1 false = N1

Suppose we are given a type A (corresponding to some object X : G) and an element
N : syn → A (correspond to a morphism f into π(X)). Many of our tasks can be
rephrased as needing to lift f along π. We can concisely capture this within type theory
by requesting an element M : A such that (z : syn)→M = N(z). In fact, statements
of this form are so common we will introduce notation for them:

{A | z : syn 7→ N} =
(∑

M :A(z : syn)→M = N(z)
)

Notation 4.2.14. The notation {A | z : syn 7→ N} comes from Cohen et al. [Coh+17]
where they are used to specify the boundaries of (hyper)cubes. Following op. cit., we
will refer to the constraint (z : syn)→M = N(z) as a boundary constraint.

We will also have occasion to use the closed modality � associated with �:

Extension 4.2.3. We postulate an operator � : U → U such that �A satisfies the
mapping out property of the pushout A

∐
A×syn syn. Explicitly, to construct f : �A→ B

it suffices to construct a map f0 : A→ B and f1 : syn→ B such that whenever we are
given a : A and z : syn, we have f0 a = f1 z.

We could have equivalently characterized � as the unique idempotent lex monad
such that ��A = Unit and A = �A×��A �A. However, the mapping out property as a
pushout will be of some use.

We also will require an internalized form of realignment (Lemma 3.3.10), which
allows us to replace an up-to-isomorphism solution to an extension problem with a strict
solution:



The canonicity model 59

Extension 4.2.4. Each universe satisfies an internal form of realignment [OP18] so
that, in particular, the following map has a section re for any B : U:(∑

A:UA
∼= B

)
→
(∑

A:syn→U(z : syn)→ A(z) ∼= B
)

Remark 4.2.15. Explicitly, re allows us to take a type B and a partially defined type
A0 : �U which are isomorphic when both are defined via α0 : (z : syn)→ A0 z ∼= B and
obtain A : U and α : A ∼= B such that (z : syn)→ A0 z = A and (z : syn)→ α0 z = α.

In practice, realignment is used in a situation where we are confronted by the problem
of extending the partially defined A0 to some total type. We break this process into two
stages by first constructing an extension up to isomorphism—B and α0—and then use
realignment to parlay this up-to-isomorphism solution into a genuine extension. ⋄

We shall refer to extensional type theory supplemented with all of these extensions
as the language of synthetic Tait computability. We may now phrase the core of the
construction of the displayed ML category purely in terms of this language (once again
limiting ourselves to dependent products and booleans for the sake of concision):

Lemma 4.2.16 (Fundamental lemma). There exists Ty∗ : {U | z : syn 7→ Ty z} and
Tm∗ : {Ty∗ → U | z : syn 7→ Tm z} along with the following constants:

Prod∗ : (A : Ty∗)→ (B : Tm∗(A)→ Ty∗)→ {Ty∗ | z : syn 7→ Prod z AB}
αProd∗ : (A : Ty∗)(B : Tm∗(A)→ Ty∗)

→ {((a : Tm∗A)→ Tm∗(B a)) ∼= Tm∗(Prod∗AB) | z : syn 7→ αProd z AB}
Bool∗ : Ty∗

true∗, false∗ : Tm∗(Bool∗)

if∗ : (B : Tm∗ Bool∗ → Ty∗)(N0 : Tm∗(B true∗))(N1 : Tm∗(B false∗))(M : Tm∗ Bool∗)

→ {Tm∗(BM) | z : syn 7→ if z B N0N1M}
: (B : Tm∗ Bool∗ → Ty∗)(N0 : Tm∗(B true∗))(N1 : Tm∗(B false∗))

→ if∗BN0N1 true
∗ = N0

: (B : Tm∗ Bool∗ → Ty∗)(N0 : Tm∗(B true∗))(N1 : Tm∗(B false∗))

→ if∗BN0N1 false
∗ = N1

Remark 4.2.17. Note that the boundary conditions on some constants are necessary to
make those of other constants well-typed. For instance, without the boundary conditions
on Tm∗ and Prod∗ the boundary of αProd∗ would be ill-typed. ⋄

In essence, the existence of these constants upgrades G to an ML category while the
requirement that each constant match its corresponding version from S ensures that π is
a morphism of ML categories. Thus, this lemma plays the same role as the fundamental
lemma of logical relations and constitutes the heart of our proof.

4.3 The canonicity model

We now set about proving Lemma 4.2.16. To this end, we begin by constructing Ty∗.
Recall our earlier intuition all the way back in Lemma 4.1.1: a type in our displayed



The canonicity model 60

model should consist of an element A : Ty along with a type whose elements are pairs of
M : TmA together with a proof that M is canonical. Informally, the latter type is the
total space of the predicate isolating canonical elements of A.

More formally, we will begin with the following putative definition:

record Φ : U2 where
tp : �zTy z
pred : {U1 | z : syn 7→ Tm z A}

Notation 4.3.1. Here and elsewhere we will avail ourselves of Agda-style records. We
will use the standard “dot” notation to project out fields e.g., ϕ.tp and use copattern
notation to construct elements of Φ.

Now the strong constraints we have placed upon pred ensures that after assuming
z : syn we have the following chain of isomorphisms:

Φ

(Passing from a record to a dependent sum.)
∼=
∑

tp:�zTy z
{U1 | z : syn 7→ Tm z A}

(Taking advantage of the fact that � is idempotent.)
∼=
∑

tp:Ty z{U1 | z : syn 7→ Tm z A}
(Having assumed z : syn the second component is fixed.)

∼=
∑

tp:Ty z Unit

∼= Ty z

We denote the composite of these isomorphisms ϕ.
Revisiting the statement of Lemma 4.2.16 however, this is not enough. Whatever

we choose for Ty∗ must satisfy (z : syn) → Ty∗ = Ty z and Φ satisfies this only up
to isomorphism. Fortunately, this can be rectified automatically using realignment.
Accordingly, we define Ty∗ as follows:

(Ty∗, ϕ∗) = re(Φ, ϕ) (4.1)

By definition, Ty∗ comes equipped with an isomorphism ϕ∗ : Φ ∼= Ty∗ which extends
ϕ. We will take advantage of this isomorphism to construct elements of Ty∗ using
record-style copattern notation (specifying tp and pred) and project out these fields using
dot notation. The condition that ϕ∗ extends ϕ amounts to the following (where A : Ty∗):

(z : syn)→ A = A.tp z (4.2)

In fact, our construction of T∗ leads us nearly immediately to the correct definition
of Tm∗ : Ty∗ → U. This must assign each A : Ty∗ to an element of U subject to the
constraint that if z : syn then Tm∗A = Tm z A. Inspecting the definition of Ty∗, we see
that A comes equipped with just such a type:

Tm∗A = A.pred (4.3)

Two tasks remain: we must close (Ty∗,Tm∗) under dependent products and booleans.
Somewhat counter-intuitively, dependent products are simpler so we begin with them.



The canonicity model 61

Lemma 4.3.2. (Ty∗,Tm∗) is closed under dependent products.

Proof. Unfolding the statement of this lemma, we must construct terms of the following
types:

Prod∗ : (A : Ty∗)→ (B : Tm∗(A)→ Ty∗)→ {Ty∗ | z : syn 7→ Prod z AB}
αProd∗ : (A : Ty∗)(B : Tm∗(A)→ Ty∗)

→ {((a : Tm∗A)→ Tm∗(B a)) ∼= Tm∗(Prod∗AB) | z : syn 7→ αProd z AB}

We will begin with Prod∗ and therefore fix A : Ty∗ and B : Tm∗A → Ty∗. As
mentioned above, we it suffices to specify (Prod∗AB).tp and (Prod∗AB).pred. Inspecting
the constraints on Prod∗ along with Eq. (4.2), we notice that tp is already fully determined:
we must set (Prod∗AB).tp = λz.Prod z AB to satisfy the relevant boundary constraint.
It remains to define pred whose type is now refined to the following:

(Prod∗AB).pred : {U | z : syn 7→ Tm z (ProdAB)}

Just as with T∗, we will begin by defining a type Φ which satisfies the boundary
condition only up to isomorphism and then use realignment to rectify the situation.
With an eye towards defining αProd∗ , we know that (Prod∗AB).pred must be isomorphic
to Φ = (a : Tm∗A)→ Tm∗(B a). Let us now observe that αProd is precisely the required
isomorphism Φ ∼= Tm z(ProdAB) after utilizing the boundary conditions on Tm∗.

All told, we make the following definition:

((Prod∗AB).pred, αProd∗) = re((a : Tm∗A)→ Tm∗(B a), αProd) (4.4)

Remarkably, the isomorphism generated by re satisfies exactly the boundary condition
for αProd∗ and so no additional work is required to define it.

In a certain sense, what made the construction of dependent products so efficient was
the presence of the η law. This enabled us to bundle up the introduction, elimination,
β, and η rules into a single object. Moreover, such an isomorphism fully constrained
the definition o f Prod∗—at least up to isomorphism. The lack of an η law for Bool∗, by
contrast, will result in both some additional manual labor and creativity.

Lemma 4.3.3. (Ty∗,Tm∗) is closed under booleans.

Proof. Unfolding, we have the following list of constants to define:

Bool∗ : Ty∗

true∗, false∗ : Tm∗(Bool∗)

if∗ : (B : Tm∗ Bool∗ → Ty∗)(N0 : Tm∗(B true∗))(N1 : Tm∗(B false∗))(M : Tm∗ Bool∗)

→ {Tm∗(BM) | z : syn 7→ if z B N0N1M}
: (B : Tm∗ Bool∗ → Ty∗)(N0 : Tm∗(B true∗))(N1 : Tm∗(B false∗))

→ if∗BN0N1 true
∗ = N0

: (B : Tm∗ Bool∗ → Ty∗)(N0 : Tm∗(B true∗))(N1 : Tm∗(B false∗))

→ if∗BN0N1 false
∗ = N1



The canonicity model 62

We begin with Bool∗. As before, we have two fields to define—.tp and .pred—and
the first is fully constrained by the boundary constraint:

Bool∗.tp = Bool

Unlike dependent products, there is no isomorphism fully constraining Bool∗.pred so
we have the freedom to choose several different definitions. At this point we return to our
earlier intuition for .pred: it should be a type consisting of pairs of a type M : TmBool
along with a proof that M is canonical. From this and with an eye towards the boundary
constraint, we are led to the following intermediate definition:

Φ =
∑

b:�zTm z Bool �(b = true + b = false)

Notice the appearance of the closed modality here. It is necessary to ensure the
existence of the following isomorphism under the assumption z : syn:

ψ : Φ ∼=
∑

b:�zTm z Bool �(b = true + b = false)

∼=
∑

b:Tm z Bool �(b = true + b = false)
∼=
∑

b:Tm z Bool Unit Recall ��A ∼= Unit
∼= Tm z Bool

This isomorphism is precisely what we required as input for realignment:

(Bool∗.pred, α) = re(Φ, ψ) (4.5)

The definition of Bool∗.pred ensures that it satisfies the relevant boundary condition.
It remains to handle the introduction and elimination rules. For the introduction rule
we use the isomorphism α to construct the required elements of Bool∗.pred:

true∗ = α(true, η(in1(⋆))) (4.6)

false∗ = α(false, η(in2(⋆))) (4.7)

The boundary conditions e.g., (z : syn) → true∗ = true z follow from the assumption
that α extends ψ. We leave the details to the reader.

Finally, it remains to define if∗. This is an exercise in programming with the
elimination principle for �X = X

∐
X×syn syn:

if∗BN0N1M =


if z B N0N1M0 M = α(M0, in2(z))

N0 M = α(M0, in1(in1(∗)))
N1 M = α(M0, in1(in2(∗)))

(4.8)

Informally, the three cases split on which of the three states �(b = true + false)
occupies: either syn holds, b is a true, or b is false. As � . . . is a pushout, we must check
that the results of each of the three branches match as they are supposed to, but this is
an immediate consequence of boundary conditions along with the computation rules for
if. A similarly direct computation shows that if∗ satisfies the two required equations,
completing the proof.

Proof of Lemma 4.2.16. The fundamental lemma is now an immediate consequence of
the results of this section.

Corollary 4.3.4. Write τG : T•G TG for the family in G denoted by Tm∗, then (G, τG)
is an ML category and π is a morphism of ML categories.



The canonicity theorem 63

4.4 The canonicity theorem

We are now, finally, in a position to prove the main result of this chapter.

Proof of Theorem 4.0.1. Fix 1 ⊢ M : Bool. We wish to show that either M = tt or
M = ff. To this end, let us consider ⌊M⌋ : 1 = y(1) T•S the interpretation of M into
the syntactic model S. Applying Theorem 4.2.6 and Corollary 4.3.4, we conclude that
there exists a morphism M∗ : 1 T•G such that π(M∗) = M .

Inspecting the proof of Theorem 4.2.6, we observe that τG ◦M∗ : 1 TG is the
interpretation of Bool∗. We may unfold the interpretation of Bool∗ to conclude that a map
1 JBool∗K∗T•G is determined by a pair of (1) a map N : 1 JBoolK∗T•S in S and (2) a
proof that either N = true or N = false (more properly, a map 1 N = true +N = false
in Set). Combining this with the fact that π(M∗) = M , we see that that M∗ determines
a proof M = true or M = false exactly as required.

Remark 4.4.1. While we have not belabored the point, all of the machinery here (the
various categories, the models of type theory, etc.) is constructively valid. Accordingly,
this proof of canonicity can be carried out in e.g., the effective topos where it would
yield an evaluator for closed booleans. ⋄



Part II

Modalities in type theory

64



5 Towards multimodal type theory

Nothing is more arbitrary than a
modal logic: “I am done with this
logic, may I have another one?”
seems to be the motto of modal
logicians.

Jean-Yves Girard
The Blind Spot

5.1 A motivating example

In Chapters 2 and 3 we introduced type theories as formal systems comprised of type
and term operators invariant under substitution. It is this invariance property that
gives type theory its particular flavor but, unfortunately, there are many useful type
constructors which are not stable under substitution.

Consider, for instance, the work by Orton and Pitts [OP18] analyzing the semantics
of cubical type theory in a presheaf topos PSh(C) using the rich internal language
available in PSh(C). The aim of this work was to simplify the task of constructing a
model of cubical type theory and, in particular, to make it easier to handle the most
complex portion of cubical type theory: its novel handling of the identity type. In cubical
type theory, each type comes equipped with a set of operations for manipulating the
identity type (the Kan composition operations) and these can be quite complex. Any
model must equip each type with a Kan composition structure, a highly technical task.

The internal approach in op. cit., however, allows these Kan operations to be
restructured as programming exercises that can be specified concisely. In fact, a major
reason for this advantage is the fiberwise nature of the internal language; when working
externally the necessity of working and passing between various fibers obscures the essence
of the composition operators. While this approach to semantics is quite appealing, Orton
and Pitts stop short of defining a univalent universe equipped with a Kan composition
structure. Indeed, defining such a universe proved to be a substantial undertaking and
was accomplished in subsequent work by Licata et al. [Lic+18].

In order to define a universe, Licata et al. [Lic+18] took advantage of a certain
amazing right adjoint within the category PSh(C). Exponentiation by the interval
object I was a left adjoint with (−)I ⊣ (−)I. Clever application of (−)I allowed Licata
et al. to define their universe.

65



A motivating example 66

One might imagine that all that is required is to extend the extensional type theory
serving as the internal language of PSh(C) with a type-constructor representing this
right adjoint. Unfortunately, this is not possible:

Theorem 5.1.1 (Theorem 5.1 [Lic+18]). Given a type constructor (−)I : U→ U and a
natural isomorphism AI → B ∼= A→ BI, we must have I ∼= 1.

This result may seem surprising; semantically −I does have a right adjoint and I is
certainly not isomorphic to 1. What has gone wrong? The issue lies within the hidden
strength of asking the right adjoint (−)I to form a type operator U→ U. Unraveling the
semantics of type theory within PSh(C), this entails having not only a functor sending
small objects to small objects but having such a functor on each slice in a manner
compatible with pullback. Examining PSh(C), it is apparent that −I cannot be defined
coherently on each slice and the bijection hom(AI, B) ∼= hom(A,BI) does not extend to
an isomorphism of exponential objects. To summarize, we cannot axiomatize (−)I nor
its property as a right adjoint within type theory because neither respects substitution.
This is particularly unfortunate within the context of Licata et al. [Lic+18]; the thesis
of the work was that working within the internal language was an effective way to
construct models of cubical type theory. This leads to an impasse: can one maintain the
convenience of working internally while still having access to the amazing right adjoint?

To resolve this dilemma and carry out the construction of universes, Licata et al.
[Lic+18] modify the underlying type theory to include a modality : a mapping of types
to types which need not be stable under substitution.

Let us revisit the the external adjunction (−)I ⊣ (−)I. We cannot extend the bijection
of hom-sets to an isomorphism of exponentials but we can (tautologically) rephrase it as

a bijection between the global points of the exponential objects XY I
and (XI)

Y . Within
any presheaf topos, we can organize the global points of a presheaf X into a presheaf
themselves. We have an adjunction ∆ ⊣ Γ : PSh(C) Set and the comonad □ = ∆ ◦ Γ
induced by this adjunction sends a presheaf to the (discrete) presheaf of its global points
□X. We may therefore actually phrase our bijection as an isomorphism:

α : □XY I ∼= □(XI)
Y

Similarly, while (−)I does not induce a map U→ U, it does induce a map sending
the global points of U and the global points of U:1

(−)I : □U□U

If we could internalize □, therefore, we could add these constants to our theory to
circumvent Theorem 5.1.1. Unsurprisingly, □ suffers the same issues as (−)I when it
comes to internalizing it within type theory; it does not extend to each slice category in
a coherent manner. In order to internalize it, we therefore must modify the type theory
to permit such type operators.

Concretely, Licata et al. [Lic+18] work within crisp type theory, a variant of Martin-
Löf type theory equipped with two classes of variables: normal and crisp. Crisp variables
may be used wherever normal variable are used but the reverse is not true. The type
theory features a new type constructor □− and elements of □A consist of elements of

1As a closed type, U is interpreted by an object of PSh(C)



A motivating example 67

A constructed using only crisp variables. In order to ensure that this is well-behaved,
various careful modifications must be made to the structures of contexts and substitutions
(allowing e.g., only crisp variables to replace crisp variables).

One can construct a model of crisp type theory within PSh(C) which realizes J□AK
as essentially □JAK and therefore safely add the postulates described above. Crucially,
pivoting to crisp type theory permitted Licata et al. a sufficiently flexible internal
language to describe (−)I. In particular, it was necessary to have an internal language
which violated the core principle of invariance under substitution but which retained
much of the character of type theory.

5.1.1 Multiple interacting modalities

Let us consider an entirely separate motivation for the □ modality: guarded recursion and
guarded domain theory. A centerpiece of programming language theory is the study of
solutions to so-called domain equations: fixed points to functors F : Cop × C C. Many
programming languages can be modeled only in categories permitting solutions a certain
domain equation such as F (X,Y ) = Y X and the existence of solutions to a large class
of domain equations has been established within various categories of domains [SP82].
Unfortunately, some of the domain equations which arise in practice (particularly around
higher-order store) do not admit solutions in classical domain theory. This has spawned
the subfield of guarded domain theory [Bir+12], centering around PSh(ω) and the later
functor given by the following formula:

(▶X)(0) = 1 (▶X)(n+ 1) = X(n)

We note that there exists a natural transformation next : id ▶.
Intuitively, ▶X serves as a version of X delayed by a step such that its value cannot

be used unless it is to construct something else under the ▶ functor. In ultrametric
realizations of domain theory [AR89], ▶ models the contraction functor 1

2 · −. The force
of the later modality is captured by the Löb induction principle:

loeb : X▶X X loeb ◦ f = ϵ ◦ ⟨f, loeb ◦ next ◦ f⟩

Moreover, many of the domain equations which could not be solved over classical
domains admit solutions within guarded domains.

Definition 5.1.2. A guarded domain is a presheaf X : PSh(ω) equipped with a structure
map θX : ▶X X.

Working with guarded domains over traditional domains also satisfies an important
desideratum of synthetic domain theory generally: PSh(ω) is a topos. It therefore hosts
a rich internal language that we may use to reason about guarded domains. For instance,
the structure map θX combines with Löb induction to give a fixed-point combinator on
X, expressed as follows within the internal language:

fix f = loeb(λx. f(θX x))

Another remarkable fact is that the universe of small types in PSh(ω) is itself a
guarded domain. This allows for much of the theory of domain equations to be replaced
by the simpler theory of term-level fixed points.



A motivating example 68

In order to work effectively with guarded domains in the internal language, it is
necessary to internalize ▶. Fortunately, this is a far easier task than internalizing □. In
particular, there is a natural transformation next : id ▶ and we therefore extend ▶ to
slice categories of PSh(ω) as follows:

▶YX

Y

▶X

▶Y (5.1)

This functor gives a type operator ▶ : U U within the internal language along
with a natural transformation next : A→ ▶A. The structure map witnessing that the
universe is a guarded domain is realized by the existence of a dependent ▶: modality:

▶
(∑

A:U El(A)
)

▶U

∑
A:U El(A)

U
▶̂

U
next

▶

This situation is near the ideal; it is quite possible to work internally to PSh(ω)
to give concise arguments in guarded domain theory and denotational semantics based
upon it [BBM14; KMV22; MP16; MV19; PMB15]. We refer to type theory extended
with ▶, ▶̂, and loeb as guarded type theory.

Certain properties in guarded domain theory, however, cannot be internalized within
this framework. A crucial difference between guarded domain theory and classical domain
theory is the apparent intensionality of the former and frequently the ‘denotational
semantics’ in guarded domain theory do not satisfy the expected equations on the nose.
The source of failure can typically be traced to the inequality of id and θX ◦ next. To
correct for this mismatch, it is common to define a notion of weak bisimilarity in guarded
domain theory [MP16; PMB15] which essentially equates elements up to θX . While
one can define a notion of weak bisimilarity internally, it is frequently necessary to
consider it externally in order to show e.g., that two terms are not weakly bisimilar.
More generally, external reasoning is frequently necessary to even state certain properties
e.g. termination, productivity, or other expressions of adequacy. In these circumstances,
a richer internal language is required.

It is for this purpose that various flavors of guarded type theory are extended with a
second modality: the familiar □ [Biz+16; Clo+15; KMV22]. We draw attention to an
important isomorphism available within PSh(ω):

□X ∼= □▶X (5.2)

Adding □ to guarded type theory together with the isomorphism □▶A ∼= □A
enables a plethora of new constructions. Aside from merely being able to reason about



Fibered modalities 69

global behavior, it becomes possible to define coinductive data structures from their
guarded counterpart. Various extensions to this system have culminated in clocked type
theory [AM13; BGM17; BM15].

As previously discussed, □ cannot be internalized as easily as ▶. A priori, it seems
plausible that crisp type theory could be stretched to accommodate ▶ but this ad-hoc
solution does not provide a satisfactory account of Eq. (5.2). Indeed, crisp type theory
works well only when considering one modality and when that particular modality
happens to be an idempotent comonad.

While idempotent comonads may arise with some frequency, they are far from the
only modality worth considering. Similar but subtlety different modalities are consid-
ered in the context of distributive programming [Mur08], staged programming [DP01;
HPS22], information flow [Kav19], axiomatic cohesion [SS12; Shu18], normalization-
by-gluing [BKS21], relational parametricity [Cav21; Nuy20], and many others. Many
of these situations demand certain laws like Eq. (5.2) forcing modalities to interact in
specific ways.

In this chapter, we survey the current landscape of type theories incorporating one
or more modalities to motivate and situate our proposed general modal type theory:
MTT [Gra+20a].

5.2 Fibered modalities

Before discussing various approaches for integrating modalities which do not internalize
easily, we begin by discussing the best possible situation for modalities: those which do
commute with substitution and therefore require no contortions to include within type
theory. These are the modalities which we can restrict to act fiberwise and we refer to
them as fibered modalities.

Syntactically, a fibered modality admits a simple description:

Definition 5.2.1. Within type theory, a fibered modality is a type constructor ⃝ with
the following formation rule:

Γ ⊢ A type

Γ ⊢ ⃝A type
(5.3)

In order to broaden type theory to include non-fibered modalities, it is helpful to
consider what properties fibered modalities have semantically. To this end, consider a
category with display maps (C,D). The class of well-behaved (specifically, left exact)
fibered modalities in internal language of C most commonly arise from functors F
equipped with a point η : id F which preserves display maps, the terminal object,
and cartesian squares of display maps. Define FD : Dcart Dcart as follows:

F (X)×F (Y ) Y

Y

FD(f)

F (X)

F (Y )

F (f)

ηY

The action on morphisms is canonically induced by the pullback lemma.



Fibered modalities 70

Lemma 5.2.2. In the local universes model τ : T• T induced by (C,D) (Section 3.5.2),
the map FD induces a type connective J⃝K : T T modeling the above formation
rule. Furthermore, τ∗J⃝K is given by restricting F!(τ) along η : id F! (explicitly,∐

f :D y(FD(f))).

Proof. Recall the definition of the presheaf of types:

T =
∐

f :D y(cod(f))

To model Rule 5.3, we must define a map J⃝K : T T. We do so by sending
f -component of T to the FD(f)-component (observe that cod(f) = cod(FD(f))).

By universality and disjointness of coproducts within PSh(C), we observe that ⃝∗τ
is realized by the following morphism:∐

f :D y(dom(FD(f)))

∐
f :D y(cod(FD(f)))

This is seen to be equivalent to η∗F!(τ) by recalling that F! is cocontinuous and sends
y(c) to y(F (c)).

Remark 5.2.3. The choice of J⃝K above is far from the only code classifying this family.
For instance, one could equivalently define J⃝K to send inf (α) to inF (f)(η ◦ α). ⋄

Lemma 5.2.4. The point η : id F induces a term Γ.A ⊢ η :⃝A[p] within this model.

Lemma 5.2.5. Fix a pair of types Γ ⊢ A type and Γ.⃝A ⊢ B type, in this model there
is a canonical isomorphism between ⃝

∑
AB[p.η] and

∑
⃝A⃝B

Proof. Unfolding the interpretations of A and B within our model, we obtain a pair of
display maps pA : EA UA and pB : EB UB along with a map σA : JΓK UA and
a map σB : JΓK×F (UA) F (EA) UB.

It suffices to argue that these two types classify isomorphic families over JΓK.
Accordingly, we may pull back this data along σA and σB assume JΓK = UA and
UB = UA ×F (UA) F (EA). We observe that the projection map UB UA is precisely
FD(pA).

Unfolding constructions given in Awodey [Awo18, Proposition 28],
∑

AB[p.η] classi-
fies the following family over JΓK:

EB ×UB
EA EA UA

Next, let us observe that

F (EB ×UB
EA)×F (UA) UA

∼= F (EB)×F (UB) (F (EA)×F (UA) UA)

∼= F (EB)×F (UB) UB

Accordingly, ⃝
∑

AB[p.η] classifies the following family FD(pA) ◦ FD(pB). This is
precisely what

∑
⃝A ⃝B classifies, completing the proof.



One non-fibered modality 71

These handful of results characterize the typical situation for a fibered modality
within type theory. Briefly, it is a pointed (Lemma 5.2.4) lex (Lemma 5.2.5) fibered
modality. Further properties of the underlying functor F are also reflected into the
type theory. For instance, if F is a monad then one can internalize a fiberwise version
of the join operator. Better still, adding a fibered modality requires no changes to
the judgmental structure of type theory; we may simply add constants internalizing
arbitrarily many fibered modalities to the theory without disrupting substitution.

This construction also illuminates why the later modality from Section 5.1 was so
much more amenable to internalization than □. While both are left exact, the later
modality has a point while the □ modality does not. Both □ and ▶, however, satisfy
the other properties required by Lemma 5.2.2. Accordingly, we will focus our attention
on internalizing modalities which preserve display maps and cartesian squares between
them, but do not necessarily admit a point.

5.3 One non-fibered modality

In Section 5.2, we began with particular formation rule (Rule 5.3) and sketched a
semantic interpretation for a model of type theory (C,D) supplemented with a functor
F which validated it. A key step in the latter was the existence of a point 1 F . It
was this point that we used to extend the action of F to the slices of C and thereby
obtain a type-theoretic connective. Unfortunately, however, not every important functor
comes equipped with a point. In this section, we reverse perspective slightly. Let us fix
a finitely complete category with display maps (C,D) along with a lex functor F which
preserves display maps and consider possible rules for modeling F within the internal
language of C.

Fix a display map p : X A in C. Applying F to p yields another display map over
the base F (A). Observing the correspondence between display maps over A and types
in context A, we might render this situation syntactically as the following rule:

Γ ⊢ A type

F (Γ) ⊢ F (A) type
(5.4)

Using the standard approach for local universe models, we can further arrange that
this operation satisfies a limited form of substitution invariance:

Γ ⊢ δ : ∆ ∆ ⊢ A type

F (Γ) ⊢ F (A)[F (δ)] = F (A[δ]) type
(5.5)

Finally, using the fact that F is lex, we obtain a canonical isomorphism:

αF : F (Γ.A) ∼= F (Γ).F (A) (5.6)

Unfortunately, without further assumptions on F it is difficult to obtain any further
reasoning principles. Moreover, adding only these three rules seriously disrupts existing
type theory. In particular, we have no general way to reduce F (A)[δ] so the substitution
property of type theory (Property 2.4.4) fails; it is not possible to push a substitution
through a term and resolve it at variables.



Dual-context type theories 72

To illustrate this last point, suppose we are given a substitution Γ ⊢ δ : F (∆) and
a type ∆ ⊢ A type, we note that there no obvious reduction for F (A)[δ] as F may not
even be well-formed in context Γ. What would it take to ensure that we could commute
δ past F (A)? Examining the rules available, there is no possibility that such a reduction
can exist unless Γ = F (Γ0); the conclusion of Rule 5.4 insists that the context be of
this form. Returning to our semantics, this is akin to asking that if we are given a
morphism X F (Y ) then X must lie within the image of F . Recall, however, that we
have assumed F to be lex. Therefore, every object admits a map onto F (1), so this
requirement is far too strong.

It is possible to ignore the absence of a general substitution rule and simply work with
Rules 5.4 to 5.6 as-is. The result is essentially a calculus with delayed substitutions [Bd00].
For instance, we may use Rule 5.6 to recover the introduction rule familiar to such
systems:

Γ ⊢M : A

F (Γ) ⊢ mod(M) ≜ v[αF ◦ F (id.M)] : F (A)

The results, however, are not satisfactory. It is unlikely that such a type theory
will satisfy a normalization theorem and the type-checking problem will therefore be
undecidable.2

Setting aside the issue of normalization, a type theory built around delayed substitu-
tions loses much of the appeal of working within type theory. In a simply-typed setting,
one may be able to make ad-hoc simplifications [Clo+15]. In a dependently typed setting,
however, it becomes necessary to specify the equational theory of such a system [Biz+16].
Even when the intended models are well-behaved, the resulting system forces the user to
write and reason about substitutions in order to work with modal types. In a situation
where modal types are used sparingly and with careful abstraction, this may be tenable.
If, on the other hand, the modalities are used frequently, if multiple modalities are used
simultaneously, or if one must reason about the equality of modal operations, the results
are only a small improvement over directly working with the model without an internal
language.

We have now arrived at the main question of modal type theory generally and this
thesis specifically: can we restrict F or modify the type theory in such a way that
Rules 5.4 to 5.6 yield a usable type theory?

Remark 5.3.1. Useful is left intentionally vague. In practice, we will ask that our
type theory satisfies the familiar metatheorems of Martin-Löf type theory (canonicity,
normalization, decidable type-checking) and that the syntax is convenient enough to be
used to carry out case studies. ⋄

5.4 Dual-context type theories

We now turn to our first approach to building a usable theory while incorporating a
non-fibered modalities: dual-context type theories. Contemplating Rule 5.4, the issue
stems from the fact that not every context Γ can be uniquely written as F (∆). As

2Note that there is no a priori reason why F (δ0) = F (δ1) should imply δ0 = δ1 so Rule 5.5 could
potentially be used to equate wildly different terms.



Dual-context type theories 73

discussed above, it is infeasible to force this to be the case, but we can resolve this issue in
a different way. Rather than forcing there to be a unique ∆ such that Γ = F (∆), we can
hope that there is at least a chosen ∆ for each each context Γ along with a substitution
↑Γ: Γ F (∆). If we further require that every substitution commute appropriately
with ↑Γ—that is, ↑− is natural—we can define a restricted version of Rule 5.4 which
respects substitution.

Let us write ∆; Γ to signify that the chosen F -component of Γ is ∆. As semantic
intuition, a dual context ∆; Γ represents a pair of an object J∆K in our category of
contexts and a family JΓK : • F (J∆K).3 The new formation rule is defined as follows:

∆;1 ⊢ A type

∆; Γ ⊢ □A type

There are a variety of different ways to elaborate this idea [dR15; Kav17; PD01;
Shu18; Zwa19]. We will follow Zwanziger [Zwa19] and define our dual-context system to
extend the standard judgments of type theory with copies working over dual-contexts.
In particular, we define new forms of judgments ⊢ ∆; Γ dcx, ∆; Γ ⊢ A type, ∆; Γ ⊢M : A.

5.4.1 Dual-contexts and dual-substitutions

The judgment for dual contexts themselves ⊢ ∆; Γ dcx is given by the following rules:

⊢ ∆ cx

⊢ ∆;1 dcx

⊢ ∆ cx ⊢ ∆; Γ dcx ∆; Γ ⊢ A type

⊢ ∆; Γ.A dcx

⊢ ∆ cx ∆ ⊢ A type ⊢ ∆; Γ dcx

⊢ ∆.A; Γ[p] dcx

The last rule deserves particular scrutiny as it is not typically present in the informal
syntax for dual-context type theories. It allows us to take a dual-context ∆; Γ and e.g.,
add new variables to ∆ and weaken Γ to form ∆.A; Γ[p]. Such a weakening must be
explicitly noted; returning to our informal semantics Γ represents a family over ∆ and it
must be pulled-back to live over ∆.A.

As alluded to above, a crucial point of point of dual contexts is that substitutions
between them (dual substitutions) respect the division between the two contexts. In-
formally, this means that given a substitution ∆0; Γ0 ∆1; Γ1 only the elements of ∆0

are used to implement ∆1. We will enforce this by defining a projection map from dual
substitutions to substitutions simultaneously with the specification of dual substitutions:

∆0; Γ0 ⊢ γ : ∆1; Γ1

∆0 ⊢ π(γ) : ∆1

The calculus of dual substitutions can be presented in a variety of ways, and we will
optimize for a tighter connection to the categorical semantics over usability; prior work

3This order of dependence is not forced. For an arbitrary F , there is no reason to prefer having Γ
depend on F (∆) instead of the reverse or some more complex alternative. In practice, however, F is a
comonad and this configuration is most advantageous.



Dual-context type theories 74

has already explored more ergonomic presentations thoroughly [dR15; Kav17; PD01;
Shu18; Zwa19].

Many of the rules governing dual substitutions closely mirror those for ordinary
substitutions:

⊢ ∆; Γ dcx

∆; Γ ⊢ id : ∆; Γ π(id) = id

⊢ ∆0; Γ dcx ⊢ ∆1 cx ∆0 ⊢ δ : ∆1

∆0; Γ ⊢ !δ : ∆1;1 π(!δ) = id

⊢ ∆; Γ dcx ∆; Γ ⊢ A type

∆; Γ.A ⊢ p : ∆; Γ π(p) = id

⊢ ∆0; Γ0 dcx ⊢ ∆1; Γ1 dcx
∆1; Γ1 ⊢ A type ∆0; Γ0 ⊢ γ : ∆1; Γ1 ∆0; Γ0 ⊢M : A[γ]

∆0; Γ0 ⊢ γ.M : ∆1; Γ1.A π(γ.M) = π(γ)

⊢ ∆0; Γ0 dcx ⊢ ∆1; Γ1 dcx ⊢ ∆2; Γ2 dcx
∆0; Γ0 ⊢ γ1 : ∆1; Γ1 ∆1; Γ1 ⊢ γ2 : ∆2; Γ2

∆0; Γ0 ⊢ γ2 ◦ γ1 : ∆2; Γ2 π(γ2 ◦ γ1) = π(γ2) ◦ π(γ1)

Note, however, that these rules only allow us to produce dual-substitutions which are
sent by π to the identity (vertical substitutions). The only way to produce non-vertical
dual-substitutions is through the maps governing ∆; Γ[p]:

∆ ⊢ A type ⊢ ∆; Γ dcx

∆.A; Γ[p] ⊢ lift(p) : ∆; Γ π(lift(p)) = p
(5.7)

∆1 ⊢ A type ∆0 ⊢ δ : ∆1 ∆0 ⊢M : A[δ] ∆0; Γ0 ⊢ γ : ∆; Γ1 π(γ) = δ

∆0; Γ0 ⊢ factor(γ;M) : ∆1.A; Γ1[p] π(factor(γ; δ1)) = δ.M

(5.8)

∆1 ⊢ A type ∆0 ⊢ δ : ∆1 ∆0 ⊢M : A[δ] ∆0; Γ0 ⊢ γ : ∆1; Γ1 π(γ) = δ

∆0; Γ0 ⊢ lift(p) ◦ factor(γ;M) = γ : ∆1; Γ1

(5.9)

∆1 ⊢ A type ∆0 ⊢ δ : ∆1 ∆0 ⊢M : A[δ] ∆0; Γ0 ⊢ γ : ∆1; Γ1

π(γ) = δ ∆0; Γ0 ⊢ γ′ : ∆1.A; Γ1[p] ∆0; Γ0 ⊢ lift(p) ◦ γ′ = γ : ∆1; Γ1

∆0; Γ0 ⊢ γ′ = factor(γ;M) : ∆1.A; Γ1[p]
(5.10)

Rule 5.7 relates ∆1; Γ and ∆0; Γ[δ] by providing a lifted version of the weakening
substitution: a dual substitution ∆.A; Γ[p] ∆; Γ whose image under π is p.

While this rule allows us to map out of ∆.A; Γ[p], the other novel form of substitution
Rule 5.8 allows us to map into ∆.A; Γ[p]. In fact, it gives ∆.A; Γ[p] and lift(p) a universal
property exactly like that of (∆; Γ.A),p. It states that to define a substitution into
∆.A; Γ[p], it suffices to provide a substitution into ∆; Γ and an extension of its image
under π through ∆.A. In fact, taken in conjunction with the two equations specified
above (Rules 5.9 and 5.10), Rule 5.8 is the unique factorization of γ through lift(p).



Dual-context type theories 75

Remark 5.4.1. While the novel rules governing dual-substitutions are quite complex,
they admit a short semantic description; these rules ensure the existence of a cartesian
lift for each ∆.A ⊢ p : ∆ along π. ⋄

5.4.2 Modal types in dual-context type theory

Having sweated the details around dual-contexts, we are now in a position to quickly
and easily specify the modal types in this theory. While many dual-context type theories
work with a single comonad, we will decompose this comonad into a pair of adjoint
modalities witnessing an adjunction between types in normal contexts and types in
dual-contexts. The comonad typically taken as primitive then arises as a composite of
these adjoints.

We begin with the left adjoint, which promotes a type in a single context to one in a
dual-context:

∆ ⊢ A type

∆; Γ ⊢ LA type
(5.11)

After all the effort expended defining dual-contexts and substitutions, we can specify
a substitution principle for this formation rule:

∆0; Γ1 ⊢ γ : ∆1; Γ1 ∆1 ⊢ A type

∆0; Γ0 ⊢ (LA)[γ] = L(A[πγ]) type

It is here—and the substitution rule for the introduction rule—where the projection
from dual-substitutions to substitutions is necessary. Without such an operation, there
would be no way to recover a substitution ∆0 ∆1 from the given dual-substitution
∆0; Γ0 ∆1; Γ1 and the same difficulties from Section 5.3 would reassert themselves.

Remark 5.4.2. Intuitively, in our semantics ∆ will be interpreted as a portion of JΓK
in the image of F—the functor we are attempting to internalize. This rule will then
be interpreted by a combination of weakening (to pass from J∆; ΓK to F (J∆K)) and
application of F . ⋄

The introduction rule and its substitution principle for LA directly parallel the
formation rule:

∆ ⊢M : A

∆; Γ ⊢ modL(M) : LA
(5.12)

∆0; Γ0 ⊢ γ : ∆1; Γ1 ∆1 ⊢M : A

∆0; Γ0 ⊢ modL(M)[γ] = modL(M [πγ]) : LA
(5.13)

The elimination principle for LA is more complex. While one can see it as a form
of pattern-matching similar to the elimination rule for coproducts, a slightly different
perspective is more informative. Note that the introduction rule for LA induces the
following dual-substitution:

∆.A; Γ[p] ⊢ lift(p).modL(v) : ∆; Γ.LA (5.14)

This substitution shifts an element of ∆ to an element of Γ modulating by the
left adjoint modality. While both contexts intuitively represent the same object, this



Dual-context type theories 76

substitution is not generally invertible. The role of the elimination principle is to force
this substitution to be weakly orthogonal to display maps. Phrased informally, the
elimination principle ensures that when constructing a term these two contexts are
equivalent.

∆; Γ.LA ⊢ B type ∆; Γ ⊢M0 : LA ∆.A; Γ[p] ⊢M1 : B[lift(p).modL(v)]

∆; Γ ⊢ let modL(−)←M0 in M1 : B[id.M0]
(5.15)

∆; Γ.LA ⊢ B type ∆ ⊢M0 : A ∆.A; Γ[p] ⊢M1 : B[lift(p).modL(v)]

∆; Γ ⊢ let modL(−)← modL(M0) in M1 = M1[id.M0] : B[id.M0]
(5.16)

The substitution rule for let modL(−)← − in − is unsurprising, but slightly involved:

(let modL(−)←M0 in M1)[γ] = let modL(−)←M0[γ] in M1[factor(γ;v)]

Remark 5.4.3. The substitution on M1, in essence, capitalizes on the fact that cartesian
reindexing is functorial. ⋄

To relate this rule more directly to the weak orthogonality of Eq. (5.14), observe that
we may use Rule 5.15 to solve the necessary lifting problem:

∆.A; Γ[p]

∆; Γ.LA

∆; Γ.LA.B

∆; Γ.LA

id.M

p

id

id.
(le
t m

odL
(−)←

v in
M

)

We now present the rules for the right adjoint modality R:

∆;1 ⊢ A type

∆ ⊢ RA type

∆;1 ⊢M : A

∆ ⊢ modR(M) : RA

∆ ⊢M : RA

∆; Γ ⊢ unmodR(M) : A

∆;1 ⊢M : A

∆;1 ⊢ unmodR(modR(M)) = M : A

∆ ⊢M : RA

∆ ⊢ modR(unmodR(M)) = M : RA

The substitution principles for these type and term formers follow straightforwardly
from π and lift(−). We leave the details to the reader. Notice that, unlike L, the
elimination rule for RA simply inverts the introduction rule. This option is not available
for LA; without Rule 5.15 it would be impossible to use a variable of type LA. As a
result, we are able to equip RA with both a β and η principle. To do the same for LA
would require the introduction of complex commuting conversions [Kav17].



Dual-context type theories 77

Remark 5.4.4. While we have only discussed the modalities, all the standard connectives
of dependent type theory can be added to this system. We do note, however, that all
connectives must be duplicated: one version for dual-contexts and one version for single
contexts. While we will not discuss their semantics, we will therefore avail ourselves of
dependent sums, dependent products, identity types, etc., in examples. ⋄

5.4.3 Programming with dual-contexts

Prior to discussing the semantics of dual-context type theories, we will take a moment
to work through the construction of the unit and counit combinators. The purpose here
is two-fold. First, we want to show that these two modalities are actually adjoint in
some sense. Second, and in some ways more importantly, the purpose of dual-context
type theory is to provide a theory more usable than working directly with delayed
substitutions or working externally. Small exercises like these provide at least some data
on the usability of the theory.

Remark 5.4.5. In order to facilitate these small examples, we will use a more informal
syntax with named variables rather than De Bruijn indices. We leave it to the reader to
translate these terms back into the core calculus previously presented. ⋄

We begin by defining the unit η : A RLA for a type ∆ ⊢ A type:

η : A→ RLA
η = λx.modR(modL(x))

In this case, the calculation is very direct: we begin with a term ∆ ⊢ a : A and after
applying modR(−) and modL(−) our goal is to produce exactly this. In particular, the
actions of modR(−) and modL(−) on the context are inverse to each other: sending ∆
to ∆;1 and then back to ∆.

The counit is slightly more involved:

ϵ : LRA→ A
ϵ = λx. let modL(y)← x in unmodR(y)

Let us trace through this expression step-by-step. First, we bind x : LRA such that
our context is now 1;x : LRA. The application of the elimination rule for L allows us
to shift x to an entry within the ∆-portion of the dual-context. We therefore obtain
y : RA;x : LRA. Finally, we apply the unmodR(−) rule which forces us to drop the Γ
portion of the context, but we are then able to use y : RA to finish the term.

In addition to merely defining the unit and the counit, we must show that they
actually assemble into an internal adjunction i.e., that they satisfy the triangle identities:

(x : RA)→ x = modR(ϵ unmodR(η(x)))

(x : LA)→ x = let modL(y)← x in ϵmodL(η(y))

The first law follows by reflexivity; the two terms are definitionally equal:

modR(ϵ unmodR(η(x)))

= modR(ϵ unmodR(modR(modL(x))))



Dual-context type theories 78

= modR(ϵmodL(x))

= modR(let modL(y)← modL(x) in unmodR(y))

= modR(unmodR(x))

= x

The second equation is not definitional, but it does follow from the elimination
principle of LA. Fix x : LA. Through the elimination principle for LA, it suffices to
show x = let modL(y)← x in ϵmodL(η(y)) by constructing such an identification after
replacing x by modL(y). After this replacement, the identification is again definitional:

let modL(y)← modL(y) in ϵmodL(η(y))

= let modL(z)← modL(η(y)) in unmodR(z)

= unmodR(η(y))

= modL(y)

We may therefore summarize the results of this section with the following theorem:

Theorem 5.4.6. The quadruple (L,R, η, ϵ) forms an adjunction.

5.4.4 The semantics of dual-context type theory

While we have not stressed the point thus far, dual-context type theory can be presented
as a generalized algebraic theory and therefore gives rise to a category of models. We
reformulate this definition in more familiar terms prior to defining the standard model
of dual-context type theory in Section 5.4.5.

As an extension of standard type theory, a model of dual-context type theory
includes a category of contexts C equipped with a terminal object modeling ordinary
contexts substitutions between them. The structure modeling of dual-contexts and
dual-substitutions also arranges into a category D—dual-substitutions include both
composition and identity—and the operation π defined on dual-substitutions defines a
functor π : D C.

In order to model types and terms for both single and dual-contexts, we require a
pair of representable natural transformations τC : PSh(C) and τD : PSh(D). These
are also necessary to state the semantic reformulation of lift(p) and factor(−;−). In
particular, define a morphism f : C to be a display map if y(f) is a pullback of τC. The
existence of lift(p) and factor(−;−) amount to the requirement that π has cartesian lifts
for all display maps.

Finally, the contexts ∆;1 are terminal objects in the fiber over ∆ and the rule for !δ
ensures that a map into this object is precisely determined by a map into ∆. In total,
we have the following:

Definition 5.4.7. A model of dual-context type theory without modal types is given by
the following data:

1. categories C and D and a functor π : D C such that C has a terminal object,

2. a pair of representable natural transformations τC : PSh(C) and τD : PSh(D),



Dual-context type theories 79

3. such that each display map in C has a cartesian lift along π,

4. and the functor π has a right adjoint T .

There is another form of context extension in dual-context type theory: extending
∆; Γ to ∆.A; Γ[p]. No further structure is needed to model this, however, as it follows
from the representability of τC and the fact that π is enough cartesian lifts:

Lemma 5.4.8. π∗τC is a representable natural transformation.

Proof. Fix A : y(D) π∗TC. We wish to find a representation for y(d)×π∗TC π
∗T•C.

First, observe that A is determined by a map A0 : y(πD) TC fitting into the
following diagram by assumption:

y(C)

y(πD)

y(p0)

T•C

TC

p1

As a cartesian fibration, we are able to lift p0 to a morphism p†0 : p∗0D D. We
claim that p∗0D is the desired representation. To this end, fix the following:

y(p∗D)

y(D)

y(p†0)

π∗T•C

π∗TC

p̂1

y(D′)

f

g

We wish to find a unique map D′ p∗D fitting in to this diagram. Transposing along
π! ⊣ π∗, we obtain a unique map b : π(D′) C such that π(d0) = p ◦ b:

y(C)

y(πD)

y(p0)

T•C

TC

p1

y(πD′)

πf

ĝ

h

The universal property of the cartesian lift p†0 then ensures that there is a unique map
h̄ laying over h such that p† ◦ h̄ = d0. Moreover, p̂1 ◦ h̄ = g by naturality of transposition.
Accordingly, h̄ is the required ‘gap map’ and its unicity follows from the unicity of h
and the universal property of p†.



Dual-context type theories 80

It remains to explain how the existence of LA and RA are reflected in a model.
Prior to this, we require a few preliminaries on the functors π∗ : PSh(C) PSh(D)
and T ∗ : PSh(C) PSh(D) induced by precomposition.

Consider the syntactic model of dual-context type theory. In this model, the presheaf
TD sends ∆; Γ to the set of types {A | ∆; Γ ⊢ A type}. Similarly, TC sends ∆ to the set of
types {A | ∆ ⊢ A type}. In this case, π∗TC sends a dual-context ∆; Γ to the set of types
{A | ∆ ⊢ A type} and T ∗TD sends ∆ to types in context ∆;1.

Recall the formation rule for RA, which takes a type context ∆;1 and produces a
type in context ∆. This formation rule, along with its substitution principle, is then
captured by a single morphism:

T ∗TD TC

More generally, we may use π∗ and T ∗ to model premises with contexts modified by
adding or dropping the Γ-zone of a dual-context. Just as we used exponentiation by
τ [A] to model extending a context by a variable of type A, we will use these functors to
specify the modal types.

We will begin with R because the presence of an η law allows us to give a particularly
elegant description. Notice that the elimination rule for RA ensures that the set of terms
∆ ⊢ M : RA is naturally isomorphic to the set of terms ∆;1 ⊢ M : A. In a general
model of dual-context type theory, all the rules of R are then captured by the following
pullback square:

T ∗T•D

T ∗TD

T•C

TC (5.17)

The bottom and top arrows of this diagram model the formation and introduction
rules of the right adjoint modality. The gap map induced by the universal property of
the pullback square models the elimination rule. The required β and η properties follow
from the properties of the gap map.

The left adjoint is more involved because, like other types without an η law, we
cannot simply bundle all the information of the connective into one pullback square.
Instead, we must specify the formation and introduction rules and only afterwards the
elimination rule. The formation and introduction rules, at least, mirror those of R and
are captured by the existence of a the following commuting square:

π∗T•C

π∗TC

T•D

TD (5.18)

Recall prior our explanation of the elimination principle for LA in Section 5.4.2: the
elimination rule forces the canonical substitution ∆.A; Γ[p] ∆; Γ.LA to be anodyne.
Just as with intensional identity types or coproducts, this elimination rule can be modeled
by a left lifting structure as described in Section 3.4.



Dual-context type theories 81

The essence of Lemma 5.4.8 is that we can model ∆.A; Γ[p] in a model by considering
a fiber of π∗τC. Accordingly, the morphism we need to lift against is canonical map
π∗T•C π∗TC ×TD T•D in the slice category PSh(D)/π∗TC. We wish for this to be
orthogonal to projections ∆; Γ.B ∆; Γ. It therefore suffices to require the following
lifting structure in PSh(D)/π∗TC:(

π∗T•C π∗TC ×TD T•D
)
⋔ (π∗TC × τD) (5.19)

Definition 5.4.9. A model of dual-context type theory consists of a model without
modal types (Definition 5.4.7) supplemented with Structures 5.17 to 5.19.

5.4.5 The standard model

While it is not strictly necessary, we devote some attention to the “standard model” of
dual-context type theory as it provides simpler examples of several phenomenon that
will become important in later chapters. This material may, however, be skipped upon
first reading.

This model of dual-context type theory is induced by an adjunction between a pair
categories equipped with classes of display maps F : (E,DE) ⇄ (F,DF) : G and is
designed so that the modal types internalize these two functors. We will assume that
both E and F have terminal objects and pullbacks along display maps and that F
preserves them. We additionally require that both F and G preserve display maps.

Our presentation of this model is heavily inspired by Zwanziger [Zwa22]. We offer a
modest improvement on op. cit. by not requiring E and F come equipped with chosen
CwF structures which the adjunctions respect. Instead, we adapt Shulman’s general
coherence result based on local universes [LW15; Shu23] to strictify E and F.

Remark 5.4.10. While we have discussed F thus far as if its a endofunctor on some
category C, it adds no complexity to allow F to be a functor between two different
categories. In fact, in many examples we will be primarily interested in the comonad
□⃝A, but it is most natural to break realize □ and ⃝ as functors between different
categories. ⋄

Recall our earlier intuition about dual-contexts: a dual context ∆; Γ corresponds
to a family Γ F (∆). We can codify such families into a category. In fact we have
already encountered this category: it is the Artin gluing Gl(F ). We recall the network
of adjoints between Gl(F ) and E and F:

E Gl(F ) F

j∗

j∗
j!

i∗

i∗

Remark 5.4.11. The existence of j! is not automatic; its existence is a consequence of F
being a left adjoint. ⋄

We further recall that j∗ is a cartesian fibration, and i∗ is an LCC functor.
Some care is required to produce the representable natural transformations of terms

and types. We will take define the universe of types over E to be the standard local



Dual-context type theories 82

universes construction τE. In particular, TE(A) consists of sets of diagrams of the following
shape in E where p ∈ DE:

A V

U

p

We require a slightly more complex construction for the universe of types over
dual-contexts. Essentially, we pull the universe of types in F along i∗. Accordingly,
TGl(F )

(
X1 F (X0)

)
consists of sets of diagrams of the following shape in F with

p ∈ DF:

X1 V

U

p

Lemma 5.4.12. (E,Gl(F ), τE, τGl(F )) is a model of dual-context type theory without
modal types.

Proof. Recalling that F preserves display maps and F has pullbacks along display maps,
we may argue that j∗ has cartesian lifts of maps in DF. We have already noted that j∗

has a right adjoint.
We have already shown that τE is representable. It remains only to show that

τGl(F ) = (i∗)∗τF is representable. This end, fix A : y(X) TGl(F ).
By definition of left Kan extension, (i∗)!y(Z) ∼= y(i∗Z) and by manipulating adjoints,

we further observe that (i∗)∗y(Z) ∼= y(i∗Z). Taking these two facts into consideration,
we may factor A through the unit of the adjunction (i∗)! ⊣ (i∗)∗. Applying the pullback
lemma, we are reduced to showing that the left-hand square is a pullback in the following
diagram:

Z

y(X)

W

y(i∗i
∗X)

(i∗)∗T•F

(i∗)∗TF

To this end, let us first observe that W ∼= y(i∗Y ) for some p : Y i∗X ∈ DF as a
fiber of τF over a representable object. It therefore suffices to argue that i∗Y ×i∗i∗X X
exists in Gl(F ). Unfolding, we are able to realize this limit with Y F (j∗X).

Remark 5.4.13. While we have chosen to define context extensions over Gl(F ) ab-
stractly, one could also give a direct definition sending a context X F (A) and a type(
X V ,U V

)
to X ×V U F (A). The reader may find it instructive to verify that

the more abstract construction given above yields the same result. ⋄

It remains only to show that this model supports modal types. We will begin with
the right adjoint modality as it is easier to construct.

Lemma 5.4.14. (E,Gl(F ), τE, τGl(F )) supports right adjoint modalities.



Dual-context type theories 83

Proof. We must construct a diagram in the shape of Structure 5.17:

(j∗)
∗T•Gl(F )

(j∗)
∗TGl(F )

T•E

TE

To this end, recall that τGl(F )
∼= (i∗)!τF and (j∗)

∗ = (j!)!. Accordingly, we may

replace the left-hand vertical map in this diagram with (j! ◦ i∗)!τF ∼= G!τF ∼= F ∗τF.
We now directly define a natural transformation α : F ∗τF τE. The component at

C sends a type to its transpose along F ⊣ G:

α
(
F (X) V ,U V

)
=
(
X G(V ), G(U) G(V )

)
Note that G preserves display maps, so α sends a local universe to a valid local universe.
The naturality of transposition ensures that this assignment is natural in C.

We can directly check that the elements of these two types are naturally isomorphic—
again by transposition—whereby we obtain the required pullback:

F ∗T•F

F ∗TF

T•E

TEα

Lemma 5.4.15. (E,Gl(F ), τE, τGl(F )) supports left adjoint modalities.

Proof. We must exhibit Structures 5.18 and 5.19. We begin with Structure 5.18. We
must construct a diagram of the following shape:

(j∗)∗T•E

(j∗)∗TE

T•Gl(F )

TGl(F )

By rearranging and transposing with the various adjoints involved, it suffices to
produce the following:

T•E

TE

(i∗ ◦ j∗)∗T•F

(i∗ ◦ j∗)∗TF



Dual-context type theories 84

However, i∗ ◦ j∗ = F . So we may once again simplify this diagram to

T•E

TE

F ∗T•F

F ∗TF

We define directly natural transformations α : TE F ∗TF and α• : T•E F ∗T•F. For
instance, we define α as follows:

α
(
A V ,U V

)
=
(
F (A) F (V ), F (U) F (V )

)
Recall that F sends display maps to display maps, so this definition is valid. The
definition of α• is similarly defined to use F .

It remains to construct Structure 5.19. We begin by unraveling this structure
slightly. It suffices to find a family of lifts to diagrams of the following shape, natural in
A : y(X) (j∗)∗TE:

y(X)×(j∗)∗TE (j∗)∗T•E

y(X)×(j∗)∗TE (j∗)∗TE ×TGl(F )
T•Gl(F )

(i∗)∗T•F

(i∗)∗TF

Let us observe that both the upper and lower left-hand corners are representable. The
first by Lemma 5.4.8 and the second by the representability of τGl(F ). We may calculate
the representations for both of these objects. To this end, let us unfold X = X1 F (X0)
and note that A is determined by a pair of maps

(
X0 V ,U V

)
in E.

For the upper-left corner, it follows from the proof of Lemma 5.4.8 that it is the carte-
sian reindexing of X over X0×V U . Inspecting j∗, this is X1 ×F (V ) F (U) F (X0 ×V U).
For the lower-left corner, the proof of Lemma 5.4.12 reveals that this limit is represented
by X1 ×F (V ) F (U) F (X0).

Returning to our original diagram, we transpose along (i∗)! ⊣ (i∗)∗ and observe that
it suffices to find a family of natural lifts for the following diagrams:

X1 ×F (V ) F (U)

X1 ×F (V ) F (U)

T•F

TF

As the left-hand map is an identity, this conclusion follows immediately.

Theorem 5.4.16. (E,Gl(F ), τE, τGl(F )) is a model of dual-context type theory.



Fitch-style/Kripke-style type theories 85

5.4.6 Conclusions

Dual-context type theory allows us to extend type theory with a pair of adjoint modalities
and the resulting theory is quite usable. This is apparent not just from the small examples
carried out in Section 5.4.3, but from the larger examples carried out in related theories
in the literature [Lic+18; Shu18]. Indeed, returning to our original motivation from
Section 5.1, Licata et al. [Lic+18] formalized their construction of a univalent universe
in an extension of Agda with a modality presented in a similar style [Vez18]. Concretely,
the ♭ modality used in this formalization can be encoded in dual-context type theory as
follows:

♭A = □⃝A

Moreover, while we are not able to interpret the theory into exactly a pair of categories
linked by an adjunction, the model given in Section 5.4.5 gives a good approximation.
Importantly, it is at least theoretically to unfold statements in dual-context type theory
to obtain actual constructions in a pair of categories, even if this process may be complex
in some cases.

Finally, while we have not examined the metatheory of this system, it seems likely
many of the desirable properties one might expect from type theory (normalization,
canonicity, decidable type-checking, etc.) will hold.

The limitations of dual-context type theory, however, becomes apparent when we
consider extending the theory with more than just an adjoint pair of modality. The key
insight of dual-context type theory was to rectify Rule 5.4 by ensuring that each context
could be decomposed into an F -portion ∆ and a non-F portion Γ. If we begin to add
more modalities, the complexity of the context structure explodes. If we have to consider
F0 and F1, we will require different contexts allowing us to interpret Rule 5.4 for F0,
F1, F0 ◦ F1, F1 ◦ F0, etc. While this is mathematically possible—it underlays Shulman
[Shu23]—such a complex structure does not generate a usable syntax. Even in relatively
concrete cases, this is problematic: while dual-context type theories suffice for □, it is
unclear how one might scale them to □ and ▶ in such a way as to support □ ◦▶ ≃ □.

5.5 Fitch-style/Kripke-style type theories

Since the problem with scaling dual-context type theories was an explosion in the
structure necessary for each context, we might hope to regain control over contexts by
ensuring that as many choices as possible are forced or at least canonical. In particular,
the dual-context type theory ensures that each dual-context Γ is associated to some
∆ by a map p : Γ F (∆). We have previously argued its impractical for this map
to be uniquely determined, but we could argue that it is at least initial among such
maps. That is, for any alternative ∆′ and any map p′ : Γ F (∆′) there is a unique
map f : ∆ ∆′ fitting into the following triangle:

Γ

F (∆) F (∆′)
F (f)

(5.20)



Fitch-style/Kripke-style type theories 86

The crucial point is that there is a unique-up-to-isomorphism choice of initial objects,
whereby it becomes unnecessary to record ∆ as part of the structure of Γ. The existence
of sufficiently many such maps can be rephrased directly in terms of F :

Lemma 5.5.1. Fix F : C D. There exists an initial C F (D) for each C : C if and
only if F is a right adjoint.

Proof. As previously argued, given C there is a contractible choice of objects D and
maps ηC : C F (D) initial among such maps. Set L(C) = D and define the unit of
the purported adjunction at C to be ηC . Calculation shows that L is functorial and η is
the unit of an adjunction.

Accordingly, we arrive at the intuition that we may add more modalities to our
theory without the contexts becoming more complex provided we can ensure that each
modality behaves like a right adjoint.

Why have we opted for the initial such map rather than e.g., the terminal map?
Indeed such a terminal map always exists: Γ 1 ∼= F (1). This map, however, is
considerably less useful; it corresponds to the following rule:

1 ⊢ A type

Γ ⊢ F (A) type

Indeed, if we return to Rule 5.4, the existence of an initial map Γ F (∆) corresponds
exactly to having a ‘best’ delayed substitution to chose as a premise of this rule. Rule 5.5
together with Diagram 5.20 mean that any other choice of delayed substitution can be
recovered if we choose L(Γ) and η. Indeed, suppose we are given ∆ and δ : Γ F (∆),
then there exists a unique u such that

F (A[u])[η] = F (A)[δ]

To a first approximation, therefore, the left adjoint to F gives a best possible choice
of delayed substitution—and the right adjoint gives the worst.

5.5.1 From right adjoints to dependent right adjoints

We now wish to shape this intuition sketched above into a workable syntax for type
theory. In particular, we will follow Birkedal et al. [Bir+20] and present a dependent
type theory extended with a single modality □. The discussion above indicated that
we should view □ as a right adjoint, so we will force this to be the case by extending
contexts with a left adjoint action L(−).

In the dual-context case, the left adjoint existed—as the map ∆; Γ 7→ ∆—but we did
not work with this characterization explicitly. In this calculus, we will not attempt to
specify the left adjoint as an operation mapping a telescope of variables to a telescope
of variables. Instead, we will directly add a new context former to represent the left
adjoint and require sufficient structure to treat it as such. In particular, we will entirely



Fitch-style/Kripke-style type theories 87

disregard how this left adjoint might ‘compute’ in specific examples:

⊢ Γ cx

⊢ L(Γ) cx

⊢ Γ,∆ cx Γ ⊢ δ : ∆

L(∆) ⊢ L(δ) : L(∆)

⊢ Γ cx

L(Γ) ⊢ L(id) = id : L(Γ)

⊢ Γ0,Γ1,Γ2 cx Γ0 ⊢ γ1 : Γ1 Γ1 ⊢ γ2 : Γ2

L(Γ0) ⊢ L(γ2 ◦ γ1) = L(γ2) ◦ L(γ1) : L(Γ2)

These rules can be quickly summarized by stating that we have “added a new
functorial context former L”.

The rules for modalities follow the pattern indicated above with the introduction
and elimination rules for □ becoming ‘transposition’ of a sort:

L(Γ) ⊢ A type

Γ ⊢ □A type

L(Γ) ⊢M : A

Γ ⊢ mod(A) : □A

Γ ⊢M : □A

L(Γ) ⊢ unmod(M) : A

L(Γ) ⊢M : A

L(Γ) ⊢ unmod(mod(M)) = M : A

Γ ⊢M : □A

Γ ⊢ mod(unmod(M)) = M : A

(□A)[δ] = □(A[L(δ)]) mod(M)[δ] = mod(M [L(δ)])

unmod(M)[L(δ)] = unmod(M [δ])

The substitution rules use the functorial action of L(−) to commute a substitution
past the formation and introduction rules. One small oddity is the formation rule which
ensures states that □A is a type in context Γ just when A is a type in context L(Γ).
That is, □ is not quite a “functor” on the category of types. This, however, is to be
expected in a situation where □ is not assumed to be fibered and therefore cannot be
presented as a functor on the universe.

Remark 5.5.2. In fact, all of these rules are derivable in the calculus of Section 5.3 with
the additional assumption of an initial map η : Γ F (L(Γ)) for each Γ. For instance,
we define □A = F (A)[η] and the above substitution rule follows from the naturality of η:

(□A)[δ] = F (A)[η ◦ δ] = F (A)[F (L(δ)) ◦ η] = F (A[δ])[η] = □(A[δ])

The other connectives and equations are derivable from similar considerations. ⋄

The modality itself does not act on contexts, only on types. This was also the case
for dual-context type theory, but this restriction prevents us from simply defining L(−)
as a left adjoint: what would it be a left adjoint to? We therefore arrive at the notion of
a dependent adjunction.

Definition 5.5.3. A dependent adjunction consists of three components: a functor F
on contexts, a type former G mapping types F (Γ) ⊢ A type to a type Γ ⊢ G(A) type, and
a natural bijection of terms taken up to definitional equality:

{M | F (Γ) ⊢M : A} ∼= {N | Γ ⊢ N : G(A)}



Fitch-style/Kripke-style type theories 88

We may concisely summarize the rules above by saying that they freely extend type
theory with a dependent adjunction.

Dependent adjunctions are nearly as old as dual-contexts. They first appeared in
Davies and Pfenning [DP01] but without the recognition of the universal property they
enjoyed. They have experienced renewed interest, however, with the work on Clocked
Type Theory [BGM17] and parallel work by Clouston [Clo18]. Both the term “dependent
right adjoint” and the full generalization to dependent types are due to Birkedal et al.
[Bir+20]. Clouston [Clo18] refers to modalities presented in this style as Fitch-style
modalities, while other work [HP23] has referred to them as Kripke-style modalities.

The main advantage of using dependent adjunctions to structure modalities is
the flexibility. In order to work fluidly with multiple modalities, one need only add
correspondingly many dependent adjunctions. There is, however, a significant flaw in
working with the calculus presented above. Consider again the elimination rule for □:

Γ ⊢M : □A

L(Γ) ⊢ unmod(M) : A
(5.21)

Unfortunately, this rule exhibits exactly the same deficiencies as Rule 5.4. There is
no way to equip this rule with a general substitution principle. We have a limited form
of substitution—unmod(M)[L(δ)] = unmod(M [δ])—but no more. The result is nearly
the same as with Section 5.3, though we have shifted the problem from the formation
and introduction rules to elimination rules.

Two possible solutions present themselves if we are to continue using Rule 5.21:

1. We can attempt to make an argument based on the special properties of L(−) in the
category of syntactic contexts and substitutions that all substitutions ∆ L(Γ)
can be factored in some canonical way.

2. One could carry out the analysis indicated above but then axiomatize these
properties directly to ensure that the additional structure is always present.

Historically, the first work on dependent Fitch-style type theories opted for the first
approach [BGM17; Bir+20; GSB19a]. Examining the syntactic category of contexts and
substitutions, one may directly characterize the substitutions ∆ L(Γ) and concoct a
special substitution principle based on this characterization. Birkedal et al. [Bir+20], for
instance, show that in their calculus the only such substitutions are generated by a series
of weakenings followed by L(γ) for some unique γ. In order to ensure that unmod(M)
admits a substitution principle, it therefore suffices to manually close Rule 5.21 under
weakening:

Γ ⊢M : □A

L(Γ).B0. . . . .Bn ⊢ unmod(M) : A[pn]

This process yields a calculus which can be implemented, but the process by which
it was derived was highly ad-hoc and syntactic. Consequently, the resulting calculus is
ill-adapted to work as an internal language. Just because every syntactic substitution
∆ L(Γ) takes the shape described above does not mean that this holds in all models.
In fact, such a result holds in hardly any models. More pressingly, this analysis is rather
intricate and must be redone as the modalities are altered. The complexity also increases



Fitch-style/Kripke-style type theories 89

quickly: no rule similar to the above is known for a system which includes both ▶ and
□.

We will later explore what hidden structures permits this argument in the syntactic
model in order to generalize these arguments in Section 5.6. Before doing so, however,
we will discuss the semantics of the rules outlined above and ignore the shortcomings of
the actual syntax. We refer to the theory due to Birkedal et al. [Bir+20] extending type
theory with a dependent adjunction as DRA.

5.5.2 Models of Fitch-style type theory

A major appeal of Fitch-style type theories is their clean expression in semantics. The
additional structure atop of the standard requirements of a model of type theory breaks
into two separate components: a functor on the category of contexts to model L(−) and
a type former to model modal types.

In order to package up these components, we begin by giving a categorical reformu-
lation of Definition 5.5.3. As it adds no real additional complexity, we generalize to a
dependent adjunction linking two models of type theory.

Definition 5.5.4. Given two models of type theory (C, τC) and (D, τD) a dependent
adjunction from C to D consists of the following data:

1. a functor L : D C,

2. and maps R : F ∗TC TD and r : F ∗T•C T•D assembling into the following:

L∗T•C

L∗TC

F ∗τC

T•D

TD

r

τD

R

Remark 5.5.5. If one unfolds the above definition into the standard language of CwFs,
the existence of the above pullback square enforces the existence of a natural bijection
between T•(D,RA) and T•(L(D), A) for all D : D and A : TC(L(D)) ⋄

Example 5.5.6. The structure necessary to model the right adjoint in Section 5.4.4 is
equivalent to asking for a dependent adjunction from dual-contexts to contexts.

With this definition in place, we can easily formulate a model of the Fitch-style type
theory described above:

Definition 5.5.7. A model of Fitch-style type theory consists of a model of type theory
(C, τ) together with a dependent adjunction from (C, τ) to itself.



Fitch-style/Kripke-style type theories 90

5.5.3 The standard model

While a dependent adjunction does not explicitly require an adjunction of contexts,
most examples of dependent adjunctions do arise in this manner. We outline here
what conditions on a category with display maps are necessary to obtain a dependent
adjunction from an ordinary endoadjunction. Accordingly, fix a category with display
maps (C,D) and an adjunction L ⊣ R with L,R : C C. Our main result is the
following:

Theorem 5.5.8. The local universes construction on (C,D) induces a model of Fitch-
style type theory if R sends display maps to display maps.

Remark 5.5.9. This result is a modest improvement over the local universes construction
presented by Birkedal et al. [Bir+20]. In particular, our result allows for models in which
not all morphisms are considered display maps. The substance of the proof is, however,
essentially the same. ⋄

In order to establish this result, it suffices to show the following:

Lemma 5.5.10. The ordinary adjunction L ⊣ R induces a dependent adjunction if R
preserves display maps.

Proof. We use L for the functor on contexts C C. It therefore suffices to produce
maps R and r fitting into the following diagram:

L∗T•

L∗T

L∗τ

T•

T

r

τ

R

In the above, τ : T• T is the representable map induced by the local universes
construction.

We define the component of R at C : C as follows:

RC

(
L(C) B,E B

)
=
(
C R(B), R(E) R(B)

)
This operation is easily seen to be natural in C as transposition is natural. The definition
of r is similar:

rC
(
L(C) E,E B

)
=
(
C R(E), R(E) R(B)

)
Direct calculation shows that R and r fit into a diagram of the required shape so it

remains only to check that this diagram is a pullback. To this end, let us observe that
the pullback (L∗T ×T T•)(C) is comprised of triples:{(

f : L(C) B, p : E B, g : C R(E)
) ∣∣ p ◦ ĝ = f

}
The unique gap map induced by r then sends the pair

(
f : L(C) E, p : E B

)
to (p ◦ f, p, f̂). As this defines a bijection on each component, the gap map is invertible
and the diagram is a pullback.



Parametric adjoints 91

5.5.4 Conclusions

In fact, all of the modalities mentioned in Section 5.1 form dependent right adjoints.
They—along with several others—are considered as motivating examples by Birkedal
et al. [Bir+20]. Accordingly, so long as we wish to consider only one modality at a time,
Fitch-style type theory can be used effectively with the standard model providing a
connection to the intended semantics.

One can also consider extending type theory with a pair of dependent right adjoints
to host a pair of modalities. Semantically, there is no issue with this approach. The
standard model fluidly adapts to interpret an arbitrary number of dependent adjunctions
from C to itself. While this offers an improvement over dual-context type theories where
both the syntax and the semantics where tied to working with a single modality, it does
not completely solve the problem.

In particular, the problems posed by the elimination rule cannot be ignored forever.
While with only one modality it is possible to find an adhoc adaptation suitable for
obtaining a substitution law, it seems a practical impossibility to do this with a pair
of modalities. The difficulties only compound if one wishes to allow the modalities to
interact as in the case of □ and ▶.

Our final step in this chapter, therefore, is to consider the additional structure
required to rectify Rule 5.21.

5.6 Parametric adjoints

In this section we describe a solution to the issues presented by Rule 5.21 proposed by
Gratzer et al. [Gra+22]. Let us recall the problematic rule:

Γ ⊢M : □A

L(Γ) ⊢ unmod(M) : A

If we wanted to describe a substitution principle for this rule as-is, we would have to
somehow show that an arbitrary substitution ∆ L(Γ) can be presented uniquely as
L(∆′) L(Γ). This issue closely mirrors the original issues discussed in Section 5.3 and,
once again, there is no reason to suppose such a presentation exists in general. Unlike
Rule 5.4 however, the situation is nearly ideal in the syntactic category for DRA where
there was a universal factorization of each substitution into one in the image of L(−).
Specifically, given ∆ ⊢ γ : L(Γ) we claimed that γ could be decomposed into a series of
weakening operations combined with a substitution L(γ′) for some unique γ′. In some
sense, the paucity of maps into L(−) meant that this problem could be circumvented.

Stepping back from the particular details involving weakening, the core of this result
was that given a substitution ∆ ⊢ γ : L(Γ) there existed a context U(∆, γ) together with
a substitution ∆ L(U(∆, γ)) initial among substitutions ∆ L(−). This condition
looks suspiciously like a requirement that L(−) form a right adjoint, but the universal
object U(∆, γ) is allowed to depend on γ in addition to ∆. This slightly weaker structure
is called a parametric right adjoint:

Definition 5.6.1. Given two categories C and D such that C has a terminal object,
a parametric right adjoint G : C D is a functor such that the induced functor
C D/G(1) is a right adjoint.



Parametric adjoints 92

Example 5.6.2. In a category with finite products, A×− is a parametric right adjoint
(see Section 5.6.1).

In other words, a parametric adjunction C D consists of a normal functor G :
C D together with a left adjoint which applies not to D, but to D/G(1). Returning
to our earlier examination of L(−), the observations regarding L(−) in the syntactic
category can be summarized as follows:

Theorem 5.6.3. In the category of (syntactic) contexts and substitutions for DRA, L(−)
is a parametric right adjoint.

Remark 5.6.4. There is a small leap from our original discussion to the requirements of
a parametric right adjoint; a PRA requires a substitution ∆ L(1) whereas originally
we considered a map ∆ L(Γ) for some Γ. In fact, the coherences required on U(∆, γ)
will allow us to reduce to the case where Γ = 1. ⋄

The proof is carried out by careful induction and analysis of the rules generating
substitutions in DRA. A version of Theorem 5.6.3 appears in all discussions for Fitch-style
type theories [BGM17; Bir+20; GSB19a]. In fact, all of the careful syntactic analysis
carried out in these theories to recover a form of the substitution lemma can be packaged
into proving a version of this theorem.

Phrased differently, having a PRA is sufficient to present a tamer version of the
elimination rule. We can extend Fitch-style type theory such that L(−) forms the right
half of a parametric adjunction and thereby recover a well-behaved calculus. Unlike
in the concrete cases above, we will not require its left adjoint (U(∆, γ)) to have any
additional properties. In this sense, the passage from DRA to this calculus mirrors the
passage from AdjTT to DRA; we are axiomatizing an emergent property of the category
of contexts to reduce a syntactic theorem to a definition.

Let us now demonstrate that freely adding a parametric adjunction is sufficient.
Taking advantage of the new structure, we reformulate the elimination rule as follows:

U(Γ, ρ) ⊢M : □A Γ ⊢ ρ : L(1)

Γ ⊢ unmod(M,ρ) : A[η]
(5.22)

∆ ⊢ γ : Γ U(Γ, ρ) ⊢M : □A Γ ⊢ ρ : L(1)

∆ ⊢ unmod(M,ρ)[γ] = unmod(M [U(γ, ρ)], ρ ◦ γ) : A[L(U(γ, r)) ◦ η]
(5.23)

In the conclusion of the first rule, η is the unit of the parametric adjunction. Note
that, while not present in our syntax, the unit depends on an object of contexts sliced
over L(1). In particular, η depends on both Γ and ρ.

The payoff of this reformulation is in the second rule. The substitution principle now
flows directly from the functoriality of U(−,−). The situation is essentially the same
as Section 5.5, but now repeated for the elimination rule rather than the introduction
rule. We have ensured the existence of universal factorizations and are able to produce a
substitution rule from them.

Fortunately, unlike the situation in Section 5.5 the addition of a PRA is sufficient;
adapting the elimination rule with this additional structure does not cause problems for
any other portions of the theory. So, while a type theory extended with just a dependent



Parametric adjoints 93

adjunction still suffers from a poorly behaved elimination rule, adding an additional
parametric adjunction suffices to rectify the theory.

We can rephrase the β and η rules associated with □A in terms of this new elimination
principle:

Γ ⊢ ρ : L(1) L(U(Γ, ρ)) ⊢M : A

Γ ⊢ unmod(mod(M), ρ) = M [η] : A[η]
(5.24)

Γ ⊢M : □A

Γ ⊢ mod(unmod(M [ϵ], L(!))) = M : □A
(5.25)

Lemma 5.6.5. If L(−) is a PRA then Rule 5.21 and Rule 5.22 are inter-derivable.

Proof. We begin by showing how Rule 5.21 is encoded through Rule 5.22:

Γ ⊢ ! : 1

L(Γ) ⊢ L(!) : L(1)

Γ ⊢M : □A

U(L(Γ), L(!)) ⊢M [ϵ] : □A[L(ϵ)]

L(Γ) ⊢ unmod(M) ≜ unmod(M [ϵ], L(1)) : A

We note that one of the triangle laws of an adjunction is used to ensure that
the conclusion has type A; the unit and counit substitutions applied to it cancel out.
The β and η laws for unmod(M) follow from the corresponding principles given to
unmod(M [ϵ], L(!)).

For the reverse, we define unmod(M,ρ) as follows:

Γ ⊢ ρ : L(1)

U(Γ, r) ⊢M : A

L(U(Γ, r)) ⊢ unmod(M) : A

Γ ⊢ unmod(M)[η] : A[η]

Γ ⊢ unmod(M,ρ) ≜ unmod(M)[η] : A[η]

Once again, both the substitution principle and computational equations follow
directly from this definition and the corresponding equations on unmod(M).

We refer to the type theory extending Fitch-style type theory with a parametric
adjunction as parametric Fitch-style type theory, shortened to FitchTT following Gratzer
et al. [Gra+22].

Remark 5.6.6. We are now able to see why the dependent adjunction for R in Section 5.4
has not caused the syntactic issues discussed in Section 5.5; R is a right adjoint so its
action on contexts is a parametric right adjoint. The left adjoint to this context action
sends ∆; Γ to ∆. In fact, the standard fix for the elimination rule—often justified as
‘closing the rule under weakening’—is precisely the specialization of Rule 5.22 in this
specific case:

∆ ⊢M : RA

∆; Γ ⊢ unmodR(M) : A

Notice that the substitution premise has vanished in this case as the context action of R
preserves the terminal context. ⋄



Parametric adjoints 94

5.6.1 Rationalizing parametric adjunctions

While Theorem 5.6.3 and Lemma 5.6.5 assure us that parametric adjunctions arise
in practice and offer a clean way to reformulate Fitch-style type theory, they do not
give us much in the way of intuition for this extra operation on contexts. Moreover,
while unmod(M,ρ) may behave well as a rule within type theory, it is a surprising to
see a substitution appearing directly in a term. While we have introduced parametric
adjunctions as a just-so fix for Rule 5.21, there is another path to Rule 5.22 which is
potentially more intuitive.

Let us consider a particular dependent right adjoint: C→ − for any closed type C.
The left half of this dependent adjunction is given by context extension L(Γ) = Γ.C.
Consider the rules of a dependent right adjunction specialized to this situation:

Γ.C ⊢M : A

Γ ⊢ mod(M) : C→ A

Γ ⊢M : C→ A

Γ.C ⊢ unmod(M) : A

The introduction rule specialized in this situation is immediately recognizable: it
is the standard λ-rule used to introduce dependent products. On the other hand, the
elimination rule is less standard. It is a version of the application rule, but a highly
specialized form. It applies a function to the variable in the context.4 This rule is at least
inter-derivable with the standard application: given a term Γ ⊢ N : C, one can construct
a substitution Γ ⊢ id.N : Γ.C and then reindex unmod(M) along this substitution. In
fact, terms of C in context Γ correspond precisely with substitutions Γ 1.C so the
typical application rule can be artificially rephrased as follows:

Γ ⊢M : C→ A Γ ⊢ ρ : 1.C

Γ ⊢M(ρ) : A[id.v[ρ ◦ !]]

One final observation is necessary.

Lemma 5.6.7. The functor −.C is a parametric right adjoint; its left adjoint sends
Γ 1.C to Γ.

Proof. This is a rephrasing of the well-known fact that pullback is right adjoint to the
forgetful functor C/C C.

With this fact to hand, we can see the lightly modified application presented above
is precisely Rule 5.22 specialized to this particular dependent adjunction. To crystallize
the above into a slogan, dependent adjunctions give us sufficient structure to model
the λ-rule and the additional PRA structure is exactly what is required to support the
standard application rule. This applies even to standard dependent products, though
the role played by parametric adjunctions was not detected until Gratzer et al. [Gra+22]
attempted to generalize the application rule to other modalities. This model also offers
some intuition for the role played by ρ in unmod(M,ρ); it is a generalized argument
being supplied to M , an element of a generalized function.

4This rule is sometimes referred to as the unlam rule.



Parametric adjoints 95

5.6.2 The semantics of parametric Fitch-style type theory

Fortunately, extending the semantics of Fitch-style type theory to account for the PRA
structure on contexts requires only minor adaptations. In particular, Lemma 5.6.5
assures us that there is no need to alter the rules governing terms and types. In fact,
the only extension needed is to require the left adjoint of the dependent adjunction to
be a parametric right adjoint.

Definition 5.6.8. A model of parametric Fitch-style type theory consists of the following:

1. a model of type theory C, τ : T• T : PSh(C),

2. a dependent adjunction L,R from (C, τ) to itself,

3. a functor U : C/L(1) C shaping L into a parametric right adjoint.

In particular, any model of parametric Fitch-style type theory is a model of Fitch-style
type theory and the converse holds if the left adjoint is a PRA. This last point together
with the initiality of syntax can be used to quickly derive the conservativity of parametric
Fitch-style type theory over ordinary Fitch-style type theory.

Theorem 5.6.9. A judgment J of DRA is derivable if and only if the corresponding
judgment is derivable in FitchTT.

Proof. As observed in Theorem 5.6.3, the left half of the dependent adjunction in the
syntax of Fitch-style type theory is a PRA. Accordingly, the syntactic model of Fitch-
style type theory SDRA is a model of parametric Fitch-style type theory. The initiality of
syntax for parametric Fitch-style type theory then gives a morphism of syntactic models
f : SFitchTT SDRA.

Conversely, SFitchTT is clearly a model of Fitch-style type theory, so we obtain a
morphism of models (of Fitch-style type theory) g : SDRA SFitchTT. We can regard
f as a morphism between Fitch-style type theories, whereby f ◦ g = id by initiality.
Unfolding, this yields the claimed bi-implication.

5.6.3 Two interacting modalities through parametric Fitch-style type theory

We are finally in a position to address one of our original motivations in this chapter:
a type theory capable of supporting both □ and ▶ while allowing them to interact.
Essentially, now that we have isolated a set of rules for a single modality which satisfy
the necessary substitution principles, we may directly add two modalities.

To this end, we could extend the calculus of contexts and substitutions with two
parametric adjunctions (−/(− : □),−.{□}) and (−/(− : ▶),−.{▶}). We may then
further add modal types with the formation and introduction rules first put forth in DRA
along with Rule 5.22 for the elimination principle. We will use □ for the DRA associated
to −.{□} and ▶ for the other. We then obtain the following rules among others:

Γ.{□} ⊢M : A

Γ ⊢ mod□(M) : □A

Γ.{▶} ⊢M : A

Γ ⊢ mod▶(M) : ▶A



Parametric adjoints 96

This alone yields a workable calculus with two modalities, but neither modality
enjoys anything in addition to the standard properties available to any dependent right
adjoint—essentially only axiom K.

Ideally, we would ensure that ▶ has a point, □ is an idempotent comonad, and that
□ ◦▶ ≃ □. While we could directly postulate these properties, it is most expeditious to
force the left adjoints to interact appropriately.

In particular, rather than adding left adjoints for only □ and ▶, we will add left
adjoints for all their possible composites. By adding equations and further substitutions
between these composites, we are able to model all the aforementioned structure. It
is helpful to describe this process slightly more abstractly using a small amount of
2-category theory.

Definition 5.6.10. Let M be the 2-category generated by the following data:

1. One object m.

2. Two morphisms ℓ and b subject to the identifications b ◦ b = b ◦ ℓ = b.

3. A pair 2-cells id ℓ and b id such that any pair of 2-cells with the same
boundary are equal.

As a matter of convenience, we will write µ ≤ ν to indicate the (necessarily unique)
2-cell from µ to ν when one exists.

Rather than asking for a pair of functors on the category of contexts representing left
adjoints to □ and ▶, we will now ask for a 2-functor F : Mcoop Cat5 subject to the
constraint that F (m) is the category of contexts. Unfolding, this ensures that each 1-cell
µ in M is assigned to a functor in the category of contexts −.{µ} and the 2-cells are
assigned to natural transformations between them. Rather than individually specifying
the PRA structure and DRAs for these modalities, we may now do so schematically by
requiring that for each µ the functor −.{µ} is a PRA with left adjoint −/(− : µ) with
unit and counit η and ϵ. The modalities are then added through the following rules:

Γ.{µ} ⊢ A type

Γ ⊢ ⟨µ | A⟩ type
Γ.{µ} ⊢M : A

Γ ⊢ modµ(M) : ⟨µ | A⟩
Γ ⊢ ρ : 1.{µ} Γ/(ρ : µ) ⊢M : ⟨µ | A⟩

Γ ⊢ unmodµ(M,ρ) : A[η]

In particular, our generating 1-cells of ℓ and f allow us to recover ▶A = ⟨ℓ | A⟩ and
□A = ⟨b | A⟩. Crucially, no further coherences are needed to relate these modal types
or the parametric left adjoints; all relevant structure is encoded by −.{−}. To see this
in action, let us argue that □▶A ≃ □A. We will proceed by constructing a pair of
definitionally inverse functions:

l : □▶A→ □A
l = λmodb(unmodℓ(unmodf (v[ϵ], !.{b})[ϵ], !.{ℓ}))

r : □A→ □▶A
r = λmodb(modℓ(unmodb(v[ϵ], !.{ℓ})))

5Recall that if C is a 2-category Ccoop is the 2-category obtained by reversing both the 1- and 2-cells.



Parametric adjoints 97

Routine computation with the β and η rules for modalities then ensures that these
two definitions are mutually inverse.

Remark 5.6.11. Note, however, that this 2-categorical abstraction does not enable us
to encode Löb induction. This is intensional; as we shall see in Chapter 9, the addition
of Löb induction disrupts normalization while the set of operations expressible using
the 2-categorical framework described above does not. Indeed, in Chapter 8 we shall
prove that a type theory similarly instrumented by an arbitrary 2-category satisfies
normalization irrespective of the choice of 2-category. ⋄

To conclude the discussion of this example, we must argue that the standard model of
synthetic guarded domain theory in the topos of trees PSh(ω) supports a model of the
above calculus. In particular, we wish to show that this calculus can be used to capture
the salient features of PSh(ω) that cannot be modeled in ordinary type theory. We
emphasize that while the use of PSh(ω) as a model of guarded recursion is well-known,
a suitable internal language for carrying out guarded domain theory within PSh(ω) is
not. The existence of this model, put forward first by Gratzer et al. [Gra+22], is the
first incorporate both □ and ▶ as dependent right adjoints.

To this end, it suffices to argue that there is a 2-functor I : M Cat such that (1)
I(m) = PSh(ω) (2) each I(µ) is a PRA and the left half of a dependent adjunction and
(3) the right adjoints of I(f) and I(ℓ) are □ and ▶, respectively. First, note that by
Lemma 5.5.10, it suffices to show (2’) that I(µ) is a left adjoint and a PRA for each µ.

To actually define I, first recall that PSh(−) induces a 2-functor Catcoop Cat
sending a functor f to the functor induced by precomposition f∗. We then define
I = PSh(i(−)) where i : M Cat is in turn defined as follows:

i(m) = ω i(ℓ)(n) = n+ 1 i(b)( ) = 0

It is clear that I(m) = PSh(ω). Moreover, b∗ is both a left and right adjoint so
(2’) is automatically satisfied. The final condition follows more-or-less directly from the
definitions of □ and ▶ given in e.g. by Birkedal et al. [Bir+12].

Theorem 5.6.12. FitchTT induces a modal type theory capable of expressing both ▶
and □ while also enjoying the expected interpretation in PSh(ω).

In fact, FitchTT can be parameterized in this manner by an arbitrary 2-category,
so that Theorem 5.6.12 becomes a special case of a far more general result concerning
models of FitchTT in presheaf categories. This idea is fully developed by Gratzer et al.
[Gra+22], but we content ourselves with this special case.

While the above example and op. cit. more generally have shown that FitchTT
is a flexible and well-behaved theory when it is applicable, we have traveled quite a
distance from the situation in Section 5.3. We have gone from requiring a single lex
functor preserving display maps to requiring nearly an adjoint triple to present a single
modality. Accordingly, while the resulting calculus is quite well-behaved, it is far more
restrictive; not every functor worth including in type theory lays at the end of an adjoint
triple. While FitchTT may suffice for guarded recursion, we are therefore naturally led
to ask whether all of this additional structure is truly necessary to obtain a syntactically
well-behaved modal type theory.



Conclusions 98

5.7 Conclusions

This chapter has been a march through several closely related dependent type theories
and we can now see with the benefit of hindsight that each type theory put forward
an answer to the following question: what conditions can we impose upon a functor to
internalize it within type theory with minimal complications?

For instance, if we assume the modality is fibered, no special alterations to the type
theory need to be made. Once we discard this assumption—a necessity for certain
examples—we are led to a whole menagerie of different structures.

1. We can simply accept the need to work and manipulate substitutions directly,
though doing so sacrifices much of the convenience of type theory.

2. If we restrict attention to an adjunction whose left adjoint is lex, the situation can
be improved with AdjTT—at the cost of having a slightly indirect relation between
the theory and intended model.

3. If we must include two unrelated modalities, AdjTT will not suffice and—inspecting
the required universal properties—we are led to impose the condition that each
modality is a dependent right adjoint. However, the resulting syntax is still poorly
behaved in general.

4. If we wish to rectify the poor syntactic behavior of plain dependent adjunctions,
we can further insist that each left adjoint is a parametric right adjoint. The result
is a working modal type theory, though with an admittedly complex syntax.

While each step from (1) to (2) to (3) to (4) is locally reasonable, there is a certain
“race to the bottom” globally; we do not wish for the pinnacle of modal type theory to
beautifully internalize arbitrary functors (which happen to be isomorphic to the identity).

In this regard, AdjTT is particularly interesting. It includes both halves of an
adjunction and presents the left adjoint in a manner superficially similar to the right
adjoint (consider the formation and introduction rules) but weakens the elimination
rule to avoid requiring an adjoint triple in its semantics. In the next two chapters, we
generalize this idea to arrive at the notion of a weak dependent right adjoint. The result
is a type theory occupying a midpoint between a theory like FitchTT and AdjTT: it can
accommodate vastly more general situations when compared with AdjTT, but requires
far less of its modalities than FitchTT.



6 MTT: multimodal type theory

Though it is painful, a certain
greater degree of generality is
called for.

Dana Scott
Advice on modal logic

In Chapter 5, we surveyed a broad array of modal type theories with each occupying
a different point in the design space. Each modal type theory can be broadly summarized
by two questions:

1. What semantic assumptions do we make of functors that are to be modalities?

2. How faithfully are these assumptions reflected in the syntax?

For instance, Fitch-style type theories like DRA [Bir+20] intend for modalities to be
realized by right adjoints, but this requirement is not fully realized in the syntax: only a
dependent right adjoint is required.

In this chapter, we introduce MTT, a theory we put forth as a canonical point in this
design space. As with DRA and FitchTT, we intend for modalities to be realized by right
adjoints but—unlike the aforementioned theories—the syntax capturing modalities is
slightly weaker. While this may appear to be a deficiency, we shall see in future examples
that this is an important feature of MTT. Crucially, MTT can incorporate arbitrary
interacting right adjoints without imposing further structure—unlike FitchTT—and
without undue syntactic burden—unlike DRA. Moreover, we shall see that it is possible
to construct models of MTT with functors that are not right adjoints, similar to AdjTT.

We begin in Section 6.1 with an introduction to MTT informally, in the way that
it will be written for the remainder of the thesis. In Section 6.2, we discuss the gritty
details of the precise syntax of MTT. We conclude the discussion of the theory of MTT
in Section 6.3 with a discussion of two key extensions to the base MTT theory: strict
internal right adjoints and crisp induction principles. Finally, in Section 6.4 we carry
out an extended study of MTT with one particular mode theory to cultivate intuition
for working in the theory.

6.1 MTT, informally

Our goal in this section is to introduce MTT as it is used on paper. Firstly, we must
note that MTT is not, properly speaking, a type theory. Rather, MTT is a function

99



MTT, informally 100

from abstract descriptions of collections of modalities—mode theories—to modal type
theories. While we will often blur the line between MTT and a given instantiation, the
difference is crucial: all of the theory of MTT, all of the metatheorems, and many of the
combinators we develop will apply irrespective of the mode theory being considered.

6.1.1 Mode theories

Accordingly, the appropriate place to begin introducing MTT is not with a modal type
theory but with a mode theory. For MTT, we will follow Licata and Shulman [LS16]
and encode our modal situation as a (strict) 2-category M. Intuitively, a mode theory
encodes the data of modal situation as follows:

1. A 0-cell of M corresponds to a mode, a distinct copy of MLTT.

2. A 1-cell µ : n m encodes a modality sending types from mode n to types of
mode m.

3. A 2-cell α : ν µ encodes a natural transformation—a family of coherent
functions—from the modal type induced by ν to that induced µ.

We will further ensure that modal types in MTT ‘respect the identity and composition’.
That is, the modal type induced by µ ◦ ν will be equivalent to the composite of the
modal types for µ and ν. Likewise, the modal type induced by id will be equivalent to
the identity modality.

Using 2-categories to realize mode theories has a number of advantages. For instance,
they shall make for convenient tools when describing the categorical semantics in
Chapter 7. Even now, however, they allow us to conveniently describe modal situations
by fixing a handful of generating 0-, 1-, and 2-cells. The established machinery of
2-categories then provide us with the appropriate mode theory.

Example 6.1.1 (A single endomodality). It is worth beginning by examining how
one encodes the simplest possible modal situation as a mode theory. Suppose we wish
to instantiate MTT with a mode theory M and thereby obtain Martin-Löf type theory
extended with one modality and no additional data. As the result should only have one
copy of Martin-Löf type theory, M will only contain one 0-cell m. The modality □ will
be induced by a 1-cell µ : m m. The lack of additional constraints on the modality
ensures that we need not add any 2-cells, but this is not a complete specification of M.

Indeed, as a 2-category, there must be some composition operator defined on M.
Choosing µ ◦ µ = µ is valid, but this will not yield a modality with no additional
constraints. Imposing µ ◦ µ = µ will force the idempotence of □. We will therefore freely
close M under composition so that it is generated as follows:

hom(m,m) = {µn | n ∈ N}

In the above, µn representing the n-fold composition of µ with itself so µn ◦ µm = µn+m

Notice that the addition of all these 1-cells does not truly affect the resulting type
theory. We will ensure that the modality induced by µn is equivalent to the n-fold iteration
of the modality induced by n. The system will therefore be a conservative extension of
MLTT extended with just a single modality.



MTT, informally 101

Example 6.1.2. Suppose we wish to extend the prior example so that the resulting
instantiation of MTT has a pointed modality, a natural transformation from the identity
to □. This is readily captured by extending the mode theory in the prior example with a
generating 2-cell id µ. Again notice that the existence of a single 2-cell necessitates
countably many 2-cells in general: not only id µ but also µn µn+1.

There are n distinct 2-cells from µn to µn+1. We invite the interested reader to
calculate a full description of the 2-cells of this mode theory and to provide a single
equation that collapses all 2-cells with identical domain and codomain.

Example 6.1.3 (A monadic modality). Consider the 2-category generated by a single
0-cell m, a single 1-cell τ : m m, and 2-cells η : id τ and µ : τ ◦ τ τ subject to
the following equations:

id = µ ◦ (τ ⋆ η) = µ ◦ (η ⋆ τ) : τ τ (Unit laws)

µ ◦ (µ ⋆ τ) = µ ◦ (τ ⋆ µ) : τ ◦ τ ◦ τ τ (Associativity law)

This mode theory describes a single modality τ structured as a monad; the 2-cells η
and µ serves as the unit and join, respectively. The equations imposed on 2-cells will
ensure that (up to propositional equality) the modality will respect the monad laws.

This mode theory has a recognizable property as a 2-category: it is the walking monad.
A 2-functor out of this mode theory to a 2-category C precisely classifies a monad in C.
In particular, maps to Cat classify monads in the standard sense.

Example 6.1.4 (An idempotent comonadic modality). Consider now a mode theory
with again one 0-cell and one generating 1-cell m and µ together with generating 2-cells
µ id and µ µ ◦ µ. Unlike the prior example, however, we subject this mode theory
to the condition that any pair of 2-cells with the same domain and codomain are equal.
More precisely, this mode theory is a category enriched over partial orders. The canonical
inclusion of posets into categories allows us to regard this as a category enriched over
categories i.e., a strict 2-category. As before, this 2-category enjoys a universal property,
this time as the walking idempotent comonad.

Remark 6.1.5. Mode theories arising from poset-enriched categories will prove to be a
useful subclass of mode theories. We will refer to them as posetal mode theories. ⋄

Example 6.1.6 (A pair of adjoint modalities). For this example, consider the 2-category
generated by two 0-cells m and n and two generating 1-cells µ : n m and ν : m n
together with a pair of 2-cells ϵ : ν ◦ µ id and η : id µ ◦ ν subject to the following
equations (the triangle identities):

id = (ϵ ⋆ ν) ◦ (ν ⋆ η)

id = (µ ⋆ ϵ) ◦ (η ⋆ µ)

This mode theory classifies adjunctions. It admits a more concrete definition put forth
by Schanuel and Street [SS86] (which can then be specialized to give direct combinatorial
descriptions of the prior two examples)

For the remainder of this chapter, we will fix a mode theory M, assuming additional
structure upon it as necessary. We will use the letters m, n, and o to range over the 0-cells
of M and refer to them as modes. Similarly, µ, ν, and ξ range over 1-cells (modalities)
and α and β are used for 2-cells.



MTT, informally 102

6.1.2 MTT with a single generating modality

Let us begin by investigating MTT with the mode theory described by Example 6.1.1:
the 2-category freely generated one object m and one endomorphism µ. The first portion
of MTT is a copy of MLTT for each mode. In this case, there is a single mode (m) so we
begin with the standard judgments of Martin-Löf type theory.

The major alteration MTT introduces is through the variables available. When
working in MLTT, we construct terms and types relative to a collection of variables
x : A.1 In MTT by contrast, each variable contains three distinct pieces of information:
the name, the type, and the modal annotation. This last piece is the novel component,
and it takes the form of an annotation x :µn A. Intuitively, this declaration stipulates
that x is available only to terms being used to construct an element of an µn-modal type.

In particular, we can use a variable normally just when its annotation is id = µ0. If
we are given variables x :µ Nat and y :id Nat, only y may be used freely:

Valid Invalid

λ . y : Nat→ Nat x+ y : Nat

If all annotations are identities, we recover standard Martin-Löf type theory.
While variables with non-trivial annotations cannot be used to construct elements of

Nat or other standard types, they can be used when building elements of modal types
⟨µ | A⟩. Specifically, to construct an element of ⟨µ | A⟩ one uses the introduction form
modµ(−). The rule is that modµ(M) : ⟨µ | A⟩ is well-typed with respect to a collection
of variables if M : A after updating the variables according to the following pair of rules:

1. All variables with annotation id are removed from scope.

2. A variable x :µn+1 A is replaced with x :µn A

Accordingly, given a variable x :µ A we can form modµ(x) : ⟨µ | A⟩; as we apply
modµ(−) the annotation on x is decremented and becomes id, whereby we are able to
use it as a normal variable. This principle can be iterated so a variable with annotation
µ3 may be used when constructing ⟨µ | ⟨µ | ⟨µ | A⟩⟩⟩.

More generally, recall that our mode theory has more than just the modality µ, it has
all composites µn. Each composite induces a model type ⟨µn | −⟩ and each of these has
an introduction form modµn(−). The rules for modµn(M) : ⟨µn | A⟩ are a generalization
of those for modµ(−): all variables annotated with µm with m < n are removed and
those with annotations m ≥ n are updated to have annotation µm−n. We refer to this
process as µn-restricting the context.

Fix xn :µn Nat for 0 ≤ n ≤ 2 for the following examples:

Valid Invalid

x0 : Nat x1 : Nat
modµ2(x2) : ⟨µ2 | Nat⟩ modµ(x2) : ⟨µ | Nat⟩
modµ(modµ(x2)) : ⟨µ | ⟨µ | Nat⟩⟩ modµ2(x1) : ⟨µ2 | Nat⟩

In summary, the introduction principle for modal types allows us to pass from a
variable x :µn A to an element of ⟨µn | A⟩. The role of the elimination principle is to

1This is usually crystallized by specifying a context, but we will avoid such descriptions at this level
of formality.



MTT, informally 103

allow us to reverse the process to some extent: when constructing a term depending on
M : ⟨µ | A⟩, we may assume that M = modµ(y).

More precisely, given a type B(x) depending on x : ⟨µn | A⟩, we have let modµn(y)←
M0 in M1 : B(M0) if M0 : ⟨µn | A⟩ and under the assumption y :µn A we have M1 : B(y).
This rule enjoys a β principle familiar to these ‘pattern-matching’ elimination rules:

(let modµn(y)← modµn(M ′0) in M1) = M1[M
′
0/y]

With just this in place, we may construct a few elementary examples of modal
programs.

Example 6.1.7 (Axiom K). We show that each modal type satisfies axiom K, a
fundamental principle in modal logic amounting to the preservation of finite products.
To this end, suppose we are given a pair of variables x :id ⟨µ | A⟩ and y :id ⟨µ | B⟩. Let
us construct an element of ⟨µ | A×B⟩ as follows:

F (x) = let modµ(x′)← x in let modµ(y′)← y in modµ((x, y))

Written more informally, we begin by destructuring x and y into modµ(x′) and
modµ(y′) to shift from “elements of a modal type” to “elements of non-modal type,
with annotations”. Applying the introduction rule for the modality then removes these
annotations and we may construct the necessary element of A×B.

For the reverse direction, suppose we are given x :id ⟨µ | A×B⟩. We must now
construct both ⟨µ | A⟩ × ⟨µ | B⟩, so it suffices to construct ⟨µ | A⟩ and ⟨µ | B⟩ separately.
To construct ⟨µ | A⟩, we use the elimination rule destructure x as modµ(y) where y :µ
A×B. After applying the introduction form for ⟨µ | A⟩, it suffices to construct A from
y :id A × B so that π1y suffices. The argument for ⟨µ | B⟩ is identical, so we content
ourselves with recording the entire term:

G(x) = let modµ(y)← x in (modµ(π1y),modµ(π2y))

Properly speaking, we must also show that F and G are suitably inverse e.g. we must
construct an element of (x : ⟨µ | A×B⟩)→ Id(F (G(x)), x). Accordingly, let us assume
that we are given x :id ⟨µ | A×B⟩ and immediately destructure x into modµ(y) where
y :µ A×B. It now suffices to construct an element of the following:

Id(F (G(modµ(y))),modµ(y))

Let us now observe the following chain of definitional equalities:

F (G(modµ(y)))

= F ((modµ(π1y),modµ(π2y)))

= modµ((π1y, π2y))

= modµ(y)

Accordingly, refl(modµ(y)) gives the required term.

Notation 6.1.8. Axiom K induces a map ⟨µ | A→ B⟩ → ⟨µ | A⟩ → ⟨µ | B⟩ which we
denote (⊛).



MTT, informally 104

Example 6.1.9 (The triviality of ⟨id | −⟩). We are now also able to prove one of the
desiderata of our system: ⟨id | −⟩ should be the identity modality. More formally, we
are able to construct an equivalence between ⟨id | A⟩ and A for any type A.

Let us begin with the forward direction and define F : ⟨id | A⟩ → A. The function
can be summarized quite tersely: given x :id ⟨id | A⟩, destructure x into modid(y) and
return y. Rendered as a term:

F (x) = let modid(y)← x in y

The reverse direction is even more concise: the introduction form modid(−) suffices.
That these two operations form an equivalence is equivalent to the β and propositional

η principles presupposed for the elimination form.

While we have proven some nice results already with these rules, they are insufficient
to show the promised equivalence ⟨µ | ⟨µ | −⟩⟩ ≃ ⟨µ ◦ µ | −⟩. Indeed, we cannot even
define the forward direction of such an equivalence. It is instructive to see how we
get stuck. Fix x :id ⟨µ | ⟨µ | A⟩⟩, the only sensible move at this point is to apply
the elimination principle and destructure x into modµ(y) where y :µ ⟨µ | A⟩. At this
point, however, no sensible maneuver is available. We cannot apply further elimination
principles owing to the modal annotation on y and applying the introduction form for
⟨µ2 | −⟩ will cause us to lose access to y entirely.

The solution to this problem is to enable the elimination principle to apply directly
to variables with a non-trivial annotation. As an informal intuition, we will introduce a
second modality ξ into the elimination principle—the framing modality—and allow the
term being scrutinized to be available only under ξ.

More precisely, fix a type B(x) depending on x :ξ ⟨ν | A⟩ and suppose we are given a
term M0 : ⟨ν | A⟩ in a ξ-restricted context. To construct an element of B(M0), it suffices
to consider construct an element of B(modν(y)) where y :ξ◦ν A. The term syntax for
this generalized elimination principle is the following:

letξ modν(y)←M0 in M1 : B(M0)

For coherence, when ξ = id we will suppress it to recover the original elimination principle.
Just as with the original elimination principle, moreover, there is a β principle associated
with this rule:

letξ modν(y)← modν(M ′0) in M1 = M1[M
′
0/y] : B(modν(x′))

Let us return to the earlier example: a function from ⟨µ | ⟨µ | A⟩⟩ → ⟨µ2 | A⟩. We
are now able to use the elimination principle with frame µ to avoid becoming stuck:

F (x) = let modµ(x0)← x in letµ modµ(x1)← x0 in modµ2(x1)

We are also able to define an inverse to F :

G(x) = let modµ2(x0)← x in modµ(modµ(x0))

The pair (F,G) then witnesses the promised equivalence ⟨µ | ⟨µ | −⟩⟩ ≃ ⟨µ2 | −⟩. In
fact, it is straightforward to generalize F and G to witness the following equivalence for
any ν and ξ:

⟨ν | ⟨ξ | −⟩⟩ ≃ ⟨ν ◦ ξ | −⟩
From this, we conclude that MTT with this instantiation consists essentially of one

new modality ⟨µ | −⟩ with all others arising from iterating this construction.



MTT, informally 105

6.1.3 MTT with two modalities

While the prior subsection introduces MTT instantiated with such a simple mode theory,
the situation becomes remarkably more complex when we consider more sophisticated
instantiations. In this subsection, we will study MTT instantiated with a mode theory
generated by a 0-cell m, a pair of 1-cells µ0, µ1, and a pair of 2-cells α, β : µ0 µ1.

Crucially, the 2-cells α and β should give rise to two natural transformations
⟨µ0 | −⟩ → ⟨µ1 | −⟩. Unfortunately, if we mindlessly adapt the rules from the prior
subsection (annotate all variables with composites of µ0 and µ1) then this operation is
not definable. It is again instructive to carry out a doomed attempt. Fix x :id ⟨µ0 | A⟩.
Two possible moves are available: either we can apply the elimination principle for
⟨µ0 | −⟩ or the introduction principle for ⟨µ1 | −⟩. The latter causes us to lose access to
x, so we opt for the first and destructure x into modµ0(y) where y :µ0 A. Unfortunately,
at this point we are still lost; all that remains is to apply the introduction rule for
⟨µ1 | −⟩ but this causes us to lose access to both x and y.

Indeed, we require a slightly more refined introduction rule which recognizes that
µ0-variables should be usable for constructing elements of µ1-modal types. This is not
as straightforward as it appears; we cannot simply remove a µ0 in place of a µ1 because
we must specify which 2-cell is being used to transform the variable, α or β. In fact, this
problem is best solved by refusing to solve it.

Rather than annotating each variable with a modality and having µ-restriction strip
back this annotation, we annotate each variable with a formal division of modalities:
x :µ/ν A. Intuitively, the annotation µ/ν describes a variable originally annotated with
µ but which has since been subjected to a ν-restriction. This formal structure enables a
succinct definition of restriction: if one ξ-restricts x :µ/ν A the result is x :µ/ν◦ξ A.

Remark 6.1.10. The rules for when x :µ/ν A is well-formed can be somewhat complex
to describe when A depends on other variables in the present scope. Far more important
than the precise rules, however, is the following observation: one can never arrive at an
ill-formed variable declaration through binding variables, applying elimination principles,
and restricting contexts. In particular, if one is constructing a term starting in the empty
context there is no need to explicitly check that variables are well-formed. ⋄

Remark 6.1.11. Applying restrictions is the only way to add to the denominator of an
annotation, so the collection of variables in scope can be grouped by the denominator of
their annotation and the set of possible denominators will form a chain id, ξ0, ξ0 ◦ ξ1, . . . ,
ξ0 ◦ · · · ◦ ξn. In our given mode theory, for instance, there is no way for both the variables
x :id/µ0

Nat and y :id/µ1
Nat to be in scope simultaneously merely through applying the

rules of the system starting from a closed context. When we eventually crystallize MTT
as a formal system, we will opt for a more efficient representation of the context where
the formal divisions are interspersed with variable declarations and apply to all variables
that precede them in the context. The reader may find it helpful to keep this in mind in
what follows. ⋄

We must also revisit the rules for when variables are usable. Previously, x :ν A was
usable precisely when ν = id. In our new setting with formal division, a variable x :µ/ν A
is usable just when there is a 2-cell γ : µ ν. This 2-cell need not be unique—there are
distinct two 2-cells µ0 µ1—so we record which 2-cell at each use of a variable.



MTT, informally 106

A similar operation can be done on each type: if A is a type in a µ-restricted context
and γ : µ ν we can annotate each variable to obtain a new type Aγ in a ν-restricted
context. In total, given a variable x :µ/ν A and a 2-cell γ : µ ν we have xγ : Aγ .

Example 6.1.12. Consider the type A = Id(a0, a1) where a0, a1 :µ0/µ0
A, in this situation

Aα = Id(aα0 , a
α
1 ). Only one subtlety deserves mention: when computing ⟨µ | A⟩γ one

must be sure to whisker by µ so that ⟨µ | A⟩γ = ⟨µ | Aγ ⋆ µ⟩.

After making this revision, relatively little is required to specify the rest of the
system. The introduction rule is virtually unchanged: modµ(M) : ⟨µ | A⟩ is valid just
when M : A holds after µ-restricting the context. The elimination rule is likewise
unchanged: letν modµ(x)←M0 in M1 : B(M0) if (1) M0 : ⟨µ | A⟩ after ν-restricting the
context and (2) M1 : B(modµ(x)) assuming x :ν◦µ A. Finally, the β principle is entirely
unchanged. The central change required for this generalization is in redefining what it
means to µ-restrict a context and in how the variable rule must be adapted afterward.

Example 6.1.13. Let us now revisit our goal of constructing natural transformations
between modal types using α and β. We will handle both simultaneously and more
generally by defining a combinator of the following type for each γ : µ ν:

coeγ : ⟨µ | A⟩ → ⟨ν | Aγ⟩

To this end, fix x :id ⟨µ | A⟩ and destructure it into modµ(y) for y :µ A. We must
construct ⟨ν | Aγ⟩, but after applying the introduction form we must construct Aγ with
y :µ/ν A. This is precisely the shape of the variable rule, so we are able to complete the
construction with yγ. In total:

coeγ(x) = let modµ(y)← x in modν(yγ)

This combinator is suitably natural in A.

Our earlier proof that ⟨µ | ⟨ν | A⟩⟩ ≃ ⟨µ ◦ ν | A⟩ as well as the triviality of ⟨id | −⟩
transfer verbatim to this new setting:

compµ;ν : ⟨µ | ⟨ν | A⟩⟩ → ⟨µ ◦ ν | A⟩
compµ;ν(x) = let modµ(x0)← x in letµ modν(x1)← x0 in modµ◦ν(x1)

triv : ⟨id | A⟩ → A
triv(x) = let modid(x0)← x in x0

Example 6.1.14. Even without a 2-cell id µ, we are able to construct a map ϵ :
Nat→ ⟨µ | Nat⟩ taking advantage of axiom K and the mapping out property associated
with the natural numbers. Let us define ϵ by cases:

ϵ(0) = modµ(0)
ϵ(1 + n) = let modµ(n′)← ϵ(n) in modµ(1 + n′)

While this provides a map ϵ : Nat→ ⟨µ | Nat⟩, the same technique does not allow us
to define an inverse. In particular, ⟨µ | Nat⟩ has no mapping out property!2

2If µ is furnished with a 2-cell α : µ id we would be able to define a retraction to ϵ but not a
section.



MTT, informally 107

6.1.4 MTT, generally

There is almost nothing to be done to shift from MTT with a pair of modalities and a
pair of 2-cells to MTT with an arbitrary mode theory. The only point which remains
to be addressed is how multiple modes must be reflected. Fortunately, adding multiple
modes does not introduce any truly new rules. Rather, modes are used to limit where
modalities may be applied and to which types.3

The biggest change is that this version of MTT does not start with MLTT onto which
annotated variables and modal types are added. Rather, we begin with an independent
copy of MLTT for each mode. That is, we have a notion of types and terms at mode m
rather than just types and terms. These separate copies of type theory do not interact
with each other by default; dependent products at mode m must have a domain and
codomain drawn from mode m.

In fact, the only way these different copies of type theory influence each other is
through modal types. Given a 1-cell µ : n m, the type ⟨µ | A⟩ is a type at mode m
just when A is a type at mode n after µ-restricting the context.

Notice that it is only valid to construct a type or term in mode m using variables
that themselves belong at mode m. When specifying ⟨µ | A⟩, for instance, we are only
able to ask that A is a well-formed type after restricting by µ. Moreover, we are only
able to form the modal type ⟨µ | A⟩ at mode m.

Remark 6.1.15. In general, a variable x :µ/ν A belongs at dom(ν), though—much as
with the well-formedness of x :µ/ν A itself—so long as one applies mode-correct rules the
collection of variables in scope will always be mode-correct. ⋄

Notation 6.1.16. When there is potential ambiguity, we will shorten “M : A at mode m”
to M : A @ m.

Beyond the issues of ensuring the mode-correctness of types and terms, no alterations
are needed to the rules of MTT compared to the prior subsection. For instance, given
a pair of modalities µ : n m and ν : m o, the elimination form letν modµ(x) ←
M0 in M1 has type B(M0) at mode o under the following conditions:

1. B(x) is a type at mode o depending on x :ν ⟨µ | A⟩.

2. After ν-restricting the context, M0 : ⟨µ | A⟩ at mode m.

3. M1(y) : B(modµ(y)) assuming y :ν◦µ A at mode o.

6.1.5 Adjoint modalities

Let us consider MTT instantiated with a mode theory containing a pair of adjoint
modalities, a pair µ : n m and ν : m n along with 2-cells η : id µ ◦ ν and
ϵ : ν ◦ µ id subject to the triangle equations specified in Example 6.1.6. Using what
we have developed so far, we explore the implications of this mode theory.

First, we observe that we have two modal types ⟨µ | −⟩ and ⟨ν | −⟩ and the 2-cells
induce a unit and counit transformation between them:

3Category theorists often joke that objects exist merely so morphisms have something to point to,
the same is doubly true for modes and modalities.



MTT, formally 108

η : A→ ⟨µ | ⟨ν | Aη⟩⟩
η = comp−1µ;ν ◦ coeη ◦ triv−1

ϵ : ⟨ν | ⟨µ | A⟩⟩ → Aϵ

ϵ = triv ◦ coeϵ ◦ compν;µ

Just as important as the existence of these two functions, the term-level reflection of
the unit and counit 2-cells satisfies the triangle identities up to propositional equality.

Lemma 6.1.17. η and ϵ satisfy the two triangle identities i.e.:

1. Given a type A @ n, there exists a term (x : ⟨µ | A⟩)→ Id(x,modµ(ϵ)⊛ η(x))

2. Given a type B @ m, there exists a term (x : ⟨ν | B⟩)→ Id(x, ϵ(modν(η)⊛ x))

(Recall (⊛) from Notation 6.1.8.)

Proof. In both cases, the proofs amount to applying the elimination to destructure x
and using reflexivity i.e.:

tr1(x) = let modµ(y)← x in refl(modµ(y))
tr2(x) = let modν(y)← x in refl(modν(y))

However, this proof is hardly informative as is. To facilitate intuition, we will
explicitly compute modµ(ϵ)⊛ η(x) from the first identity after replacing x by modµ(y)
to see that it indeed reduces appropriately.

modµ(ϵ)⊛ η(modµ(y))

= modµ(ϵ)⊛modµ(modν(modµ(yη ⋆ µ)))

= modµ(ϵ(modν(modµ(yη ⋆ µ))))

= modµ((yη ⋆ µ)ϵ)

= modµ(y(µ ⋆ ϵ)◦(η ⋆ µ))

= modµ(y)

In particular, in the final step, we apply the appropriate triangle identity which we
had previously assumed for 2-cells.

Remark 6.1.18. The calculations around 2-cells in Lemma 6.1.17 are intimidating at
first glance. Fortunately, they can be handled automatically in an implementation. We
shall show that type-checking in MTT is decidable provided the underlying mode theory
is decidable and the walking adjoint mode theory from Example 6.1.6 is seen to be
decidable from the combinatorial description of Schanuel and Street [SS86]. ⋄

6.2 MTT, formally

Having cultivated some intuition for how MTT should be used, it is possible to carry
on to develop various examples and case studies within MTT. Even in Lemma 6.1.17,
however, we have seen that the ever-present subtleties regarding substitutions in modal
type theory do arise to some extent in MTT.



MTT, formally 109

⊢ 1 cx @ m

µ : n m ⊢ Γ cx @ m

⊢ Γ.{µ} cx @ n

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n

⊢ Γ.(µ | A) cx @ m

⊢ Γ cx @ m

⊢ Γ = Γ.{id} cx @ m

µ : n m ν : m o ⊢ Γ cx @ o

⊢ Γ.{ν ◦ µ} = Γ.{ν}.{µ} cx @ n

Figure 6.1: Contexts in MTT

In this section, we will sweat the details and give a precise definition of MTT. In par-
ticular, we will present MTT as a particular generalized algebraic theory (GAT) [Car78].4.
The resulting specification gives rise to a fully precise syntax of MTT replete with
annotations as well as defining a category of models among which syntax is initial. We
will return to the induced category of models in Chapter 7.

Remark 6.2.1. Why have we chosen to specify MTT as a GAT rather than using a
more ergonomic logical framework (e.g., that of Nordström et al. [NPS90] or Uemura
[Uem21])? Roughly, what makes more modern logical frameworks easier to use than
GATs is their handling of binding. They feature some form of function space which
is used to express variable binding in the object theory. This frees the user of the
need to specify substitutions or contexts of their theory by allowing them to essentially
reuse their metatheoretic counterparts. While this story has proven highly effective for
standard Martin-Löf style type theories, it cannot be directly adapted for MTT. Contexts
in MTT contain an adjoint action induced by modalities and this precludes modeling
them using contexts in the metatheory. Without this convenience, these more modern
LFs are essentially just as usable as GATs for our purposes.

Researchers have not yet proposed a similarly convenient modal metatheory for
specifying type theories such as MTT, arguably because it is still unclear what features
such a modal LF would need to support. We leave exploring such possibilities to future
work. ⋄

As previously discussed, MTT is properly a function from mode theories to type
theories. Accordingly, for the remainder of this section, we fix a mode theory M. Each
judgment will be rendered as a sort with a distinct copy for each mode m : M. Just as with
standard Martin-Löf type theory, the basic judgments are ⊢ Γ cx @ m, Γ ⊢ A type @ m,
Γ ⊢M : A @ m, and Γ ⊢ δ : ∆ @ m.

6.2.1 Contexts

We begin with contexts which are specified by the three rules in Fig. 6.1.

4In fact, MTT can be realized by the slightly simpler structure of a quotient inductive inductive
type [KKA19]



MTT, formally 110

As a reader may expect, the rules for context formation differ in several ways from
MLTT. Most prominently, in addition to the operations for the empty context and
extension by a variable, we have Γ.{µ} which restricts access to the variables in Γ.
Intuitively, Γ.{µ} behaves like a left adjoint to the modal type associated with µ as
with Fitch-style type theories Section 5.5. We note, in particular, that as a left adjoint
−.{µ} acts contravariantly and sends contexts in m to contexts in n when µ : n m.
In Section 6.1, we represented this action by division −/µ and annotated each variable
with the restrictions applied to it. In the GAT syntax, we optimize slightly and record
the modal restrictions separately in the context and avoid duplicating them on each
variable.

The rule extending a context by a variable is also different from standard Martin-Löf
type theory. Intuitively, Γ.(µ | A) adds a variable of type A to the context but under
the modality µ. For this statement to be well-formed, A must be a type amenable to µ
application. This is why A lives a different mode than Γ—n rather than m—and in a
different context Γ.{µ}. In Section 6.1, this was written Γ, x :µ A.

Example 6.2.2. In total, therefore, an informal set of variables x :µ/ν A, y :id/ν B, and
z :id C would be realized by the context 1.(µ | A).(id | B).{ν}.(id | C).

Finally, unlike Martin-Löf type theory MTT has two non-congruence rules for context
equality. These rules ensure that −.{−} respect composition in M so that e.g., restricting
by ν then µ is the same as restricting by ν ◦µ. In the informal syntax, this rule was nearly
invisible because restriction was designed to eagerly collapse a sequence of restrictions
into a restriction by a composite.

6.2.2 Substitutions

Like most modal type theories, the heart of MTT is in its rules for substitutions. We
have specified a representative selection of the rules for Γ ⊢ δ : ∆ @ m in Fig. 6.2.

We have elided two classes of equations from this figure: routine equalities governing
e.g., associativity of composition and those equations governing δ.M . We will return to
the latter when we have developed terms as they mention various term operations.

Of what remains, the most notable detail is the action of the mode theory on the
category of substitutions. Phrased categorically, there is a strict 2-functor from Mcoop

which sends the object m to the category contexts and substitutions at mode m. We
have already met the action of this 2-functor on objects of these categories −.{−}.
Substitutions are likewise augmented with a functorial action restricting by a modality.
In addition, it is precisely here where 2-cells are integrated into MTT. For each 2-cell
α : µ0 µ1 we add a natural transformation between the functors −.{µ1} −.{µ0}.
Again, notice that as we are working with left adjoints to modalities the variance is
flipped; such a natural transformation will eventually induce a transformation from µ0
modal types to µ1 modal types.

The sequence of equations at the end of Fig. 6.2 encodes the 2-functoriality equations.
While complex, the essence of the equations is to ensure that modal restrictions can be
functorially manipulated by 2-cells and that doing so commutes with substitutions being
applied to the contexts being restricted.



MTT, formally 111

⊢ Γ cx @ m

Γ ⊢ id : Γ @ m

⊢ Γ0,Γ1,Γ2 cx @ m Γ0 ⊢ γ1 : Γ1 @ m Γ1 ⊢ γ2 : Γ2 @ m

Γ0 ⊢ γ2 ◦ γ1 : Γ2 @ m

µ : n m ⊢ Γ,∆ cx @ m
∆.{µ} ⊢ A type @ n Γ ⊢ δ : ∆ @ m Γ.{µ} ⊢M : A[δ.{µ}] @ n

Γ ⊢ δ.M : ∆.(µ | A) @ m

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n

Γ.(µ | A) ⊢ p : Γ @ m

µ : n m ⊢ Γ,∆ cx @ m Γ ⊢ δ : ∆ @ m

Γ.{µ} ⊢ δ.{µ} : ∆.{µ} @ n

µ0, µ1 : n m α : µ0 µ1 ⊢ Γ cx @ m

Γ.{µ1} ⊢ Γ.{α} : Γ.{µ0} @ n

µ : n m ⊢ Γ cx @ m

Γ.{µ} ⊢ id = id.{µ} : Γ.{µ}

µ : n m ⊢ Γ0,Γ1,Γ2 cx @ m Γ0 ⊢ γ1 : Γ1 @ m Γ1 ⊢ γ2 : Γ2 @ m

Γ0.{µ} ⊢ γ1.{µ} ◦ γ0.{µ} = (γ1 ◦ γ0).{µ} : Γ2.{µ}

⊢ Γ,∆ cx @ m Γ ⊢ δ : ∆ @ m

Γ ⊢ δ = δ.{id} : Γ

µ : n m ν : m o ⊢ Γ,∆ cx @ o Γ ⊢ δ : ∆ @ o

Γ.{ν ◦ µ} ⊢ δ.{ν ◦ µ} = δ.{ν}.{µ} : Γ.{ν ◦ µ} @ n

µ0, µ1 : n m α : µ0 µ1 ⊢ Γ,∆ cx @ m Γ ⊢ δ : ∆ @ m

Γ.{µ1} ⊢ ∆.{α} ◦ δ.{µ1} = δ.{µ0} ◦ Γ.{α} : ∆.{µ0} @ n

µ0, µ1 : n m ν0, ν1 : m o α : µ0 µ1 β : ν0 ν1 ⊢ Γ cx @ o

Γ.{ν1 ◦ µ1} ⊢ Γ.{ν0}.{α} ◦ Γ.{β}.{µ1} = Γ.{β • α} : Γ.{ν0 ◦ µ0} @ n

µ0, µ1, µ2 : n m α1 : µ0 µ1 α2 : µ1 µ2 ⊢ Γ cx @ m

Γ.{µ2} ⊢ Γ.{α1} ◦ Γ.{α2} = Γ.{α2 ◦ α1} : Γ.{µ0} @ n

Figure 6.2: Substitutions in MTT



MTT, formally 112

⊢ Γ,∆ cx @ m Γ ⊢ δ : ∆ @ m ∆ ⊢ A type @ m

Γ ⊢ A[δ] type @ m

⊢ Γ cx @ m

Γ ⊢ U,Nat type @ m

⊢ Γ cx @ m Γ ⊢ A type @ m Γ ⊢M,N : A @ m

Γ ⊢ Id(A,M,N) type @ m

⊢ Γ cx @ m Γ ⊢ A type @ m Γ.(id | A) ⊢ B type @ m

Γ ⊢ Σ(A,B) type @ m

⊢ Γ cx @ m Γ ⊢M : U @ m

Γ ⊢ El(M) type @ m

Figure 6.3: Mode-local types in MTT

6.2.3 Types

Types in MTT decompose into two classes: mode-local types and modal types. Mode-
local types take arguments from only a single mode and produce a type at the same
mode and their rules are essentially identical to the standard connectives of MLTT. For
instance, dependent sums and intensional identity types are translated from MLTT to
MTT simply by adding @ m to each judgment and replacing Γ.A with Γ.(id | A). As in
any type theory, there are multiple ways of encoding universes. For our purposes, we
have chosen to specify a Tarski universe. The rules for mode local types of MTT are
recorded in Fig. 6.3 though we have elided the standard substitution rules and strict
equations governing El.

Remark 6.2.3. It is straightforward to extend MTT with a hierarchy of universes. For
the most part, this has no impact on what follows and we leave the details to the
interested reader. ⋄

Remark 6.2.4. The original work on MTT by Gratzer et al. [Gra+21; Gra+20a] used a
Coquand-style universe. Accordingly, the type judgments of the theory were stratified
by level and a universe merely internalized the judgment of this level. This presentation
is equivalent to what we discuss here. Any model of a Coquand universe is also a model
of a Tarski universe and vice versa simply by defining level n types to be elements of
Un. ⋄

Notation 6.2.5. We will often elide El in terms and computation.

There are two kinds of non-local types: modal types proper and modal function
types. The former is specified similarly to dependent right adjoints Section 5.5 using the
modal restriction operation previously discussed. Notice that for a modality µ : n m
because −.{µ} sends contexts in mode m to contexts in mode n, the adjoint modal type
⟨µ | −⟩ sends mode n types to mode m types.

Modal function types, on the other hand, originate from Nuyts and Devriese [ND18]
and serve as a useful convenience in MTT. Essentially, after generalizing context extension



Possible extensions to MTT 113

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n

Γ ⊢ ⟨µ | A⟩ type @ m

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n Γ.(µ | A) ⊢ B type @ m

Γ ⊢ (µ | A)→ B type @ m

µ : n m ⊢ Γ,∆ cx @ m Γ ⊢ δ : ∆ @ m ∆.{µ} ⊢ A type @ n

Γ ⊢ ⟨µ | A⟩[δ] = ⟨µ | A[δ.{µ}]⟩ type @ m

µ : n m
⊢ Γ,∆ cx @ m Γ ⊢ δ : ∆ @ m ∆.{µ} ⊢ A type @ n ∆.(µ | A) ⊢ B type @ m

Γ ⊢ ((µ | A)→ B)[δ] = (µ | A[δ.{µ}])→ B[(δ ◦ p).v] type @ m

Figure 6.4: Modal types in MTT

to include modal annotations Γ.(µ | A), it is natural to allow dependent products to bind
not just elements of A but elements of A subject to some modal annotation: (µ | A)→ B.
The formation rules for these types are specified in Fig. 6.4.

6.2.4 Terms

Finally, we must specify the term judgment in MTT. The rules specifying terms of
mode-local types are identical to those typically found in MTT, so we elide them in
this discussion. A notable exception to this pattern is the rule for variables. This must
be adapted to account for modal context extensions and modal restrictions. In this
presentation of MTT, the variable rule is rather direct: one can access the first variable in
the context just when its annotation precisely matches the modal restriction. Intuitively,
this rule plays the role of a “counit” for the adjunction between a modal type and its
action on contexts. The reader may also compare it with the variable rule presented in
Section 6.1 where the annotation and the modality divided it was required to cancel.
This rule, along with the introduction and elimination rules for remaining types—modal
types and modal dependent products—are specified in Fig. 6.5.

6.3 Possible extensions to MTT

The prior two sections have discussed the syntax of MTT at two levels of precision.
The result is a general framework for modal type theory which can be used in a wide
number of situations (Part III). There are, however, a variety of possible alternations
one can make to MTT to allow it to more conveniently capture a particular situation.
For instance, one might replace the intensional identity type with an extensional identity
type to obtain extensional MTT or instead postulate the univalence axiom [Uni13]. These
additions may disrupt certain properties of MTT e.g. normalization and canonicity, but



Possible extensions to MTT 114

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n

Γ.(µ | A).{µ} ⊢ v : A[p.{µ}]

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n Γ.{µ} ⊢M : A @ n

Γ ⊢ modµ(M) : ⟨µ | A⟩ @ m

µ : n m
ν : m o ⊢ Γ cx @ o Γ.{ν ◦ µ} ⊢ A type @ n Γ.(ν | ⟨µ | A⟩) ⊢ B type @ o

Γ.{ν} ⊢M0 : ⟨µ | A⟩ @ m Γ.(ν ◦ µ | A) ⊢M1 : B[id.modµ(v)] @ o

Γ ⊢ letν modµ(−)←M0 in M1 : B[id.M0] @ o

µ : n m ⊢ Γ cx @ m
Γ.{µ} ⊢ A type @ n Γ.(µ | A) ⊢ B type @ m Γ.(µ | A) ⊢M : B @ m

Γ ⊢ λM : (µ | A)→ B

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n
Γ.(µ | A) ⊢ B type @ m Γ ⊢M0 : (µ | A)→ B @ m Γ.{µ} ⊢M1 : A @ m

Γ ⊢M0(M1) : B[id.M1]

µ : n m
⊢ Γ,∆ cx @ m Γ.{µ} ⊢ A type @ n Γ ⊢ δ : ∆ @ m Γ.{µ} ⊢M : A[δ.{µ}]

Γ.{µ} ⊢ v[δ.M ] = M : A[δ.{µ}]

µ : n m
ν : m o ⊢ Γ cx @ o Γ.{ν ◦ µ} ⊢ A type @ n Γ.(ν | ⟨µ | A⟩) ⊢ B type @ o

Γ.{ν ◦ µ} ⊢M0 : A @ m Γ.(ν ◦ µ | A) ⊢M1 : B[id.modµ(v)] @ o

Γ ⊢ letν modµ(−)← modµ(M0) in M1 = M1[id.M0] : B[id.M0] @ o

µ : n m ⊢ Γ cx @ m
Γ.{µ} ⊢ A type @ n Γ.(µ | A) ⊢ B type @ m Γ ⊢M : (µ | A)→ B @ m

Γ ⊢M = λ((M [p])(v)) : (µ | A)→ B @ m

µ : n m ⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n
Γ.(µ | A) ⊢ B type @ m Γ ⊢M0 : (µ | A)→ B @ m Γ.{µ} ⊢M1 : A @ n

Γ ⊢ (λM0)(M1) = M0[id.M1] : B[id.M1] @ m

Figure 6.5: Terms in MTT

the resulting theory remains quite useful for pen-and-paper proofs.5 Similarly, one may
extend each theory with a variety of inductive types, exotic type-constructors, etc

While some of these modifications may alter the behavior of modalities, none of

5Indeed, much of Chapter 8 will work within extensional MTT.



Possible extensions to MTT 115

them directly change the rules for modal types and so there are no surprises e.g. passing
from MTT to extensional MTT when compared with the passage from intensional to
extensional MLTT. In this section, we discuss two changes that do directly involve
modalities and therefore have no counterpart in standard MLTT: the addition of crisp
induction principles and strict dependent right adjoints.

6.3.1 Crisp induction principles for identity types

The first extension serves to precisely describe the identity type Id(⟨µ | A⟩,M0,M1). In
many applications of interest, we construct an identification of two terms P : Id(A,N0, N1)
and wish to obtain an identification between modµ(N0) and modµ(N1) in ⟨µ | A⟩. Put
tersely, we would like ⟨µ | −⟩ to commute with identity types. This is not, however,
generally valid. Even though modalities behave like right adjoints and identity types
behave like equalizers, these analogies are too imperfect to carry over the familiar
categorical proof that right adjoints preserve equalizers. This failure should be understood
as a similar phenomenon to the failure of function extensionality in MLTT; it may not
hold for the base theory but it does hold in most models of interest and so it is frequently
useful to postulate.

Fortunately, forcing modalities to commute with identity types is an easier task than
forcing dependent products to commute with identity types. In order to force ⟨µ | −⟩ to
respect identity types, we can extend the J elimination rule for identity types to a crisp
induction principle whose scrutinee is typed in context Γ.{µ} rather than Γ:

µ : n m ⊢ Γ cx @ m

Γ.{µ} ⊢ A type @ n Γ.(µ | A).(µ | A[p]).(µ | Id(A[p2],v[p],v)) ⊢ B type @ m
Γ.(µ | A) ⊢M : B[p.v.v.refl(v)] @ m

Γ.{µ} ⊢ N0, N1 : A @ n Γ.{µ} ⊢ P : Id(A,N0, N1) @ n

Γ ⊢ Jµ(B,M,P ) : B[id.N0.N1.P ] @ m
(6.1)

µ : n m ⊢ Γ cx @ m

Γ.{µ} ⊢ A type @ n Γ.(µ | A).(µ | A[p]).(µ | Id(A[p2],v[p],v)) ⊢ B type @ m
Γ.(µ | A) ⊢M : B[p.v.v.refl(v)] @ m Γ.{µ} ⊢ N : A @ n

Γ ⊢ Jµ(B,M, refl(N)) = M [id.N ] : B[id.N.N.refl(N)] @ m
(6.2)

Remark 6.3.1. The term “crisp induction” originates from spatial type theory [SS12;
Shu18] where certain variables were designated crisp. This type theory is essentially a
special case of MTT and crisp induction principles as described in Shulman [Shu18] and
crisp variables can be generalized to variables with a non-identity modal annotation. ⋄

We observe that the addition of a crisp induction principle does actually allow us to
characterize Id(⟨µ | A⟩,−,−). To prove this we again avail ourselves of informal MTT.

Lemma 6.3.2. Fix µ : n m along with x, y :µ A for some A :µ U. There is a canonical
map Id(⟨µ | A⟩,modµ(x),modµ(y)) → ⟨µ | Id(A, x, y)⟩ and this map is invertible in the
presence of Jµ.

Proof. Let us begin by defining the aforementioned map. Accordingly, consider the
following type family:

B(a : ⟨µ | A⟩, b : ⟨µ | A⟩, : Id(⟨µ | A⟩, a, b)) =



Possible extensions to MTT 116

let modµ(a0)← a in
let modµ(b0)← b in
⟨µ | Id(A, a0, b0)⟩

We may then use the (standard) induction principle on Id with motive B to obtain
our canonical map:

ϕ : Id(⟨µ | A⟩,modµ(x),modµ(y))→ ⟨µ | Id(A, x, y)⟩
ϕ = J(B, (x. let modµ(x0)← x in modµ(refl(x0))),−)

We will now construct an inverse to ϕ using crisp induction:

ψ : ⟨µ | Id(A, x, y)⟩ → Id(⟨µ | A⟩,modµ(x),modµ(y))
ψ(p) =

let modµ(p0)← p in
Jµ(

w z . Id(⟨µ | A⟩,modµ(w),modµ(z)),
x. refl(modµ(x)),
p0

)

The proof that these two maps are pointwise inverses follows directly from induction
on ⟨µ | A⟩ and the computation rules associated with J and Jµ.

Remark 6.3.3. A converse to this lemma is true up to definitional equality: if the
canonical map Id(⟨µ | A⟩,modµ(x),modµ(y)) → ⟨µ | Id(A, x, y)⟩ is an equivalence then
one can define a term with the appropriate type for Jµ, but the computation rule holds
only up to propositional equality. ⋄

Finally, we remark that in the presence of extensional equality these crisp induction
principles are automatic:

Lemma 6.3.4. Assuming equality reflection, ⟨µ | Id(a, b)⟩ ≃ Id(modµ(a),modµ(b)).

Proof. We construct a map ⟨µ | Id(a, b)⟩ → Id(modµ(a),modµ(b)). To this end, fix
x :µ Id(a, b). We will now show that modµ(a) is definitionally equal to modµ(b). By
congruence, it suffices to argue that a is convertible with b after restricting the context
by µ. Invoking equality reflection, it therefore suffices to construct a proof Id(a, b), but
x is precisely an element of such a type. It is routine to verify that this map is inverse
to the canonical map Id(modµ(a),modµ(b))→ ⟨µ | Id(a, b)⟩.

Crisp induction, generally

The concept of a crisp induction principle can be applied to types other than identity types.
We will consider crisp induction principles for booleans, natural numbers, coproducts,
and propositional truncations in due course. In each case, these principles are used to
ensure that modalities commute with the subject of the crisp induction principle.

In addition to mode-local types from Martin-Löf type theory, one can also discuss
crisp induction principles for MTT-specific types. For instance, we note that modal
types in MTT always have crisp induction principles. We are always able to eliminate



Possible extensions to MTT 117

a variable of type ⟨µ | A⟩ even if that variable has a non-identity annotation. This is
the role of the framing modality ν in letν modµ(−)←M0 in M1. In certain models of
MTT we will be forced to consider situations that do not validate these rules. If the
elimination rule for µ with frame ν is not validated, we shall say that ν cannot frame µ
or, symmetrically, that µ does not have ν-crisp induction principle.

This most often arises with a pair of adjoint modalities ν ⊣ µ with the left adjoint ν
admitting no µ-crisp induction principle. Just as with identity types, crisp induction
principles for modal types can be captured through a (suitably definitional) equivalence
between two types:

Lemma 6.3.5. Without the assumption of any crisp induction principles for modal-
ities, the ν-framed elimination principle for ⟨µ | A⟩ is inter-derivable with a map β :
⟨ν | ⟨µ | A⟩⟩ ⟨ν ◦ µ | A⟩ such that β(modν(modµ(M))) = modν◦µ(M).

Proof. The existence of ν-framed elimination for ⟨µ | A⟩ has already been shown to be
sufficient for defining β, so we turn to the other direction. Fix an inverse β with the
specified definitional property and encode ν-framed elimination as follows:

letν modµ(−)←M0 in M1 = let modν◦µ(−)← β(modν(M0)) in M1

6.3.2 Strict dependent right adjoints

We now turn to the second extension: strict dependent right adjoints. Notice that
MTT has abandoned the more symmetric elimination principle based on transposition
introduced in Section 5.5. In general, adding this principle to MTT without the additional
structure discussed in Section 5.6 leads to the same issues that plagued DRA and closely
related theories. However, if the modality comes from a right adjoint in the mode theory,
Shulman [Shu23] observes that the more complex rules presented in Section 5.6 simplify
considerably and can be added to MTT without additional judgmental structure.

Remark 6.3.6. Essentially, the context action .{µ} associated with a right adjoint µ
is itself a right adjoint (2-functors preserve right adjoints). This means that it is, in
particular, a parametric right adjoint so the ideas of Section 5.6 can be transferred.
However, as a full right adjoint some structure degenerates. In particular, as 1.{µ} is
terminal half of the data required by the elimination rule in the general case is uniquely
determined. ⋄

Accordingly, fix ν ⊣ µ. We may extend MTT with strict dependent right adjoint for
µ through the following rules:

⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n

Γ ⊢ µ⇒ A type @ m

⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n Γ.{µ} ⊢M : A @ n

Γ ⊢ {M}µ : µ⇒ A @ m

⊢ Γ cx @ n Γ.{ν ◦ µ} ⊢ A type @ n Γ.{ν} ⊢M : ⟨µ | A⟩ @ m

Γ ⊢ !µM : A[Γ.{ϵ}] @ n



Adjoint modalities 118

⊢ Γ cx @ m Γ.{ν ◦ µ} ⊢ A type @ n Γ.{ν ◦ µ} ⊢M : A @ n

Γ ⊢ !µ {M}µ = M [Γ.{ϵ}] : A[Γ.{ϵ}] @ n

⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n Γ ⊢M : µ⇒ A @ m

Γ ⊢ {!µM [Γ.{η}]}µ = M : µ⇒ A @ m

In these rules, η and ϵ are the 2-cells in M witnessing respectively the unit and counit
of the adjunction ν ⊣ µ.

These rules are interderivable with those of Section 5.5 but the elimination rule
satisfies a substitution law. Indeed, one can see this as a specialization of Section 5.6
and so Lemma 5.6.5 applies to show that the above rules are interderivable with the
rules shaping µ⇒ − into a dependent right adjoint.

Finally, we note that the major improvement offered by µ ⇒ − is the final rule
giving it an η law. This observation was made first by Nuyts and Devriese [ND21] in
the context of extensional MTT where the two types coincide perfectly. We will prove a
slight strengthening of their result to apply in intensional MTT and without using µ-crisp
induction principles in Section 6.4 (see Corollary 6.4.6) but we note the statement here:

Lemma 6.3.7. The standard modal type ⟨µ | −⟩ satisfies all the rules governing µ⇒ −
with the exception of the η law.

Corollary 6.3.8. The standard modal type ⟨µ | −⟩ is equivalent to µ⇒ −.

The extra η law allows us to simplify some aspects of MTT however:

Lemma 6.3.9. In MTT, the modal dependent products (µ | A) → B may be encoded
using modal types and ordinary dependent products excepting the η law which holds
propositionally. If the modality µ admits a strict dependent right adjoint, the η law may
be recovered.

Proof. For the first claim, we encode (µ | A)→ B as follows:

C = (id | ⟨µ | A⟩)→ let modµ(−)← v in B[(p ◦ p).v]

We note now that C is equivalent to (µ | A)→ B. For instance, given M : (µ | A)→
B, we may define λM [p](modµ(v)). This equivalence is definitional only in one direction
so that the β law is validated definitionally but the η law holds only propositionally.
If we are given a strict dependent right adjoint the η law also holds definitionally by
computation.

6.4 Adjoint modalities

We conclude this chapter with an in-depth case study of a particularly important mode
theory: the adjoint mode theory Madj described in Example 6.1.6. Adjoint functors are
ubiquitous in category theory and adjoint modalities are nearly as common. Importantly,
adjoint modalities mirror many of the properties of adjoint functors and we can prove
several results corresponding to classical lemmas about adjoints. We gather several of
these results here, both for future use and to demonstrate the mechanics of working in
MTT.



Adjoint modalities 119

For reference, Madj contains two modes m,n, two generating 1-cells µ : n m, ν :
m n and two generating 2-cells η : id µ ◦ ν,ϵ : id µ ◦ ν. This 2-cells are subject
to a pair of equations known as the triangle identities:

µ µ ◦ ν ◦ µ

µ

η ⋆µ

µ ⋆ ϵidµ

(6.3)

ν ν ◦ µ ◦ ν

ν

ν ⋆ η

ϵ ⋆ νidν

(6.4)

We have already discussed this mode theory at some length in Section 6.1.5. There,
we showed that this mode theory induces the expected modalities and natural transfor-
mations in MTT e.g.:

η : A→ ⟨µ ◦ ν | Aη⟩ (6.5)

ϵ : ⟨ν ◦ µ | A⟩ → Aϵ (6.6)

We also argued that these combinators also reflect the triangle identities (Lemma 6.1.17).

6.4.1 Internal transposition

We resume our study of this mode theory by discussing other presentations of adjoint
mode theories.

In particular, when working in category theory one often uses a natural bijection
of hom-sets. Accordingly, one might hope for an equivalence of functions relating
A → ⟨µ | B⟩ to ⟨ν | A⟩ → B. Unfortunately, these two types do not inhabit the same
mode, so they cannot be directly compared. Fortunately, we have two modalities that
allow us to move types from mode m to n or vice versa, so two variations of the standard
transposition equivalence are well-moded:

(A :ν U)(B :id U)→ ⟨ν | A→ ⟨µ | B⟩⟩ ≃ (⟨ν | A⟩ → Bϵ) @ n

(A :id U)(B :µ U)→ (A→ ⟨µ | B⟩) ≃ ⟨µ | ⟨ν | Aη⟩ → B⟩ @ m

Remark 6.4.1. It would be a mistake to regard the mismatch of modes as the only
problem. Even if m = n so that the expected equivalence was well-formed, it would
not typically be provable. Essentially the problems are similar to those described in
Section 5.1: requiring an internal equivalence corresponds to asking for an isomorphism
of exponential objects but frequently only a bijection of hom-sets is valid. This can be
glossed over only when the modalities correspond to endofunctors internally. That is
when there exists a map:

(A→ B)→ ⟨µ | A⟩ → ⟨µ | B⟩



Adjoint modalities 120

However, taking A = Unit, this yields a point for both modalities which is often too
strong a requirement. ⋄

Maps corresponding to both forms of transposition are definable in MTT, though
only the second is an equivalence. This reformulation of transposition is not without
precedence. It corresponds to a familiar reformulation in category theory available
whenever the left adjoint preserves products.

Lemma 6.4.2. In extensional MTT the following equivalence is inhabited:6

(A :id U)(B :µ U)→ (A→ ⟨µ | B⟩) ≃ ⟨µ | ⟨ν | Aη⟩ → B⟩ @ m

Proof. Fix A :id U and B :µ U for the remainder of the proof.
We begin by defining a map ⟨µ | ⟨ν | Aη⟩ → B⟩ → (A→ ⟨µ | B⟩). To this end, we

fix f :id ⟨µ | ⟨ν | Aη⟩ → B⟩ along with a :id A. We construct an element of b : ⟨µ | B⟩ by
first applying the unit to a, obtaining a0 :id ⟨µ | ⟨ν | A⟩⟩ and using axiom K: b = f ⊛ a0.
In total:

F (f, a) = f ⊛ η a

Let us now define the putative inverse map. Fix g :id A → ⟨µ | B⟩. In order to
construct an element of ⟨µ | ⟨ν | Aη⟩ → B⟩ we begin by µ-restricting the context so that
it suffices to construct ⟨ν | Aη⟩ → B with a variable g :id/µ A → ⟨µ | B⟩. Let us bind
a :ν A

η. Using the counit, it suffices to define an element of ⟨ν | ⟨µ | B⟩⟩, which we
obtain from modν(fη(a)). In total:

G(g) = modµ(λa′. let modν(a)← a′ in ϵmodν(gη(a)))

It remains to construct identifications between F ◦G and id along with G ◦ F and id.
Let us begin with F ◦G. Using function extensionality, we calculate:

F (G(g))(a)

= G(g)⊛ η a

= G(g)⊛modµ(modν(aη))

= modµ(let modν(a0)← modν(aη) in ϵmodν(gη(a0)))

= modµ(ϵmodν(gη(aη)))

= modµ(ϵ)⊛ η(g a) (Lemma 6.1.17)

= g a

The reverse direction is similar. Fix f = modµ(f0) : ⟨µ | ⟨ν | Aη⟩ → B⟩ so F (f) =
λa. modµ(f0(a

η)) Note that the following holds by calculation:

G(F (f))

= modµ(λa′. let modν(a)← a′ in ϵmodν(F (f)η(a)))

= modµ(λa′. let modν(a)← a′ in ϵmodν(F (modµ(fη ⋆ µ0 ))(a)))

= modµ(λa′. let modν(a)← a′ in ϵmodν(modµ(fη ⋆ µ0 (modν(aν ⋆ η)))))

6Gratzer et al. [Gra+21] claim that only function extensionality is required but both function
extensionality and crisp identity induction for µ are necessary.



Adjoint modalities 121

= modµ(λa′. let modν(a)← a′ in f
(µ ⋆ ϵ)◦(η ⋆ µ)
0 (modν(a(ϵ ⋆ ν)◦(ν ⋆ η))))

= modµ(λa′. let modν(a)← a′ in f0(modν(a)))

The result follows from Lemma 6.3.4 along with function extensionality.

6.4.2 Stronger elimination rules for internal right adjoints

Remark 6.4.3. Variants of the results in this subsection were first established for
extensional MTT by Nuyts and Devriese [ND21]. ⋄

For purely formal reasons −.{ν} ⊣ −.{µ}. This, in turn, implies several important
observations about the behavior of adjoint modalities. For instance, −.{µ} can be
“computed” on a context using ν-annotations:

Lemma 6.4.4. For any context ⊢ Γ cx, modality ξ : o m, and Γ.{ξ} ⊢ A type:

Γ.(ξ | A).{µ} ∼= Γ.{µ}.(ν ◦ ξ | Aη ⋆ ξ)

Proof. We will first argue that Γ.(ξ | A).{µ} and Γ.{µ}.(ν ◦ ξ | Aη ⋆ ξ) are isomorphic as
they represent the same functor. To this end, we make use of the universal property
of context extension in MTT: a substitution ∆0 ∆1.(ξ | A) is determined by (1) a
substitution ∆0 ⊢ δ : ∆1 and (2) a term ∆0 ⊢M : A[δ.{ξ}].

Fix a context ∆ in mode n. Using the above universal property along with trans-
position, a substitution ∆ Γ.{µ}.(ν ◦ ξ | Aη ⋆ ξ) is determined by (1) a substitution
∆.{ν} ⊢ γ : Γ and (2) a term ∆.{ν ◦ ξ} ⊢ M : Aη ⋆ ξ[γ̂.{ν ◦ ξ}] naturally ∆. Unfolding
the definition of transposition, Aη ⋆ ξ[γ̂.{ν ◦ ξ}] is simply A[γ.{ξ}].

Next, a substitution ∆ Γ.(ξ | A).{µ} is determined by (1) a substitution ∆.{ν} ⊢
γ : Γ and (2) a term ∆.{ν ◦ ξ} ⊢M : A[γ.{ξ}] naturally in ∆.

The two contexts are therefore isomorphic by the Yoneda lemma.

Theorem 6.4.5. Given any context ⊢ Γ cx and Γ.{µ} ⊢ A type, there is a pair of
substitutions

Γ.(µ | A) ⊢ γ→ : Γ.(id | ⟨µ | A⟩)
Γ.(id | ⟨µ | A⟩) ⊢ γ← : Γ.(µ | A)

Moreover, γ← ◦ γ→ = id and, if one assumes extensional equality, γ→ ◦ γ← = id.

Proof. One direction of this isomorphism holds regardless of the precise properties of µ:

Γ.(µ | A) ⊢ γ→ ≜ p.modµ(v) : Γ.(id | ⟨µ | A⟩) (6.7)

The inverse direction is more subtle:

Γ.(id | ⟨µ | A⟩) ⊢ γ← ≜ p.M : Γ.(µ | A) (6.8)

Here, M must be a term of the following type:

Γ.(idm | ⟨µ | A⟩).{µ} ⊢M : A[p.{µ}]



Adjoint modalities 122

To define this, consider the following term:

Γ.(idn | ⟨µ | A⟩).{µ ◦ ν} ⊢ vη : ⟨µ | A[{η ⋆ idµ}]⟩
Γ.(idm | ⟨µ | A⟩).{µ}.(ν ◦ µ | A) ⊢ vϵ : A[p.{ν}]

Γ.(idm | ⟨µ | A⟩).{µ} ⊢M ≜ letν modµ(−)← vη in vϵ : A[p.{µ}]

By computation, we immediately have γ← ◦ γ→ = id. In the reverse direction, we
must show that the following terms are definitionally equivalent

Γ.(id | ⟨µ | A⟩) ⊢ v = modµ(letν modµ(−)← vη in vϵ) : ⟨µ | A[p.{µ}]⟩ (6.9)

This equation is true propositionally, by performing induction on v. Therefore, in the
presence of extensional equality this holds definitionally as well.

In a certain sense, these two results demonstrate that µ induces a weak CwF morphism.
The most important consequence of this is the promised relationship between ⟨µ | −⟩
and µ⇒ −:

Corollary 6.4.6. The modal type ⟨µ | −⟩ satisfies all the rules of µ⇒ − except for the
η law. This holds only assuming ν-crisp induction principles for ⟨µ | −⟩.

Proof. We begin by defining !µM as follows:

Γ ⊢M : ⟨µ | A⟩
Γ.{µ} ⊢ !M = v[γ←.{µ} ◦ id.M.{µ}] : A

To show the β law holds, we must show the following:

v[(γ← ◦ id.modµ(M)).{µ}] = M

Let us first rewrite id.modµ(M) as p.v ◦ id.M . We then observe that this is precisely
γ→ ◦ id.M whence we have the following:

v[(γ← ◦ id.modµ(M)).{µ}]
= v[(γ← ◦ γ→ ◦ id.M).{µ}]
= M

Finally, the propositional η law holds by induction.

Remark 6.4.7. We have drawn attention to the lack of need for µ-crisp ν-induction in
anticipation of a model in Chapter 7 for MTT with Madj which does not validate it. ⋄

6.4.3 Crisp induction principles for internal left adjoints

A classic result of elementary category is right adjoints preserve limits (RAPL). We
are therefore naturally led to wonder if similar results hold in MTT. Some of the force
of this result is undercut by the fact that all MTT modalities preserve finite products
and extensional identity types. While some special cases (such as infinite products)
are unique to internal right adjoints, in this subsection we primarily consider the dual
result: left adjoints preserve colimits. In particular, we show that in MTT internal left



Adjoint modalities 123

adjoints preserve booleans and intensional identity types, a fact which is certainly false
for arbitrary modalities within MTT.

We begin with the (somewhat academic) fact that internal right adjoints preserve
infinitary products.

Remark 6.4.8. Infinitary products should not be conflated with dependent products
which appear superficially similar and coincide in e.g., Set. Infinite products in type
theory have an introduction rule with infinitely many premises and therefore no require-
ment that the assignment from index to term be computable. The existence of all such
small infinitary products ensures that the category of contexts is cotensored over Set ⋄

Lemma 6.4.9. In an extension of MTT with infinite products, internal right adjoints
preserve infinite products.

Proof. Write
⊗

i∈I Ai for the infinitary product indexed by the set I. Axiom K together
with the introduction rule for

⊗
i− induces a canonical map of the following form:

F (x) = ⟨modµ(πi)⊛ x⟩i : ⟨µ |
⊗
i

Ai⟩ →
⊗
i

⟨µ | Ai⟩

We will show that this map is invertible. The inverse to this map is given as follows:

G(x) = modµ(⟨πi(!x)⟩i) :
⊗
i

⟨µ | Ai⟩ → ⟨µ |
⊗
i

Ai⟩

Here we have crucially capitalized on the definable !− as presented in Corollary 6.4.6.
The fact that these two maps are pseudo-inverses follows from a routine calculation and
the β and propositional η laws for !−.

We now turn to the fact that internal left adjoints preserve colimits. These proofs
follow the general recipe outlined in Shulman [Shu18]: first one constructs a crisp
induction principle for a type and then one uses this principle to establish the desired
equivalence. Accordingly, the key result is that such crisp induction principles are
definable for internal left adjoints.

Lemma 6.4.10. The following crisp induction principle is derivable:

Γ.{ν ◦ µ} ⊢ C : (ν | Bool)→ U @ n
Γ.{ν} ⊢M : Bool @ m Γ.{ν ◦ µ} ⊢ N0 : C(tt) @ n Γ.{ν ◦ µ} ⊢ N1 : C(ff) @ n

Γ ⊢ ifν(C,M,N0, N1) : Cϵ(M) @ n

Furthermore, this term satisfies the expected β rules e.g. ifν(C, tt, N0, N1) = N0

Proof. We begin by constructing a “helper function” of the following type:

Γ.{ν} ⊢ h : (x :id Bool)→ ⟨µ | C(tt)⟩ → ⟨µ | C(ff)⟩ → ⟨µ | C(xη)⟩

The definition of h is given using the standard induction principle for booleans:

h(tt, y0, y1) = y0

h(ff, y0, y1) = y1



Adjoint modalities 124

To be explicit, the motive of this induction is Γ.{ν}.(id | Bool) ⊢ ⟨µ | C(vη)⟩ type.
With h to hand, we are now able to define ifν :

ifν(C,M,N0, N1) = ϵ(modν(h(M,modµ(N0),modµ(N1))))

That this term has the appropriate type requires some consideration. Inspecting the
type of h, we see that this term has type (C(Mν ⋆ η))ϵ and one triangle identities then
ensures that this is equal to Cϵ(M) as required.

The β rules follow more-or-less directly from the β rules associated with if.

Lemma 6.4.11. ⟨ν | −⟩ preserves booleans i.e. ⟨ν | Bool⟩ ≃ Bool.

Proof. For any modality in MTT, there is a canonical map Bool→ ⟨ν | Bool⟩:

F (x) = if(⟨ν | Bool⟩, x,modν(tt),modν(ff))

To define the inverse map, we require the crisp version of if:

G(x) = let modν(x0)← x in ifν((λ .Bool), x, tt,ff)

To verify that these maps assemble into an inverse, we use (crisp) induction on
booleans along with the β rules of if and ifν .

Corollary 6.4.12. Internal left adjoints preserve coproducts.

Proof. Coproducts can be encoded by dependent sums and booleans, both of which are
preserved by internal left adjoints (in particular, dependent sums are preserved by all
MTT modalities).

Lemma 6.4.13. Intensional identity types are preserved by ⟨ν | −⟩. If Γ.{ν} ⊢ a0, a1 :
A @ m then there is a canonical equivalence Id(modν(a0),modν(a1)) ≃ ⟨ν | Id(a0, a1)⟩.

Proof. We will prove this using a similar recipe to the booleans. To begin with, consider
the following variation on crisp identity induction (compared with Rule 6.1 the motive is
placed in a more restrictive context):

Γ.{ν} ⊢ A type @ m
Γ.{ν ◦ µ} ⊢ C : (a0, a1 :ν A

ν ⋆ η)(p :ν Id(a0, a1))→ U @ n
Γ.{ν ◦ µ} ⊢M : (a :ν A

ν ⋆ η)→ B(a, a, refl) @ n
Γ.{ν} ⊢ N0, N1 : A @ m Γ.{ν} ⊢ P : Id(A,N0, N1) @ m

Γ ⊢ J′ν(B,M,P ) : Bϵ(N0, N1, P ) @ n

As before, we define a helper function in context Γ.{ν}:

h : (a0, a1 :id A)(p :id Id(a0, a1))(f :µ (a :ν A
ν ⋆ η)→ C(a, a, refl))→ ⟨µ | C(aη0, a

η
1, p

η)⟩

We define h through standard identity induction:

h(a, a, refl, f) = modµ(f(aη))

With h to hand, we define J′ν as follows:

J′ν(C,M,P ) = ϵ(modν(h(N0, N1, P,M)))



Adjoint modalities 125

Once again, careful calculation with the triangle identities ensures that this is well-typed.
Finally, it remains to derive the promised equivalence. The interesting direction is the

map G : ⟨ν | Id(a0, a1)⟩ → Id(modν(a0),modν(a1)). There is some remaining subtlety, as
we must ensure that the motive is well-defined:

G(x) = J′ν((λa0, a1, . Id⟨µ|Aν ⋆ η⟩(modν(a0),modν(a1))), (λa. refl(a)), x)

In particular, we must check that ⟨µ | Aν ⋆ η⟩ϵ = ⟨µ | A⟩, but this follows from a triangle
identity. The inverse map and the computations ensuring that they are equivalences are
all routine.

Corollary 6.4.14. Rule 6.1 is derivable for ν though the β law may hold only proposi-
tionally.

Proof. By virtue of Remark 6.3.3 and Lemma 6.4.13.

The following lemma is proven by essentially identical means to the three prior results.

Lemma 6.4.15. The type of natural numbers is preserved by ⟨ν | −⟩.

Proof. We will only sketch this proof, as it follows the same template as those described
above. We will first define a crisp induction principle for Nat from which the lemma
follows directly. Let us fix Γ.(ν | Nat) ⊢ C type. We begin by constructing a helper
function of the following type:

Γ.{ν} ⊢ h : (x : Nat)→ ⟨µ | C z⟩ → ⟨µ | (n :ν Nat)→ C nη → C(sucnη)⟩ → ⟨µ | C xη⟩

As before, this function is defined using the ordinary elimination principle for Nat:

h(z, z, s) = z
h(sucn, z, s) = s⊛ η n⊛ h(n, z, s)

We may then transpose to define a crisp version of rec:

recν(C, z, s, n) = ϵ(modν(hnmodµ(z)modµ(s)))

The desired equivalence is then proven from recν .

We will eventually be interested in the behavior of internal left adjoints on strict
propositional truncations7 so we record the following for future use.

Given a type A @ m, the truncation |A| is another type at mode m such equipped
with a map η : A→ |A| such that any map f : A→ B together with an identification
(a0, a1 : A)→ Id(f a0, f a1) induces an extension |A| → B along η. Written formally, we
have the following elimination principle:

Γ ⊢M : |A| @ m

Γ.(id | A) ⊢ N : B[id.η v] @ m Γ.(id | A).(id | A) ⊢ P : Id(N [p], N [p2.v]) @ m

Γ ⊢ unpack(N,P,M) : B[id.M ]

Γ ⊢M : A

Γ.(id | A) ⊢ N : B[id.η v] Γ.(id | A).(id | A) ⊢ P : Id(N [p], N [p2.v]) @ m

Γ ⊢ unpack(N,P, ηM) = N [id.M ] : B[id.M ]
7In fact, we shall only be interested in this in the case of extensional MTT.



Adjoint modalities 126

Lemma 6.4.16. If an internal right adjoint preserves identity types, the corresponding
internal left adjoint preserves truncations when they exist.

Proof. As before, we prove this by constructing a crisp version of the elimination principle
for |A|:

Γ.{ν} ⊢ A type @ m Γ.{ν ◦ µ} ⊢ B : (a :ν |Aν ⋆ η|)→ U @ n
Γ.{ν ◦ µ} ⊢ N : (a :ν |Aν ⋆ η|)→ B(η a) @ n

Γ.{ν ◦ µ} ⊢ P : (a0, a1 :ν |Aν ⋆ η|)→ Id(N(a0), N(a1)) @ n Γ.{ν} ⊢M : |A| @ m

Γ ⊢ unpack′(M,N) : Bϵ(M) @ n

Once more we proceed by constructing a helper function h at mode m in context
Γ.{ν} with the following type:

Γ.{ν} ⊢h : (a :id |A|)(f :µ (a :ν |Aν ⋆ η|)→ B(η a))

→ (p :µ (a0, a1 :ν |Aν ⋆ η|)→ Id(f(a0), f(a1)))→ ⟨µ | B(aη)⟩

We are able to once again define h in a straightforward manner using unpack (writing
ι for the map ⟨µ | Id(x, y)⟩ → Id(modµ(x),modµ(y))):

Γ.{ν} ⊢ h(t, f, p) = unpack(a.modµ(f(aη)), a0, a1. ι(modµ(p aη0 a
η
1)), t)

For readability, we have written unpack using named binders.
Finally, we define the crisp principle as follows:

unpack′(N,P,M) = ϵ(modν(h(M,N,P )))

Remark 6.4.17. Requiring the right adjoint preserves identity types in the above is an
exception to the general pattern that left adjoints preserve types with a mapping out
property. It is, however, clearly necessary. In Shulman [Shu18], a similar construction
is used; in that setting the right adjoint is shown to preserve identity types using a
standard argument for idempotent monads unavailable for general MTT modalities. ⋄



7 Semantics of MTT

[W]hen everything comes from the
sky, this convinces nobody.

Jean-Yves Girard
The Blind Spot

In this chapter, we investigate the semantics of MTT. We note, however, that many of
the fundamental questions about the model theory of MTT have already been answered
in Section 6.2. By defining MTT as a generalized algebraic theory, we have automatically
inherited a definition of a model and, more broadly, a category of models. Furthermore,
the same machinery ensures that (fully-annotated) syntax is initial in this category.

This does not mean that nothing remains to be done. For instance, while generalized
algebraic theories yield a particular description of a model, it is hardly the most convenient.
In Section 7.1 we repackage the definition into a more recognizable structure based on
natural models [Awo18]. In the process, we isolate the semantic structure of MTT into a
weakening of dependent right adjoints we term weak dependent right adjoints.

We have carefully arranged for modalities in MTT to have an elimination rule which
respects substitution. The result is considerably more complex than the transposition
rule available for dependent right adjoints (DRAs) (Sections 5.5 and 6.3) and it is usually
easier to construct a DRA semantically. In Section 7.2 we show that DRAs to least
model MTT and present several recognition principles for them in practice. In particular,
we combine these two results to show that MTT admits models in any 2-diagram of
topoi connected by right adjoints.

This raises an interesting question: given that all of the semantic models of MTT
encountered at this point use dependent right adjoints rather than the weaker notion
of modality present in MTT, do non-syntactic models of weak dependent right adjoints
even exist? In Section 7.3 we construct a non-syntactic weak dependent right adjoint
based on the gluing model first discussed in Section 5.4. Interestingly, this model still
supports equality reflection, showing that weak dependent right adjoints with equality
reflection are still weaker than full dependent right adjoints. We further show that
the other extension to MTT discussed in Section 6.3—crisp induction principles—are
independent of MTT as well.

7.1 Natural models of MTT

Throughout this section, we fix a mode theory M and consider a model of MTT
instantiated with M. We describe the data of a model of MTT as a series of components.

127



Natural models of MTT 128

7.1.1 Contexts and substitutions

The basis for a model of MLTT is its category of contexts. We wish to adapt this idea to
MTT. As a warm-up, let us consider first the syntax of MTT. Contexts and substitutions
at each mode organize into a category. Rather than a single unified category of contexts,
we instead have a category Cxm associated with each mode m : M.

In fact, there is far more structure than this available. For each modality µ : n m,
the operation Γ 7→ Γ.{µ} induces a functor L(µ) : Cxm Cxn. The definitional equalities
⊢ Γ.{ν ◦ µ} = Γ.{ν}.{µ} cx ensures that these functors satisfy L(µ) ◦ L(ν) = L(ν ◦ µ).
Similarly, the equations forcing Γ.{id} = Γ and γ.{id} = γ force L(id) to be the identity
functor. In addition to these equations, 2-cells in MTT α : ν µ induce natural
transformations L(α) : L(µ) L(ν). Finally, a series of definitional equalities in MTT
ensure that the assignment α 7→ L(α) is suitably functorial.

We can summarize this data:

Lemma 7.1.1. Contexts and substitutions in MTT form a 2-functor Mcoop Cat.

This leads to the first component of a model of MTT:

Component 7.1.1. A model of contexts of MTT consists of a 2-functor I : Mcoop Cat.

Immediately, however, we have additional requirements that should be imposed upon
this. For instance, given a model of contexts I each category of contexts I(m) should
support the empty context. This can be expeditiously specified by requiring each I(m)
have a terminal object:

Component 7.1.2. A model of contexts I supports the empty context if each I(m) has
a terminal object.

Remark 7.1.2. Notice that we have separated Component 7.1.2 explicitly rather than
asking for I to be valued in categories with terminal objects. Indeed, the category
of categories with terminal objects is typically spanned by functors that preserve the
terminal object, but I(µ) need not do this. Within syntax, we have not required
1.{µ} = 1 and several natural models fail to validate this equation. ⋄

Thus far we have specified what a model must support to interpret (1) the category
structure of contexts and substitutions (the identity, composition, etc.) (2) empty context
and the universal maps onto it (3) modal restriction and the action of 2-cells on modal
restriction. To proceed further, however, we require some interpretation of terms and
types.

7.1.2 Types, terms, and context extension

Just as with a model of MLTT, terms and types in MTT can be organized into presheaves
over the relevant category of contexts. Moreover, the pattern from contexts continues:
we will split terms and types into a collection of presheaves, one for each mode so that
e.g. types at mode m will be modeled by a presheaf over contexts at mode m.

Component 7.1.3. A model of contexts I models terms and types when equipped with a
map of presheaves τm : T•m Tm for each m : M.



Natural models of MTT 129

We now turn to the closure of contexts under extension by variables. This procedure
is complicated by MTT’s modal context extension, so we begin by recalling the procedure
for MLTT as described in Chapter 3.

Recall that a representable natural transformation f : X Y : PSh(C) is a mor-
phism in PSh(C) whose fibers over representable presheaves are representable:

y(d)

y(c)

Y

X

The crucial insight of natural models is that this property precisely captures context
extensions. We can package the terms and types of our theory into a pair of presheaves
T• and T over the category of contexts together with a projection τ : T• T. The
requirement that τ be a representable natural transformation is equivalent to requiring
all context extensions to exist:

y(Γ.A)

y(Γ)

T•

T
⌊A⌋

This capitalizes on the insight that the context Γ.A has a universal property:

hom(∆,Γ.A) ∼=
∑

γ:hom(∆,Γ) Tm(∆, A[γ])

The situation in MTT is complicated by the existence of modal context extensions
Γ.(µ | A). Let us begin by observing that modal context extensions enjoy a similar
universal property in the syntax of MTT:

Lemma 7.1.3. A substitution Γ ⊢ δ : ∆.(µ | A) is determined naturally in Γ by a
substitution Γ ⊢ δ0 : ∆ and Γ.{µ} ⊢M : A[δ0.{µ}].

Proof. Given δ, we define δ0 = p ◦ δ and M = v[δ]. This assignment is bijective, with
the inverse sending δ0 and M to δ0.M .

If we assume µ = id, Lemma 7.1.3 ensures that Γ.(µ | A) has the same universal
property as Γ.A. To model cases where µ is not the identity, we must describe the
semantic counterpart to a term in a context restricted by µ.

Notation 7.1.4. Given a model of contexts I, we will frequently use I(µ)∗ for some
µ : n m. When no ambiguity can arise, we will abbreviate this to µ∗ to avoid
unnecessary clutter. We will similarly shorten I(µ)! to µ!.

Crucially, given a modality µ : n m, the presheaf µ∗Tn models types in context
restricted by µ. To see this, fix C : I(m) and apply the Yoneda lemma:

(µ∗Tn)(C)



Natural models of MTT 130

= hom(y(C), µ∗Tn)

= hom(µ!y(C),Tn)

= hom(y(I(µ)(C)),Tn)

= Tn(I(µ)(C))

This pattern holds generally: if one regards some presheaf X : PSh(I(m)) as
classifying an object in the generic context, µ∗X classifies the same object in the generic
context restricted by µ. Accordingly, we will use µ∗T•m to represent terms in a restricted
context. Since µ∗ respects pullbacks (in fact, all limits and colimits), we may carve out
terms of some type by pullback first and then apply µ∗ or begin by applying µ∗ and
then restricting.

Returning to modal context extension, in light of Lemma 7.1.3 and the above
discussion, extending C : I(m) by a type ⌊A⌋ : y(C) µ∗Tn should be an object an
object D satisfying the following property:

y(D) ∼= y(C)×µ∗Tn µ
∗T•n

In other words, I supports µ-modal context extension just when µ∗(τn) is representable.
By requiring this for all modalities µ : n m we arrive at the next requirement.

Component 7.1.4. A modal of types and terms I supports modal context extension if
for each µ : n m : M, the natural transformation µ∗τn is representable.

The legs of the pullback cone encode weakening and the variable rule.
The representability of µ∗τn enables the following succinct characterization of the

polynomial functor Pµ∗τn which we record for future use:

Lemma 7.1.5. Given C : I(m), a C-point of Pµ∗τn(X) is a type ⌊A⌋ : y(C) µ∗Tn

and an element of X(C ′), where C ′ is the µ-modal extension of C by A.

Proof. The proof follows the same ideas as Awodey [Awo18, Proposition 6].

Closure under type operators While the addition of modal context extension suffices to
encode the theory of contexts and substitutions, it remains to close each Tm and τm
under the type and term formers of MTT. Recall from Section 6.2 that connectives in
MTT come in two classes: modal and mode-local. The mode-local connectives have
rules only working with a single mode and their encoding in models precisely follows the
relevant definitions in MLTT. Accordingly, the structure for identity types, dependent
sums, natural numbers, etc. are specified exactly as in Section 3.4.

Component 7.1.5. A model of terms and types I interprets mode-local connectives when
τm is equipped with codes closing it under dependent sums, booleans, a Tarski universe,
and the natural numbers for each m : M

It remains only to describe the requirements for modal types and modal dependent
products. We begin with the latter—they enjoy an η law which makes them particularly
simple to describe.



Natural models of MTT 131

Component 7.1.6. A model of types and terms I supports modal dependent products
when equipped with a choice of pullback square of the following shape for each µ : n m:

Pµ∗τn(T•m)

Pµ∗τn(Tm)

Pµ∗τn(τm)

T•m

Tm

τm

(7.1)

This can be unfolded using Lemma 7.1.5 to see that they encode the expected
structure.

Specifying modal types is complicated by the lack of a unicity principle. We are not
able to structure the formation, introduction, and elimination rules into a single pullback
square. We therefore first isolate the formation and introduction rules.

Component 7.1.7. A model of types and terms I supports formation and introduction
rules for modal types when equipped with a choice of the following square for each
µ : n m:

µ∗T•n

µ∗Tn

µ∗τn

T•m

Tm

τm

(7.2)

Let us begin by rephrasing the elimination rule in terms of the category of contexts.
Like any pattern-matching elimination rule, modal elimination can be captured by a
family of pullback-stable lifts. Specifically, the rule ensures that the canonical substitution
Γ.(ν ◦ µ | A) Γ.(ν | ⟨µ | A⟩) is stably left orthogonal to maps ∆.(id | B) ∆. That
is, there exists a pullback-stable choice of lift for every diagram of the following shape:

Γ.(ν ◦ µ | A)

Γ.(ν | ⟨µ | A⟩)

∆.(id | B)

∆

(7.3)

Pullback-stability makes this definition particularly complicated to succinctly capture.
Following the treatment of intensional identity types or booleans, we capture this through
a left lifting structure (Definition 3.4.16).

It remains to find two specific maps to use as input for the lifting structure. These
should encode the generic versions of the two classes of maps we require lifts for. The
right-hand map has already been described: we will use τm as a generic map corresponding
to ∆.(id | A) ∆. Indeed, by construction such maps precisely correspond to a pullback
of τm to a representable fiber. It remains to construct the left-hand map meant to
represent the generic map Γ.(ν ◦ µ | A) Γ.(ν | ⟨µ | A⟩).



Natural models of MTT 132

To this end, consider the following pullback:

µ∗Tn ×Tm T•m

µ∗Tn

T•m

Tm

µ∗T•n m (7.4)

Fix an element C : I(m) and a point ⌊A⌋ : y(C) µ∗Tn. Pulling back m along ⌊A⌋
yields a map over y(C) and, calculating, this map interprets the canonical substitution
sending the generic annotated variable to the generic variable of modal type. With this
observation to hand, we can crystallize non-crisp modal elimination for µ as a lifting
structure of the following type:

m ⋔ τm : PSh(I(m))/µ∗Tn (7.5)

Notice that this lifting structure must take place in the slice over µ∗Tn. This should
be compared to Awodey [Awo18] where the lifting structure for the identity type also
takes place in a slice to account for the type parameter of the identity type.

To account for modal elimination with a framing modality ν : m o, we must
modify the left-hand morphism and ask for the following lifting structure:

ν∗m ⋔ τo : PSh(I(o))/(ν ◦ µ)∗Tn

Component 7.1.8. A model I supporting modal formation and introduction rules
supports modal elimination when it is equipped with lifting structures of the following
type for each µ : n m and ν : m o:

ν∗m ⋔ τo : PSh(I(o))/(ν ◦ µ)∗Tn

Note that when ν = id, ν∗ = id and therefore this also captures Structure 7.5.
Finally, we must explicitly require that universes in each mode are closed under the

non-mode local connectives.

Component 7.1.9. Fix a model I with Components 7.1.5 to 7.1.7 and write υm :
U•m Um for the interpretation of the Tarski universe in mode m. I supports codes for
modal types and modal dependent products when equipped a choice of morphisms making
the following squares commute for each µ : n m:

Pµ∗υn(Um)

Um

Pµ∗τn(Tm)

Tm

µ∗Un

Um

µ∗Tn

Tm

Definition 7.1.6. A model of MTT consists of Components 7.1.1 to 7.1.9. We will
write I to represent the entirety of the model.



(Weak) dependent right adjoints and models of MTT 133

While less useful, we are also able to rephrase morphisms of models in this language.

Definition 7.1.7. A morphism of models α : I J of MTT consists of a strict 2-natural
transformation between the 2-functors of contexts along with a choice of pullback square
for each m : M:

T•I,m

TI,m

T•J,m

TJ,m

T•α

Tα

Moreover, we require that α, Tα, and T•α commute strictly with choice of structure in
Components 7.1.2 and 7.1.4 to 7.1.9.

As mentioned earlier, this definition is a reformulation of the model yielded by the
machinery of generalized algebraic theories. This fact yields the following theorem:

Theorem 7.1.8. The (fully annotated) syntax of MTT organizes into the initial model.

We conclude this section by obtaining reaping some low-hanging fruit from this
reformulation.

Theorem 7.1.9. A pseudofunctor F : Mcoop Cat equipped further with Compo-
nents 7.1.2 to 7.1.9 can be promoted to a model of MTT whose underlying 2-functor is
equivalent to F .

Proof. First, recall that a pseudofunctor F can always be strictified to a 2-naturally
equivalent 2-functor I. Denote the 2-natural equivalence α. We shall show that I can be
endowed with the remaining structure of an MTT model. The categories F (m) and I(m)
are equivalent, so the existence of an empty context in F (m) immediately transfers to
I(m). Moreover, the pseudofunctors M Cat given by PSh(F (−)) and PSh(I(−)) are
equivalent and so the remaining structure transfers from PSh(F (−)) to PSh(I(−)).

Remark 7.1.10. While we will not crystallize the connection here, the previous result
can be seen as a conservativity theorem. One may consider a version of MTT where the
definitional equalities Γ.{ν}.{µ} = Γ.{ν ◦ µ} and Γ.{id} = Γ are weakened to coherent
isomorphisms. The previous theorem then shows that the embedding of this weakened
theory into MTT is conservative. ⋄

7.2 (Weak) dependent right adjoints and models of MTT

While the Definition 7.1.6 precisely matches syntax, most models which arise in practice
are stricter than this definition requires. In particular, typical semantic models are built
from dependent right adjoints (DRAs) (Definition 5.5.3). In this section, we discuss the
precise relationship between the semantic requirements of MTT and DRAs and prove
several recognition principles for models of MTT.



(Weak) dependent right adjoints and models of MTT 134

7.2.1 Models of MTT from dependent right adjoints

We begin by recalling the definition of a dependent adjunction between two natural
models from Section 5.5:

Definition 7.2.1 (Dependent right adjoint). Given a pair of natural models of type
theory

(
C, τC : T•C TC

)
and

(
D, τD : T•D TD

)
, a dependent right adjoint (DRA) from

C to D consists of the following data:

1. A functor L : D C

2. A choice of pullback square of the following shape in PSh(D):

L∗T•C

L∗TC

T•D

TD (7.6)

Notation 7.2.2. In the context of Definition 7.2.1, when L is fixed we refer to the existence
of Diagram 7.6 as a DRA over L.

Remark 7.2.3. In Definition 7.2.1 we have not required that L be a left adjoint nor that
the type action simulating the right adjoint extend to contexts. Frequently, however, both
of these will be true: L will have a right adjoint R and the type and term components
of a DRA will come from R. By standard adjoint yoga, we may rephrase Diagram 7.6 to
the following diagram:

R!T
•
C

R!TC

T•D

TD

This observation is a rephrasing of the lemma due to Birkedal et al. [Bir+20] that right
adjoints extending to weak CwF morphisms organize into dependent right adjoints.
Having done the work of restating DRAs in terms of natural models, however, it becomes
a near tautology. In particular, as any right adjoint is flat [Bor94] and so the above
square is cartesian if R is a weak CwF morphism. ⋄

We wish to relate this definition to the requirements for modeling modalities in MTT
(Components 7.1.7 and 7.1.8) as well as the other modal features (Components 7.1.4
and 7.1.6). To facilitate such a comparison, we introduce the following notion:

Definition 7.2.4 (Weak dependent right adjoint). Given a pair of natural models of
type theory

(
C, τC : T•C TC

)
and

(
D, τD : T•D TD

)
, a weak dependent right adjoint

(wDRA) from C to D consists of the following data:

1. A functor L : D C



(Weak) dependent right adjoints and models of MTT 135

2. A choice of commuting square of the following shape in PSh(D):

L∗T•C

L∗TC

T•D

TD (7.7)

3. A choice of lifting structure of the following shape:(
L∗T•C L∗TC ×TD T•D

)
⋔ τD : PSh(D)/L∗TC

The essential difference between a weak DRA and a DRA lies in the third point of Defi-
nition 7.2.4: a weak DRA requires only that the canonical gap map L∗T•C L∗TC ×TD T•D
be stably orthogonal to display maps, while a proper DRA requires it to be an isomor-
phism. This should be compared with the distinction between extensional identity types
and intensional identity types or strong and weak coproducts in type theory. Just as in
these other situations, we weaken the universal property of a connective by requiring
only that a certain map be invertible only “from the perspective of a type” rather than
a true isomorphism.

Lemma 7.2.5. Any DRA induces a weak DRA.

Proof. Fix a pair of natural models τC : PSh(C) and τD : PSh(D) along with a DRA
between them: a functor L : D C and cartesian square α : L∗τC τD. We wish to
show that this data induces a weak DRA. The first two requirements of Definition 7.2.4
are satisfied immediately by L and α respectively. It remains only to show that the
canonical gap map m : L∗T•C L∗TC ×TD T•D is stably orthogonal τD in PSh(D)/L∗TC.

To this end, let us notice first that m is an isomorphism in this category: by
assumption L∗T•C is the apex of pullback TC×TD T•D. Next, we note that an isomorphism
ι : A B is stably left orthogonal to any g : X Y . Indeed, the appropriate section
can be constructed as follows: s : ι ⋔ g = λ(h0, h1). h0 ◦ ι−1

A model of MTT requires slightly more than a weak DRA for each µ : n m. In
particular, Component 7.1.8 requires more than the third point of Definition 7.2.4 to
accommodate crisp induction principles for modalities. We can rephrase this additional
requirement into a “pseudofunctoriality” requirement in light of Lemma 6.3.5.

Lemma 7.2.6. . Fix natural models
(
Ci, τi : T•i Ti

)
i∈{0,1,2} and a pair of wDRAs:

• A weak DRA given by a functor L0 : C1 C0 along with the following:

L∗0T
•
0

L∗0T0

T•1

T1

α•0

α0
s0 : ⟨L∗0[τ0], α•0⟩ ⋔ τ1 : PSh(C1)/L

∗
0T0



(Weak) dependent right adjoints and models of MTT 136

• A weak DRA given by a functor L1 : C1 C0 along with the following:

L∗1T
•
1

L∗1T1

T•2

T2

α•1

α1
s1 : ⟨L∗1[τ1], α•1⟩ ⋔ τ2 : PSh(C2)/L

∗
1T1

The following are equivalent:

1. There exists a lifting structure L∗1m0 ⋔ τ2 : PSh(C2)/(L0 ◦ L1)
∗T0 where m0 :

L∗0T
•
0 L∗0T0 ×T1 T

•
1

2. There exists a weak DRA from τ0 to τ2 over L0 ◦ L1 given by the commuting
square (β, β•) : (L0 ◦ L1)τ0

∗ τ2 and s2 : ⟨(L0 ◦ L1)
∗[τ0], β

•⟩ ⋔ τ2 along with a
map making the following diagram commute:

(L0 ◦ L1)
∗T0

τ2[α1 ◦ L∗1α0] τ2[β]

(L0 ◦ L1)
∗τ0

(7.8)

In particular, any model of MTT is equipped with a choice of weak DRAs for each
morphism in M along with a collection of compositor morphisms fitting into diagrams
like Diagram 7.8 witnessing the “pseudofunctoriality” of this weak DRAs.

Corollary 7.2.7. In the situation of Lemma 7.2.6, if the weak DRAs over L0 and L1

are DRAs, then both conditions hold automatically.

Proof. It suffices to show that the second condition holds. That is, that there is a (weak)
DRA over L0 ◦ L1 and a map fitting into Diagram 7.8.

First, let us note that DRAs compose: given cartesian squares α0 : L∗0τ0 τ1 and
α1 : L∗1[τ1] τ2, the composite α1 ◦ L∗1α0 is a cartesian square (L0 ◦ L1)

∗τ0 τ2 and
thus gives rise to a DRA τ0 to τ2. With this choice, we may take the identity to fill
Diagram 7.8.

This result demonstrates that a choice of DRAs is sufficient to model the modalities
in MTT. In fact, it also suffices to realize all the modal structure of MTT. In particular,
modalized context extension and modal dependent products.

Lemma 7.2.8. Fix a pair of natural models
(
Ci, τi : T•i Ti

)
i∈{0,1} along with a DRA

L : C1 C0 and α : L∗τ0 τ1. The map L∗τ0 is a representable natural transformation

Proof. This follows immediately from the fact that representable natural transformations
are stable under pullback.



(Weak) dependent right adjoints and models of MTT 137

Lemma 7.2.9. Fix a pair of natural models
(
Ci, τi : T•i Ti

)
i∈{0,1} along with a DRA

L : C1 C0 and α : L∗τ0 τ1. If τ1 is closed under dependent products i.e., there is a
cartesian square Pτ1(τ1) τ1 then it is closed under modal dependent products in the
sense of Component 7.1.6.

Proof. This follows immediately from the observation that P− sends pullback squares
to pullback squares, so PL∗τ0(τ1) is a pullback of Pτ1(τ1).

We may summarize the entirety of this discussion through the following theorem:

Theorem 7.2.10. The following data suffices to construct a model of MTT:

• A pseudofunctor I : Mcoop Cat,

• for each m : M, a choice of terminal object in I(m),

• for each m : M, a representable natural transformation τm : PSh(I(m)) closed
under dependent sums, dependent products, identity types, a Tarski universe, and
natural numbers.

• for each µ : n m, a DRA from τn to τm over I(µ) such that the Tarski universe
in each mode is closed under the DRA.

Proof. Using Theorem 7.1.9, it suffices to construct Components 7.1.2 to 7.1.9.
The assumptions of this theorem automatically give us Components 7.1.2, 7.1.3

and 7.1.5. Lemma 7.2.5 and Corollary 7.2.7 together with our assumed supply of depen-
dent right adjoints yields Components 7.1.7 and 7.1.8. Lemma 7.2.8 and Lemma 7.2.9
yield Component 7.1.4 and Component 7.1.6, respectively. Finally, our assumption that
each universe is closed under these DRAs gives Component 7.1.9.

7.2.2 Constructing dependent right adjoints

Theorem 7.2.10 gives us a powerful tool for constructing models of MTT. In this subsec-
tion, we discuss some of the more common situations which satisfy these assumptions.
In particular, when dealing with suitably well-behaved (presentable) categories we are
often able to derive all of these assumptions from the pseudofunctor of adjoints. In less
well-behaved cases where the machinery of the presentable categories is not available,
we discuss an extension of the strictification theorem of Section 5.5 to handle Tarski
universes.

When working with Grothendieck topoi, the local universes strictification introduced
in Section 3.5.2 is an unnecessary complication. It is instead easier to build a model of
MLTT (or MTT) through a generic family of small sheaves following Section 3.5.1. To
this end, we recall a corollary of Corollary 3.3.13 exposed by Gratzer et al. [GSS22]:

Corollary 7.2.11. In a Grothendieck topos E, there exists a cardinal λ such that for
any inaccessible cardinals κ1 > κ0 ▷ λ such that there exists exists a model of MLTT in
E all connectives and a strict Tarski universe where types are interpreted as relatively
κ1-compact families and small types are relative κ0-small families.



(Weak) dependent right adjoints and models of MTT 138

In particular, in the model described by Corollary 7.2.11, the family of types and
terms τ : PSh(E) is given by y(υκ1). We wish to describe under what assumptions a
collection of these models can be extended to a model of MTT.

Theorem 7.2.12. Fix a pseudofunctor I : Mcoop Cat where I(m) is a Grothendieck
topos for all m : M and I(µ) has a right adjoint Ī(µ) for all µ : n m. There exists a
cardinal λ such that for arbitrary inaccessible cardinals κ1 > κ0 ▷ λ this pseudofunctor
can always be extended to a model of MTT where mode-local connectives are interpreted
by Corollary 7.2.11.

Proof. Our construction will factor through Theorem 7.2.10. Accordingly, we must
construct models of MLTT in each I(m) along with DRAs between these models.

We begin by recalling that as right adjoints between presentable categories each Ī(µ)
is accessible. In particular, using Adámek and Rosický [AR94, Theorem 2.19] there exists
a cardinal λ such that for all κ ▷ λ each Ī(µ) is κ-accessible and preserves κ-compact
objects. As we have assumed that each I(m) is a topos, by Theorem 3.3.12 there exists
some λm such for any cardinal κ ▷ λ there exists a generic family for relatively κ-compact
maps satisfying realignment. We may further increase λm to ensure that if κ ▷ λm then
κ-compact objects in I(m) are closed under finite limits.

Using Adámek and Rosický [AR94, Example 2.13 (6)], we may now choose a cardinal
λ̄ such that λ̄ ▷ λ and λ̄ ▷ λm for all m : M. Fix two inaccessible cardinals κ1 > κ0 ▷ λ̄.
By construction and Theorem 3.3.12, we obtain the following:

• Each Ī(µ) is both κ0- and κ1-accessible.

• Each I(m) has a generic maps υm,0 and υm,1 for relatively κ0-compact and relatively
κ1-compact families respectively.

• In each I(m), both κ0-compact and κ1-compact objects are stable under finite
limits.

Now, Corollary 7.2.11 ensures that each I(m) interprets MLTT with a Tarski universe
using y(υm,1) as the universe of types. It remains to construct the necessary DRAs
between these models.

In this situation the pullback diagram from Definition 7.2.1 can be simplified. First,
by standard adjoint yoga, I(µ)∗ = Ī(µ)!. Secondly, as the Yoneda embedding is full and
faithful and preserves limits, it is both necessary and sufficient to construct pullback
diagrams of the following shapes for each µ : n m:

Ī(µ)(U•n,0)

Ī(µ)(Un,0)

U•m,0

Um,0αµ,0

Ī(µ)(U•n,1)

Ī(µ)(Un,1)

U•m,1

Um,1αµ,1



(Weak) dependent right adjoints and models of MTT 139

Furthermore, to ensure cumulativity we must ensure that the following diagram com-
mutes:

Ī(µ)(Un,0)

Ī(µ)(Un,1)

Um,1

Um,1

We will construct the necessary pullback squares by showing that Ī(µ) preserves
relatively κ0- and κ1-compact families and then using the genericity of υm,i. Accordingly,
fix a relatively κ0-compact family f : X Y : I(n)—the argument for κ1 is identical. We
wish to show that Ī(µ)(f) is relatively κ0-small, so we begin by fixing a κ0-compact object
Z : I(m) and a morphism Z Ī(µ)(X). Consider the following pullback diagrams:

Z ×Ī(µ)(X) Ī(µ)(Y )

Z

Ī(µ)(I(µ)(Z)×Y X)

Ī(µ)(I(µ)(Z))

Ī(µ)(X)

Ī(µ)(Y )

Notice that the right-hand square is indeed a pullback as Ī(µ) preserves limits. As
Z is κ0-compact and both Ī(µ) preserves κ0-direct colimits, I(µ)(Z) is κ0-compact.
Accordingly, I(µ)(Z)×Y X is κ0 compact because X Y is relatively κ0-compact by
assumption. Finally, as Ī(µ) preserves κ0-compact objects, Z ×Ī(µ)(X) Ī(µ)(Y ) is the
finite limit of κ0-compact objects and therefore κ0-compact.

For any µ : n m, we therefore conclude that Ī(µ)(υn,i) is relatively κi-compact.
As υm,0 is generic among such maps, we may therefore choose a pullback square of the
following shape:

Ī(µ)(U•n,0)

Ī(µ)(Un,0)

U•m,0

Um,0

Rather than doing the same for υm,1, however, we will use realignment to coherently
extend this choice. In particular, using realignment we choose a pullback square
Ī(µ)(υn,1) υm,1 extending the pullback square Ī(µ)(υn,0) υm,1. These choices then
satisfy the third component of Theorem 7.2.10 and complete the proof.

Remark 7.2.13. This theorem substantially generalizes the recognition principles for
dependent right adjoints given by Gratzer et al. [Gra+21]. In particular, using the
machinery of accessible functors allows us to completely avoid any need to restrict the
forms of the right adjoints given as input to Theorem 7.2.12. ⋄

Remark 7.2.14. Much of the proof of Theorem 7.2.12 can be generalized to apply
to arbitrary presentable categories. However, the existence of suitably well-behaved
universes is far less clear cut than Theorem 3.3.12 and these must constructed by more
specialized means. ⋄



(Weak) dependent right adjoints and models of MTT 140

Corollary 7.2.15 (Soundness of MTT). Regardless of the mode theory, there is no
closed proof of Id(0, 1) in MTT.

Proof. This follows from Theorem 7.2.12 instantiated with the 2-functor F : M Cat
sending each mode to Set and each 1- and 2-cell to the identity. In particular, because
0 ̸= 1 in the Set model of MLTT, MTT is consistent.

7.2.3 An extension of the local universes construction

In some circumstances, a hierarchy of suitably strict universes (Theorem 3.3.12) might
be unavailable. Most typically, this comes from working with an elementary topos not
based over Set. In these circumstances, it is more difficult to construct a model of MTT
and arbitrary right adjoints are insufficient. In this subsection, we extend the local
universes construction and its extension by Shulman [Shu19] to Tarski universes to apply
to MTT.

Remark 7.2.16. Note that Shulman [Shu19] only extends the local universes construction
to non-cumulative Tarski universes. This in particular means that equations that ensure
that applying El to a dependent product yields a dependent product on the nose. However,
in the presence of multiple Tarski universes lifts between them do not necessarily preserve
chosen codes. For our purposes, the distinction is immaterial as we consider only one
universe. This is, however, one of the places for which the presence of hierarchy of
universes offers a challenge over a single universe. ⋄

Remark 7.2.17. More recently, Shulman [Shu23] has given a version of the local universes
construction for MTT with (weak) dependent right adjoints. This work does not discuss
universes, so we explain the extension here. We also take this opportunity to specialize
the proof from op. cit. to our case and thereby simplify some of the notations and
constructions; while Shulman [Shu23] deals with strictifying a weak model in a way
compatible with the codextrification procedure of op. cit., we focus only on the first
point. ⋄

Definition 7.2.18. In a category of display maps (C,D), recall that a map f : A B
is said to be anodyne when it is weakly left orthogonal to display maps. A map is stably
anodyne if any pullback of it is anodyne.

Definition 7.2.19. Fix a pair of categories with display maps and a functor R :
(C,DC) (D,DD). A pre weak dependent right adjoint over R consists of a factorization
of choice of factorization R

(
f : E B

)
= m(f) ◦ i(f) into a stably anodyne map over

R(B) followed by a display map.

Definition 7.2.20. Given a pre weak DRA R : (C,DC) (D,DD),m, i along with
another functor G : (D,DD) (E,DE), this R satisfies G-crisp induction principles if
G(i(f)) is stably anodyne in E.

Theorem 7.2.21. Fix a pseudofunctor I : Mcoop Cat equipped with the following:

• Each I(m) is a locally Cartesian closed category with display maps Dm and display
maps are closed under id, composition, pushfoward and arbitrary maps admit a
factorization as an anodyne map followed by a display map.



(Weak) dependent right adjoints and models of MTT 141

• The functor I(µ) has a right adjoint Rµ and a pre weak DRA iµ,mµ over Rµ.

• In each I(m) there exists a display map υm : U•m Um closed under dependent
sums, identity types etc. such that Um 1 is also a display map.

• If µ : n m and p ∈ Dn then Dm is closed under pushforward along Rµ(p). We
further require a map ProdCodeµ : PRµ(υ[n]) Um classifying modal dependent
products.

• For each µ : n m, there exists a map ModCodeµ : Rµ(Un) Um such that for
any display map p : E B ∈ Dn classified by f : B Un, the family mµ(p) is
classified by ModCodeµ ◦Rµ(f).

The local universes models defined by Shulman [Shu19] in each I(m) assemble into a
model of MTT without any crisp induction principles. Moreover, if the weak DRA over
µ satisfies Rν-crisp induction, the µ-modal types have ν-crisp induction. Finally, if any
iµ is an isomorphism, then ⟨µ | −⟩ is realized by a proper DRA.

Notation 7.2.22. To ease notation, given f : E B ∈ Dn, we write µ(E) for the domain
of display map mµ(f).

Proof. We begin by recalling the variant of the local universes construction given by
Shulman [Shu19] to account for Tarski universes. Let us denote the standard local
universes construction

∐
p∈Dm

y(p) over I(m) by λm : L•m Lm. The refined universe
of types is then defined as follows:

τm = y(υm) + λm (7.9)

It follows that e.g., Tm is precisely y(Um) + Lm. The results of Shulman [Shu19]
along with the assumptions on υm and Dm ensure that τm is a model of extensional type
theory with a Tarski universe.

Modal context extension We now show that Tm enjoys modal context extension. In
particular, we must show that for any ν : m o that I(µ)∗τm is a representable natural
transformation. First, we notice that the following isomorphism:

I(µ)∗τm ∼= y(Rµ(υm)) +
∐

p∈Dm
y(Rµ(p))

As the coproduct of representable families, I(µ)∗τm is therefore representable.

Formation and introduction rules for modal types We now construct a square representing
the formation αµ : I(µ)∗τn τm for all µ : n m. We will only show the definition of
cod(αµ) as the construction of dom(α) and the verification of commutativity are similar:

cod(α)X
(
f : I(µ)(X) Un

)
= ModCodeµ ◦ f̂ : X Um

cod(α)X
(
p : E B, f : I(µ)(X) B

)
=
(
mµ(p) : µ(E) RµB, f̂ : X Rµ(B)

)
It now follows nearly tautologically that the Tarski universe Um at mode m is closed

strictly under modal types by restricting α to the subobject of I(µ)∗y(Un) of I(µ)∗Tn.



(Weak) dependent right adjoints and models of MTT 142

Modal elimination principles Given a modality µ : n m, we must now argue that αµ

enjoys a lifting structure witnessing modal elimination. Let us write M for the product
I(µ)∗Tn ×Tm T•m and write i for the induced map I(µ)∗T•n M .

Following Awodey [Awo18], we must construct a family of diagonal lifts fitting into
the following square, naturally in Z:

Z ×I(µ)∗T•
n
I(µ)∗T•n

Z ×I(µ)∗T•
n
M

I(µ)∗T•n × T•m

I(µ)∗T•n × Tm

As described in Proposition 30 of op. cit., it suffices to consider the case where
Z is representable, and so we may reduce the case where Z = ⌊A⌋ : y(X) I(µ)∗Tn.
Let us suppose that ⌊A⌋ factors through the right disjunct of Tn—our assumptions on
ModCodeµ ensure the other case reduces easily to this—so that it may be decomposed
into a display map p : E B ∈ Dn along with a map f : I(µ)(X) B.

In this case, we may transpose the above square and calculate, so that it suffices to
obtain a family of natural lifts to a diagram of the following shape:

y(X ×Rµ(B) Rµ(E))

y(X ×Rµ(B) µ(E))

T•m

Tm

Now utilizing the definition of τm, we may further reduce this to finding a natural
family of lifts for the following diagram for some fixed display map F C ∈ Dm:

X ×Rµ(B) Rµ(E)

X ×Rµ(B) µ(E)

F

C

Finally, Proposition 31 in Awodey [Awo18] shows that there is a universal such X,
so we can solve this lifting problem naturally by reducing to this universal case and
observing that the left-hand map is anodyne.

While we leave the details to the reader, an identical argument suffices to show that
µ-modal types satisfy a ν-crisp induction principle if Rν(iµ) is stably anodyne.

Modal dependent products The case of modal dependent products follows the case of
dependent products detailed by Shulman [Shu19] and Shulman [Shu23] mutatis mutandis
as we have required display maps to be closed under pushforward along maps Rµ(p)
where p is a display map. We outline the details for completeness.

Fix a modality µ : n m. We must define a cartesian map classifying modal
dependent products α : PI(µ)∗τn(τm) τm. We first note that by exactness, it suffices



(Weak) dependent right adjoints and models of MTT 143

to construct cartesian squares β : PI(µ)∗λn
(λm) λm and PI(µ)∗y(υn)(y(υm)) y(υm)

separately. The latter exists by assumption, so we must construct only β.
We begin with cod(β). To this end, fix the input to cod(β) at X : I(m): two types(

p : En Bn, f : I(µ)(X) Bn

)
and

(
q : Em Bm, g : X ×Rµ(Bn) Rµ(Em) Bm

)
.

We begin by defining a π : Bn ▷µ Bm Rµ(Bn) as follows:

π = Rµ(p)∗(Rµ(En)×Bm)

By transposition, f and g induce a map ⟨f, g⟩ : X Bn ▷µ Bm and this is evidently
natural in X. Note that the counit of Rµ(p)∗ ⊣ Rµ(p)∗ induces e : π∗(Rµ(En)) Bm.
Finally, we define a display map p▷µ q over Bn ▷µ Bm as follows:

p▷µ q = π∗(Rµ(p))∗(e
∗(q))

Finally, we define cod(β)X as follows:

cod(β)X((p, f), (q, g)) = (p▷µ q, ⟨f, g⟩)

An identical calculation to e.g. Shulman [Shu23] shows that this map induces the
necessary cartesian square.

7.2.4 Models of MTT from gluing

We conclude this section with an instance of a semantic model which does not arise
from Theorem 7.2.10. This model adapts the gluing model for AdjTT elucidated in
Section 5.4. For the remainder of this section, fix a pair of locally Cartesian closed
display map categories (C,DC) and (D,DD), along with an adjunction F ⊣ G between
them such that both F and G preserve display maps and finite limits. We will assume
DD and DC are closed under the composition, identity, diagonals, pushforward, and the
other standard operations required to interpret Martin-Löf type theory (Section 3.5.2).
We will further require both C and D admit a universe of small display maps closed υC
and υD respectively. These universes are closed under all connectives, and there exist
cartesian squares α : F (υC) υD and β : F (υD) υC respectively.

We will show that we obtain a model of MTT with the adjoint mode theory Madj

introduced in Example 6.1.6, though without µ-crisp ν-elimination. We note, however,
that this principle is validated if F ⊣ G presents an idempotent comonad.

Recall from Section 5.4 that gluing along F results in the following chain of adjoints:

C Gl(F ) D

j∗

j∗
j!

i∗

i∗

We will show that we can interpret MTT with adjoint modalities ν ⊣ µ into C and
Gl(F ) using j! to interpret µ and j∗ to interpret ν. As both of these are right adjoints,
one might hope that Theorem 7.2.10 applies. This is, however, not the case. In particular,
we will endow Gl(F ) with a class of display maps in such a way that j∗ does not send
display maps to display maps. Accordingly, we must make use of Theorem 7.2.21 to
accommodate the fact that ν is a proper weak DRA.



(Weak) dependent right adjoints and models of MTT 144

Definition 7.2.23. The class DGl(F ) ⊆ Gl(F )→ consists of maps f : X Y such that
the naturality square of the unit of i∗ ⊣ i∗ is cartesian and i∗f ∈ DD.

It is helpful to unfold this definition slightly. First, note that for a given object
X = D F (C) we may compute:

i∗i
∗X = D F (1)

Accordingly, η : id i∗ ◦ i∗ becomes the identity when restricted to closed component
and it sends the open component to the terminal object. Requiring the naturality
square at f : X Y to be cartesian is equivalent, therefore, to requiring f to be an
isomorphism on open components; j∗f must be invertible.

Moreover, this class is minimal in a certain sense:

Lemma 7.2.24. DGl(F ) is the smallest pullback stable class containing i∗DD.

Proof. By construction, any pullback stable class containing i∗DD must contain DGl(F ).
It remains only to argue that DGl(F ) is closed under pullbacks. To this end, fix g ∈ DGl(F )

and fix a cartesian square:

A

B

f

X

Y

g

We must show that the unit square for g is cartesian. First, note that as f ∈ DGl(F )

the square g i∗i
∗f given by composing the above square with the unit at f is cartesian.

Next since i∗ preserves pullbacks, the out square and right-hand squares in the following
are pullbacks:

A

B

g

i∗i
∗A

i∗i
∗B

i∗i
∗g

η

i∗i
∗X

i∗i
∗Y

i∗i
∗f

The conclusion now follows.

Lemma 7.2.25. The class DGl(F ) is closed under identities, diagonals, pushfoward and
composition.

Proof. All cases except that of pushforwards follow from elementary manipulation of
pullbacks. Fix f : A X, g : X Y ∈ DGl(F ), we must show that g∗f ∈ DGl(F ).
First, recall that j∗ preserves pushforwards. Accordingly, j∗(g∗f) is invertible as the
pushforward of an invertible map: j∗f . Accordingly, the unit square associated with g∗f
is cartesian.

It remains to show that i∗(g∗f) ∈ DD. Through a standard reduction, we may pass
to the slice over Y and reduce the case where Y = 1. In particular, this slice can



(Weak) dependent right adjoints and models of MTT 145

also be realized by gluing along a lex functor between display map categories. In this
case, g∗f—now a family over 1—can be defined through a slightly more direct pullback
diagram:

g∗f

1

AX

XX

As i∗ preserves pullbacks, to show i∗(g∗f) 1 ∈ DD, it suffices to argue that
i∗(XX) i∗(AX) is a display map. Computing, this map arises by pulling back the map
i∗X i∗X i∗Ai∗X . This latter map, in turn, is a display map through our assumption
that DD is closed under pushforward.

Lemma 7.2.26. The universe υGl(F ) = i∗υD is closed under all the connectives of type
theory.

Proof. This follows immediately from the fact that i∗ preserves locally cartesian closed
structure and all the connectives of type theory are definable in this language.

Theorem 7.2.27. There is a model of MTT with the adjoint mode theory in C and
Gl(F ) arising from the pseudofunctor given by the adjunction j∗ ⊣ j∗ such that the right
adjoint modality is a DRA, but there is no crisp induction principle for the left adjoint
modality framed by the right.

Proof. We will construct this model via Theorem 7.2.21. In this case, we are using
extensional equality and thus Lemma 6.3.9 shows that it sufficient to construct ordinary
products; we may use them and modal types to encode modal dependent products.
Accordingly, in light of our assumptions and Lemmas 7.2.25 and 7.2.26, it remains only
to discuss the prerequisites of Theorem 7.2.21 governing modalities. In fact, there is no
need to explicitly argue for crisp induction principles for modalities: we will show the
right adjoint is a DRA and thus automatically has all crisp induction principles, while
the left adjoint is not required to have any; the only non-trivial case for the latter is the
right adjoint frame, as j∗ is fully faithful.

Let us write τC : T•C TC and τGl(F ) : T•Gl(F ) TGl(F ) for the universes of type

and terms in C and Gl(F ), respectively. We similarly write υC and υGl(F ) for the small
universes. We begin by constructing the interpretation of the right adjoint modality
sending τGl(F ) to τC.

The right adjoint While the preconditions of Theorem 7.2.21 only require us to produce
a weak DRA, we will use Lemma 7.2.5 and construct a full DRA over j∗.

To this end, note that right adjoint to j∗ (j!) sends display maps to display maps.
Indeed, by assumption G preserves display maps and j! sends an arrow f in DGl(F ) to
a pullback of Gi∗f . The result then follows because i∗ sends display maps in Gl(F )
to display maps in D by assumption. We therefore obtain a pre weak DRA over j! by
choosing a trivial factorization i(f) = id.



(Weak) dependent right adjoints and models of MTT 146

Moreover, by assumption we have a cartesian square G(υD) υC. It therefore
suffices to construct a cartesian square j!i∗υD G(υD), but calculation shows that these
two maps are in fact isomorphic.

Taken together, these two constructions exhibit the necessary modal types for the
right adjoint and show that the universe of small types is closed under this modality.

The left adjoint The left adjoint is more complex, essentially because it is not a DRA.
We begin again by constructing a pre weak DRA over j∗ which sends a display map
f ∈ DC to a factorization of j∗f into a stably anodyne map followed by a closed ètale
map. Explicitly, given f : X Y we choose the following factorization:

F (X)

F (X)

F (X)

F (Y )

F (X)

F (Y )

F (Y )

F (Y )

It is routine to verify that the left square i(f) is stably anodyne and the right square
m(f) lies in DGl(F ).

It remains to show that υGl(F ) is suitably closed under these modal types. That
is, we must choose a morphism ModCodeν : j∗υC υGl(F ) such that given a display
map π : E B ∈ DC classified by f : B UC, the map ModCodeν ◦ j∗f classifies
m(f). Recall that υGl(F ) = i∗υD and so, transposing, it suffices to construct a map
i∗j∗υC υGl(F ). Calculating, the domain of this morphism is F (υC) and so we choose
the assumed cartesian square α : F (υC) υD.1

It remains to show that α has the required property. To this end, fix π : E B and
suppose that it is classified by f : B UC. Chasing through the transposition, α ◦ j∗f
is determined by the following square:

F (B)

F (B)

UD

1

α ◦ F (f)

!

Directly calculating, the display map classified by this arrow is given by the following:

F (E)

F (B)

F (B)

F (B)

This is precisely m(f), just as required.

1Note that despite this last square being cartesian, the induced map ModCodeν will not typically be
cartesian. Transposing a cartesian square does not generally yield another cartesian square.



Independence of various extensions of MTT 147

Corollary 7.2.28. If F ⊣ G presents an idempotent comonad so η : id G ◦ F is an
isomorphism, the model constructed in Theorem 7.2.27 has all crisp induction principles.

Proof. It suffices to consider the elimination principle for the left adjoint modality
with the right adjoint as the frame. Recall the factorization i(−),m(−) constructed
in Theorem 7.2.27 to interpret the left adjoint modality. Following Theorem 7.2.21, it
suffices to show that j!(i(f)) is stably anodyne for all display maps f : X Y .

Calculating, we see that j!i(f) = GFX → GFX ×GFY Y . If the unit of F ⊣ G is an
isomorphism, this map is an isomorphism and therefore stably anodyne.

In particular, we obtain the following useful class of models of MTT:

Corollary 7.2.29. If F ⊣ G presents an idempotent comonad, then Theorem 7.2.27
models all of MTT with extensional equality for the adjoint mode theory. In addition,
the interpretation of ⟨µ | −⟩ can be extended to a strict dependent right adjoint.

Corollary 7.2.30. Any lex idempotent comonad on a locally cartesian closed category
induces a model of MTT with the mode theory from Example 6.1.4.

7.3 Independence of various extensions of MTT

We conclude this chapter by using the machinery developed thus far to prove the
independence of various extensions of MTT from the base theory. In particular, in
Section 6.3, we introduced two classes of extensions for MTT:

• Crisp induction principles for proving ⟨µ | Id(a, b)⟩ ≃ Id(modµ(a),modµ(b)).

• Strict DRAs that presented an internal right adjoint modality by a type with an η
law µ⇒ −.

In this section, we show construct models which refute the first principle along with
a strengthening of the second.

In particular, we construct two models which refute the equivalence ⟨µ | Id(a, b)⟩ ≃
Id(modµ(a),modµ(b)). The second model is significantly more involved but shows that
this holds even when µ is a (strict) internal right adjoint.

We also show that not every weak dependent right adjoint is a strict DRA, even in
the presence of equality reflection. This shows that a natural strengthening of the second
extension (making every modality a strict DRA) is independent of MTT. This model
does not show, however, that wDRAs realizing internal right adjoints are not always
strict dependent right adjoints. Constructing a countermodel for the second extension is
more subtle and we defer it til Chapter 8 where one can argue by induction on normal
forms (Theorem 8.6.12).

Recall that the presence of equality reflection trivializes crisp induction (Lemma 6.3.4).
However, extensional equality is almost always validated by a model unless the model
comes from syntax or from a homotopical model where identity types are interpreted by
path objects. To find models which refute crisp induction, we therefore turn to syntactic
and homotopical models. We now specify two such models of MTT—one syntactic, one
homotopical.



Independence of various extensions of MTT 148

Lemma 7.3.1. There exists a model of MTT with a single mode m and modality
µ : m m such that ⟨µ | Id(a, b)⟩ is not equivalent to Id(modµ(a),modµ(b)).

Proof. Consider the syntactic model of MLTT. We will construct a model of MTT using
this model to interpret mode m. We interpret ⟨µ | A⟩ as

∏
NatA. In particular, as

Nat → − is a dependent right adjoint with left adjoint Γ 7→ Γ.Nat, Theorem 7.2.10
ensures that this assembles into a model of MTT.

Unfolding, the equivalence under consideration is precisely function extensionality,
which is well-known to not hold in the syntactic model of MLTT.

Lemma 7.3.2. There exists a model of MTT with the adjoint mode theory with modalities
ν ⊣ µ such that ⟨µ | Id(a, b)⟩ is not equivalent to Id(modµ(a),modµ(b))

Proof. Let us recall that µ : n m. We will interpret n in Set and m in simplicial
sets sSet. Crucially, types in the latter will not be arbitrary small families but small
simplicial sets as in the simplicial model of homotopy type theory [KL21]. In particular,
display maps in Set are taken to be fiberwise-small families and display maps in sSet
are fiberwise-small Kan complexes.

We will interpret the right adjoint modality as a DRA internalizing Γ : sSet Set
while the left adjoint is interpreted by ∆ : Set sSet. Both are adjoints: they form
the rightmost half of Π0 ⊣ ∆ ⊣ Γ. Finally, Theorem 7.2.10 then applies, as both right
adjoints preserve display families.

Within the simplicial set model, identity types are interpreted by paths and therefore
may be arbitrarily complex and proof-relevant types. On the other hand, identity types
in Set are always propositional. It follows that ⟨µ | −⟩ cannot preserve identity types as
Γ takes the identity type of e.g., S1 (the integers) to 1.

Finally, we note that our model in Gl(F ) provides a plentiful supply of semantically-
natural weak dependent right adjoints which are not dependent right adjoints. In
particular, even in the presence of equality reflection a weak DRA is not equivalent to a
strong DRA.2

Lemma 7.3.3. The left adjoint in Theorem 7.2.27 is never interpreted by a dependent
right adjoint except in trivial cases.

Proof. Inspecting the construction of the model, we see that the left adjoint is imple-
mented by a DRA if for any f : X Y ∈ DC the factorization of j∗f into an anodyne
map i(f) and a display map m(f) is trivial; that is, when i(f) is an isomorphism. Recall
that i(f) is given by the following commuting square, which is not invertible unless f
was invertible:

F (X)

F (X)

F (X)

F (Y )

In particular, the interpretation of ⟨ν | −⟩ is not a DRA.

2This is in contrast to “weak coproducts” or similar, which do collapse to coproducts in the presence
of equality reflection.



Relating modal type theories to MTT 149

Corollary 7.3.4. Extending extensional MTT with an elimination principle akin to
Rule 5.21 is not a conservative extension.

7.4 Relating modal type theories to MTT

Having developed the semantics of MTT in this chapter, we are now well-positioned to
discuss and prove relationships between MTT and several of the type theories discussed
in Chapter 5. In particular, we argue that MTT should be seen as a unifying modal type
theory. The basis for this comparison is the following series of results, each of which
follows from the results previously established or inspection on the definition of models
for the relevant theories.

Definition 7.4.1. We write Micom for the refinement of the walking adjunction Madj

which further requires that the unit 2-cell η is invertible. This is the walking colocalization
which presents an idempotent comonad.

Theorem 7.4.2. The syntax of AdjTT is a model of MTT with Micom without µ-crisp
ν-induction.

Proof. Comparing the definition of a model of AdjTT in Section 5.4 with MTT instanti-
ated with Micom, we see that the former supports all the required structure of the latter
except the necessary lifting structure for µ-crisp ν-induction.

We may unfold this interpretation slightly to obtain the following:

1. A mode m context in MTT is realized by a single-context in AdjTT.

2. A mode n context in MTT is realized by a dual-context in AdjTT.

3. The restriction −.{µ} is interpreted by ∆ 7→ ∆;1.

4. The restriction −.{ν} is interpreted by ∆; Γ 7→ ∆.

5. The modal types ⟨µ | −⟩ and ⟨ν | −⟩ are realized by R and L, respectively.

We note in particular that −.{ν} ◦ −.{µ} = id and, in particular, the realization of
the unit 2-cell is the identity.3

More subtle perhaps is the realization of modal context extensions. As ⟨µ | −⟩ is
interpreted by R, a dependent right adjoint, extending a context by an element of A
with a µ-annotated extension is realized by ordinary context extension by RJAK. The
same is not true for ν, as L is not a dependent right adjoint. Extending JΓK = JΓK0; JΓK1
by A with a ν-annotation is interpreted by JΓK0.JAK; JΓK1 (see Lemma 5.4.8). Inspecting
universal properties, extension by a ν ◦µ-annotation variable is realized by combining the
above two procedures, so extending JΓ.(ν ◦ µ | A)K becomes JΓK0.RJAK; JΓK1. Finally, we
note that since J−.{µ ◦ ν}K = id, extension by a µ ◦ ν-annotated variable is necessarily
realized by ordinary extension.

3We remind the reader that the interpretation of contexts in a model of MTT must form a pseudo-
functor out of Mcoop rather than M. This accounts for the reversal of µ and ν in the above formula when
compared with Micom.



Relating modal type theories to MTT 150

Corollary 7.4.3. The syntax of AdjTT specialized to a colocalization is a model of MTT
with the adjoint mode theory.

Proof. Specializing AdjTT to a colocalization means assuming an inverse ι to the canonical
map η : A → RLA. In particular, we assume that ι(modR(modL(M))) = M . Such
an inverse can then be used to define the relevant crisp induction principle using the
dual-context equivalent of Lemma 6.3.5. Concretely:

Jletµ modν(x)←M0 in M1K = M1[ι
−1(modR(JM0K))/x]

The computation principle for this rule follows directly from the assumption that ι is an
inverse to η.

Theorem 7.4.4. DRA is a model of MTT with a the single endomodality (Example 6.1.1).

Proof. This is an immediate consequence of the definition of a model of DRA given in
Section 5.5 along with Theorem 7.2.10.

Theorem 7.4.5. FitchTT with mode theory M is a model of MTT with the same mode.

Proof. This is again a consequence of Theorem 7.2.10.

Recall that an ordinary adjunction between categories with display maps induces a
dependent adjunction when the right adjoint preserves display maps (Lemma 5.5.10).
Consider a pseudofunctor F : M Cat such that F (m) is a category with display maps
and each F (µ) is a right adjoint preserving those display maps. If we further assume
that the left adjoint to F (µ) is a parametric adjunction, this forms the basis of a model
of FitchTT with mode theory M. The above result shows that it also constitutes a model
of MTT with the same mode theory, but often more is true:

Theorem 7.4.6. Considering F : M Cat as described above, if the left adjoint to
F (µ) preserves the terminal object and display maps for each µ then F induces a model
of MTT instantiated with the 2-category M[M∗]—the 2-category which freely adds left
adjoints to each 1-cell in M. This model also supports strict dependent right adjoints.

Proof. This is an immediate consequence of Theorem 7.2.10 after noting that a parametric
right adjoint that preserves terminal objects is precisely a right adjoint.

In particular, these theorems show that MTT can be applied in any of the situations
presently addressed by DRA (or variant Fitch-style calculi), AdjTT, or FitchTT. Whether
switching from one of these calculi to MTT is advantageous depends on the particulars
of the situation.

Adjoint modalities Either AdjTT or MTT may be used to reason about a pair of display-
map-preserving adjoint functors. It appears that little is gained or lost passing between
MTT and AdjTT. The category of models is nearly identical, with the only point of
divergence being whether or not the modal restriction −.{ν} has cartesian lifts for
display maps. In practice, this appears to matter very little and so the better developed
metatheory of MTT (Chapter 8) points to using it over AdjTT.



Relating modal type theories to MTT 151

A single dependent right adjoint When considering a single dependent right adjoint, one
may choose between MTT or any of the myriad Fitch-style type theories refining DRA to
better capture the properties of the dependent adjunctions. In this case, the situation is
less clear-cut: Fitch-style type theories offer additional definitional equalities and while it
is possible to encode let modµ(−)← − in − in terms of unmod(−), the reverse is untrue.

Accordingly, while one still benefits from the uniformity of MTT, in some circum-
stances pen-and-paper calculations may be simpler with a specialized calculus with a
more powerful elimination rule [GSB19a; HP23; VRT22]. While it may require additional
work to adapt Fitch-style type theories to a new situation, this work has been done for a
select few mode theories already and there is little reason not to take advantage of it.

The lack of uniformity does mean that it would be difficult to develop a proof assistant
based around Fitch-style type theories which offers the same flexibility as e.g., what is
proposed by Stassen et al. [SGB23a]. It remains unclear whether the convenience offered
by the strong elimination rule balances out the more complex syntax, but this question
can only be addressed with further experience and experimentation.

Multiple dependent right adjoints When one considers multiple dependent right adjoints,
it is nearly always better to work with MTT and, frequently, it is the only option.
The only potential exception to this rule arises when reasoning about a pseudofunctor
F : M Cat where each F (µ) has a left adjoint which is a PRA which does not preserve
the terminal object. In this situation, FitchTT may fit better as it contains a more
powerful collection of elimination rules. However, even in such a specialized situation,
the decision is not completely clear-cut.

FitchTT does not have the same suite of metatheorems available as MTT or sev-
eral other Fitch-style type theories and it remains unknown whether it admits e.g., a
normalization algorithm. Accordingly, if one is aiming to build build proof assistant
to mechanize certain arguments, MTT is still the better option. Even when working
on pen-and-paper, the additional context operations in FitchTT are complex and no
equivalent to the “informal MTT discipline” offered in Chapter 6 has been put forth.

Finally, and most compelling, asking for a parametric adjunction is a substantial
requirement and it is somewhat uncommon that this PRA is not simply an ordinary
adjunction—the major exception is A×− as discussed in Section 5.6.1. This usually
means that one is better served by MTT instantiated with M[M∗] as described in
Theorem 7.4.6 and using the extensions discussed in Section 6.3 to recover all the
advantages of FitchTT along with additional modalities.



8 Normalization for MTT

[T]he purpose of categorical
algebra is to show that which is
formal is formally formal.

J. P. May
Picard groups, Grothendieck rings,
and Burnside rings of categories.

Remark 8.0.1. The material of this section is largely drawn from Gratzer [Gra23],
an extended version of Gratzer [Gra22]. The introductory material on MTT has been
removed—it is redundant in light of Chapters 6 and 7. Furthermore, Section 8.7 has
been extended to include a discussion of strict dependent right adjoints. Numerous small
changes to the exposition and text have also been made to ensure cohesion with the
surrounding material. ⋄

In this chapter we construct a normalization algorithm for MTT equipped with
the full suite of connectives: dependent sums, products, booleans, intensional identity
types, a universe, and modal types. In addition to the usual corollaries of normalization
(decidability of type checking, injectivity of type constructors, etc.), this sharpens the
canonicity result of Gratzer et al. [Gra+20a]. This algorithm applies to any choice of
mode theory and therefore simultaneously establishes normalization results for all the
instantiations of MTT discussed those far as well as those in Part III.

In order to prove this result, we advance modern gluing techniques to apply to modal
type theories and demonstrate that extensional MTT itself is a suitable metalanguage for
carrying out the proof of normalization-by-gluing. We further argue that these techniques
scale by extending the proof to accommodate both with crisp induction principles and
strict dependent right adjoints for internal right adjoint modalities.

8.1 Introduction

The central complexity in this proof is the generality of MTT. MTT can be instantiated
with an arbitrary collection of modalities and transformations between them and these
instantiations may behave quite differently.

While this flexibility allows MTT to accommodate many interesting calculi, it be-
comes proportionally more challenging to prove metatheoretic results about MTT. In
particular, the rich substitution structure inherited from the mode theory can introduce
subtle equations between terms. The proof that the crisp induction principles can be

152



Introduction 153

reconstructed in MTT given in Section 6.4, for instance, exemplifies this and hinges on
many such calculations. In fact, the metatheoretic results established by Gratzer et al.
[Gra+20a] (soundness and canonicity) or the proof given in Corollary 7.2.15 are results
on closed terms in MTT, allowing their proofs to avoid the majority of the substitution
apparatus.

Crucially, it remained open whether MTT admitted a normalization algorithm
and, consequently, whether type checking was decidable. Even in the presence of a
normalization algorithm MTT cannot admit an unconditional type checking algorithm:
it is not only necessary to have a decision procedure for terms in the language, but also
for modalities and 2-cells as both appear in terms for MTT.

In this paper we show the best possible result holds: MTT admits an unconditional
normalization algorithm and conversion of normal forms is decidable if and only if
conversion is decidable in the mode theory. As corollaries, we show that type constructors
in MTT are always injective and that type checking is decidable when the mode theory
is decidable.1

8.1.1 Normalization-by-evaluation

A normalization algorithm must begin by defining normal forms. Their precise formula-
tion varies depends on the situation but they always satisfy two crucial properties. First,
the equality of normal forms u = v is clearly decidable—often no more than structural
equality—and there is a function dec(u) decoding a normal form to a term of the same
type.

Relative to a notion of normal form, a normalization algorithm sends a term Γ ⊢M : A
to a normal form nfΓ(M,A) such that (nfΓ(−, A),dec(−)) lifts to an isomorphism
between equivalence classes of terms of A and normal forms [Abe13]. Typically one breaks
the condition that (nfΓ(−, A),dec(−)) forms an isomorphism into three conditions:

1. Completeness: if Γ ⊢M = N : A then nfΓ(M,A) = nfΓ(N,A).

2. Soundness: Γ ⊢ dec(nfΓ(M,A)) = M : A.

3. Idempotence: u = nfΓ(dec(u), A).

Proving normalization is an involved affair. Traditionally, one begins by fixing a
strongly normalizing confluent rewriting system presenting the equational theory of
the type theory. The normal forms are then exactly the terms of the theory which
cannot be further reduced. This approach does not scale, however, to type theories with
type-directed equations such as the unicity principles of dependent sums and the unit
type. These equations defy attempts to present them in a rewriting system and require
type-directed algorithms.

The main type-directed technique for normalization is normalization-by-evaluation
(NbE) [Abe13]. Proving that an NbE algorithm works, however, is an extremely intricate
affair involving a variety of complex constructions. After the algorithm is defined, the
proof of correctness typically proceeds by establishing properties (1)-(3) in order. Each
property, moreover, requires a separate argument. Completeness is established through

1This requirement is potentially nontrivial e.g., the word problem for groups is known to be
undecidable and is subsumed by the problem for 2-categories.



Introduction 154

a PER model, soundness through a cross-language logical relation, and idempotence
through a final inductive argument. The first two properties in particular are time-
consuming to verify; recent work by Gratzer et al. [GSB19a] extended NbE to a type
theory with an idempotent comonad but even in this minimal case the correctness proof
occupied a 90 page technical report [GSB19b].

These difficulties are not unique to modal type theories, and a long line of research
focuses on taming the complexity of NbE through gluing [AHS95; AK16; Coq19; Fio02;
Ste21; Str98]. This line of work recasts normalization algorithms as the construction of
models of type theory in categories defined by Artin gluing.

8.1.2 Normalization-by-gluing

Stepping back from type theory and normalization, fix a functor F : C D between
a pair of categories. The gluing of F (written Gl(F )) is a category whose objects
triples

(
C : C, D : D, f : D F (D)

)
. Morphisms in this category are given by pairs of

morphisms (x0, x1) fitting into a commuting square, e.g.:

D0

F (C0)

f0

D1

F (C1)

x1

f1

F (x0)

We note that there are evident projection functors π0 : Gl(F ) C and π1 : Gl(F ) D.
We will view Gl(F ) as a category of proof-relevant predicates on C. To illustrate

this, consider E = Gl(Γ) where Γ = hom(1,−) : C Set is the global sections map on
a cartesian closed category C sending each object to the set of its global points. Objects
in E then correspond to an object C : C equipped with a map of sets π : X hom(1, C).
Shifting perspective, we can view π as a (proof-relevant) predicate on the global points
of C by setting Φ(c) = π−1(c).

Remarkably, E inherits much of the structure of C so that E is also a Cartesian
closed category and π0 preserves finite products and exponentials. This is a recurrent
pattern with Artin gluing; if F : C D is a nice functor between categories closed under
(co)limits, exponentials, etc., then Gl(F ) will be closed under the same operations in
such a way that π0 preserves them. In fact, unfolding the construction of e.g. binary
products and exponentials in E yields, we the definition familiar from logical relations.

Example 8.1.1. Viewing objects of E as proof-relevant predicates as described above,
the exponential (C,Φ)(D,Ψ) is given by the following pair (CD,Ξ) where Ξ is defined as
follows (writing ϵ for the evaluation map associated with CD):

Ξ(f) =
∏

d∈hom(1,D) Ψ(d)→ Φ(ϵ⟨f, d⟩)

Informally, therefore, we view Gl(F : C D) as the category of D-valued predicated
on C and the construction of exponentials, products, etc. within Gl(F ) corresponds to
defining a logical relation on C. See Mitchell and Scedrov [MS93] for an exposition on
this perspective.



Introduction 155

Carrying out a normalization-by-gluing proof, therefore, turns the classical approach
on its head. Originally one defined the normalization algorithm then showed it to be
sound, complete, and idempotent. When carrying out the proof by gluing, the algorithm
is not defined up front. Instead, one carefully one constructs a gluing category Gl(F )
built on a functor out of the category of contexts of the initial model I. Concretely, this
is the category of syntactic contexts and simultaneous substitutions between them up to
definitional equality. The heart of the argument then breaks down into three steps:

1. We show that Gl(F ) supports a particular model of type theory G.

2. We define a reify operation which sends terms from G to normal forms.

3. We show that the projection π0 induces a morphism of models G I and that for
a given term x in G reifying x yields a normal form for π0(x).

In particular, types in G will be chosen such that they consist of a type from the initial
model along with a proof-relevant predicate carving out those terms which have (suitably
hereditary) normal forms. A term in this model is then a term from the syntactic model
together with a witness for the proof-relevant predicate associated with the type.

The first step and the universal property of the initial model produces a morphism of
models i : I G and the second step ensures that π0 ◦ i = id. Remarkably, this already
defines a sound and complete normalization algorithm. The algorithm simply takes a
syntactic term M : A, regards it as an element of the initial model, and then reifies i(M)
to obtain the normal form. Moreover, because π0 ◦ i = id we conclude that this yields a
normal form for the supplied M .

To a coarse approximation, the construction of G and reification specifies the normal-
ization algorithm and proves its soundness in a single step. The attentive reader will
notice, however, that the completeness requirement from Section 8.1.1 seems to be absent
from this new story. In fact, in this approach completeness is automatic and no proof is
required. Indeed, terms and types within the initial model are realized by equivalences
classes of syntactic terms and types taken up to definitional equality. Accordingly, the
morphism i—and therefore the normalization algorithm—cannot distinguish between
definitional equal terms.

One might suspect that working with equivalence classes of terms when defining G

simply causes the burden to shift so that—while there is no need to prove completeness
separately—the work of such a proof is spread throughout the construction of G. In fact
the opposite is the case: working with terms up to definitional equality substantially
simplifies the construction of G. Connectives in type theory only have universal properties
up to definitional equality. Only when working with equivalences classes therefore, can
we use these universal properties and benefit from existing results. For instance, we
shall see that our construction of dependent products in our gluing model is essentially
mechanical.

The gluing approach yields other unexpected advantages. Recall that Gl(F ) in-
tuitively consists of proof-relevant predicates. This proof relevance is crucial to an
elegant treatement of universes in the model [Coq19]. We are able to define the pred-
icate associated with an element of a universe to consist not only of an appropriate
normal form but to also contain the data of the type it encodes within the model. In



Introduction 156

proof-irrelevant settings, universes were a frequent source of difficulty which necessitated
laborious techniques to encode [All87].

8.1.3 Synthetic Tait computability

Using gluing to prove normalization is certainly an improvement over ‘free-hand’ proofs
of normalization-by-evaluation, but the picture is not as rosy at may first appear. Models
of type theory are subject to a variety of strict equations (see Item 3) which often
force external constructions, where naturality obligations can be prohibitive. Worse,
the passage between between mathematics internal to the gluing category and external
constructions is difficult and the boundary frequently raises mismatches.

We follow Sterling and Harper [SH21] and adopt a synthetic approach to gluing.
We have already discussed synthetic Tait computability in Chapter 4 in the context
of canonicity but the same principles apply for proving normalization. In particular,
Sterling and collaborators have then shown that it is possible to work exclusively within
the internal language of Gl(F ) to construct the normalization model just as was done
with the canonicity model.

Unlike with canonicity, the functor F is more complex; it can no longer be chosen to
be just the global sections functor but the resulting category is still a presheaf topos and
still equipped with the expected model of extensional type theory and lex idempotent
monads.

Just as with canonicity, the heart of the normalization proof is realized by a series of
programming exercises in extensional type theory. The crucial distinction separating a
proof of normalization from that of canonicity is in the structure of the semantic types.
In Chapter 4, semantic types were given by a syntactic type together with a particular
predicate upon them. This is insufficient for normalization, we must account for normal
forms by equipping each semantic type with a reify operation sending an element to
a corresponding normal form. Just as with classical gluing arguments, this in turn
necessitates an operation promoting a neutral form into an element of the semantic type.

Synthetic Tait computability for MTT

Unlike Martin-Löf type theory or cubical type theory, a model of MTT is not a single
category equipped with additional structure. Rather, a model is a network of categories,
each supporting their own individual model of type theory which are then connected
by various adjoints and natural transformations. The internal language of any of these
categories is insufficient to construct the gluing model, so it is necessary to generalize from
working in the extensional type theory of a topos to working in all topoi simultaneously
using extensional MTT. Each topos then comes equipped with the structure of STC: a
pair of lex monads and a strictification axiom. We prove that this mode-local structure is
respected by the MTT modalities between topoi and call the resulting language multimodal
synthetic Tait computability. The smooth interaction between MTT modalities and the
lex monads � and � ensures that the key techniques of STC proofs can be generalized
to multimodal STC.

With this machinery, we are able to give a concise and conceptual construction of the
gluing model and extract the first normalization algorithm for multimodal type theory.
In practice, this internal proof is necessary; removing the simplifying assumption on



Introduction 157

substitutions used in the canonicity proof given by Gratzer et al. [Gra+21] is already
nearly intractable.

8.1.4 Related work

We have built on top of a long line of research systematically structuring logical relations
as gluing models [AHS95; Coq19; Fio02; KHS19; MS93; Shu15b; Ste21; SA21; Str98]. In
particular, Altenkirch et al. [AHS95] and Fiore [Fio02] recast NbE into the construction
of a gluing model. In the case of Altenkirch et al. [AHS95], semantic types are realized
as triples (A, ↓, ↑). Generalizing from this work to dependent type theory has proven
a considerable challenge [AK16]. The final ingredient for Martin-Löf type theory was
provided by Coquand [Coq19]: a construction of a universe in this gluing model similar
to that of Shulman [Shu15b].

Gluing for modal type theory Gratzer et al. [GSB19a] gave a classical normalization-by-
evaluation proof for a Fitch-style type theory. The complexity of this proof, however,
makes it intractable to extend to a general modal type theory like MTT. Unfortunately,
extending gluing techniques to modal type theories has proven challenging. In particular,
Gratzer et al. [Gra+20a] used gluing to prove canonicity for MTT, but they were forced
to add an additional equality to MTT (1.{µ} = 1) to tame the construction of the gluing
model. The challenge lies in fitting the glued category of contexts into a CwF-style
model of type theory; the natural definition of glued types and terms fails to admit
modalities. While there have been some attempts to systematize the construction of
glued CwFs [KHS19], they do not apply to MTT.

Recently, Hu and Pientka [HP23] gave a proof of normalization for a simply-typed
Fitch-style type theory (Kripke-style in their parlance) with one modality. They give
two separate proofs of normalization; one through both an untyped PER model similar
to Gratzer et al. [GSB19a] and one using a gluing model. Their gluing proof is closely
related to the argument above. For instance, their theory of unified substitutions and
modal transformations corresponds to a specialization of MTT’s substitution calculus to
one modality and, accordingly, their category of renamings offers a strict presentation
of the category of renamings described above. Their proof, however, is done using
external constructions on the gluing category which may make it difficult to scale to
either multiple modalities or dependent types.

Synthetic Tait computability The introduction of representable map categories [Uem19]
and LCCCs [GS20] for modeling the syntax of (non-modal) type theory offered an alterna-
tive approach. Crucially, they show that syntax can be given a universal property among
structured categories with better behavior than CwFs. Sterling and collaborators [Ste21;
SA21; SH21] have built on this idea and introduced synthetic Tait computability to prove
syntactic metatheorems via gluing together LCCCs rather than CwFs. Unlike other
approaches to gluing, STC generalizes well to a multimodal setting and by extending
STC to MSTC normalization for MTT becomes tractable.

MTT as a metalanguage In a parallel line of work, Bocquet et al. [BKS21] have also used
MTT as a metalanguage in the construction of models of type theory. They, however,
do not work with a modal object type theory and instead use MTT to internalize a



Normal and neutral forms in MTT 158

functor F rather than working internally to Gl(F ). As a result, while both proofs use
MTT modalities, the modalities used by op. cit. are encoded in our proof by fibered lex
monads (�, �) which prove easier to manipulate.

8.1.5 Structure

In Section 8.3, we discuss the models of MTT and relax the definition of a model of MTT
to obtain MTT cosmoi. We prove that the syntactic cosmos enjoys a privileged position
among MTT cosmoi (Theorem 8.3.5). Section 8.4 introduces multimodal synthetic Tait
computability and shows that gluing together a network of topoi results in a model of
extensional MTT equipped with STC structure in each mode (Theorem 8.4.15). Finally,
in Section 8.5 we construct the normalization cosmos (Theorem 8.5.11) and extract the
normalization function in Section 8.6 (Theorem 8.6.4). Section 8.7 discusses an extension
of this proof to support crisp induction.

8.2 Normal and neutral forms in MTT

As mentioned in Section 8.1.1, the starting point for normalization is the definition of
normal form. In MTT—as in other type theories—normal forms are presented together
with a class of neutral forms. Intuitively, normal forms capture terms in β-normal and
η-long form while neutrals are chains of eliminations applied to a variable.

We define normal and neutral forms as separate syntactic classes, equipped with
their own family of typing judgments and decoding functions sending them to terms.
Dependency complicates this definition as various typing rules require substitution in the
types of premises or the conclusion. Unfortunately, it is just as hard to define substitution
on normal forms as it is to define normalization in general [Wat+04]. Accordingly, a
normal form (resp. neutral, normal type) is typed by the judgment Γ ⊢nf u : A@m
(resp. Γ ⊢ne e : A@m, Γ ⊢nf τ @m) where A is not required to be any sort of normal
form. Furthermore, these judgments are defined inductive-recursively with decoding
functions |u| (resp. |e|, |τ |) which send a normal form (resp. neutral, normal type) to its
corresponding piece of syntax. Normal and neutral forms for mode-local connectives are
unchanged from their standard presentation in type theory:

(Normals) u ::= λ(u) | up(e) | modµ(u) | . . .
(Neutral) e ::= vα

k | e(u) | letmod(µ; ν; τ ; e;u) | . . .
(Normal types) τ ::= τ → σ | ⟨µ | τ⟩ | El(u) | . . .

We defer a more complete presentation of the judgments and decoding function to
Fig. 8.2, but remark that the neutral form for variables is annotated with a 2-cell and
index, decoding to v together with a combination of weakening and 2-cell substitutions
p and {α}.

To ensure that normal forms are η-long, neutrals can only be ‘injected’ into normals
by up(−) for types without an η law e.g., at modal types but not at dependent products.
Finally, we emphasize that normal forms are freely generated, so their equality is decidable
if and only if equality of modalities and 2-cells is decidable.

Renamings While normal and neutral forms are not stable under substitution, they
are stable under the restricted class of renamings. The formal definition of renamings



Models and cosmoi 159

Γ ⊢ ! : 1@m |!| = ! Γ.(µ | A) ⊢ ↑ : Γ @m |↑| = p

Γ ⊢ id : Γ @m |id| = id

Γ0 ⊢ r : Γ1 @m Γ1 ⊢ s : Γ2 @m

Γ0 ⊢ s ◦ r : Γ2 @m |s ◦ r| = |s| ◦ |r|

Γ ⊢ r : ∆ @m

Γ.{µ} ⊢ r.{µ} : ∆.{µ}@n |r.{µ}| = |r|.{µ}

µ, ν : n m α : ν µ

Γ.{µ} ⊢ {α}Γ : Γ.{ν}@n |{α}Γ| = Γ.{α}

Γ ⊢ r : ∆ @m Γ.{µ} ⊢ne vα
k : A[|r|.{µ}] @n

Γ ⊢ r.vα
k : ∆.(µ | A) @m |r.vα

k | = |r|.|vα
k |

Figure 8.1: Complete definition of renamings

is presented in Fig. 8.1. Intuitively, they are the smallest class of substitutions closed
under weakening, composition, identity, modal substitutions (−.{µ},{α}), and extension
by variables vα

k .
Renamings are easily seen to act on normal forms, neutral forms, and normal types.

Unlike normals and neutrals, however, renamings are taken up to a definitional equality
which ensures that e.g., composition is associative and that modal substitutions organize
into a 2-functor. This poses no issue as the action of renamings on normals and neutrals
send definitionally equal renamings to identical normals and neutrals, ensuring that the
action lifts to equivalences classes.

A nontrivial definitional equality on renamings is essential, however, as it ensures
that the class of contexts of mode m and renamings between them organizes into a
category Renm and that the assignments m 7→ Renm, µ 7→ −.{µ}, and α 7→ {α} define a
2-functor Mcoop Cat.

Lemma 8.2.1. The decoding of renamings to substitutions gives a 2-natural transforma-
tion i[−] : Ren− Cx−.

8.3 Models and cosmoi

Gratzer et al. [Gra+21] introduced MTT as a generalized algebraic theory so that MTT
is automatically equipped with a category of models. A standard result of GATs ensures
that that the syntax of MTT organizes into an initial model which opens the possibility
of semantic methods for proving results about syntax. Gratzer et al. [Gra+21] then
repackages the definition of models in the language of natural models [Awo18].

8.3.1 MTT cosmoi

As mentioned in Section 8.1, normalization is proven through the construction of a
model of MTT together with a map from this model to syntax. Models of MTT and



Models and cosmoi 160

Γ ⊢nf bool@m Γ ⊢nf U@m

Γ ⊢nf τ @m Γ.(id | A) ⊢nf σ@m

Γ ⊢nf τ → σ@m

Γ ⊢nf τ @m Γ.(id | A) ⊢nf σ@m

Γ ⊢nf τ × σ@m

Γ ⊢nf τ @m Γ ⊢nf u, v : A@m

Γ ⊢nf IdA(u, v) @m

Γ.{µ} ⊢nf τ @n

Γ ⊢nf ⟨µ | τ⟩@m

Γ ⊢nf u : U@m

Γ ⊢nf El(u) @m

Γ(k) = (µ | A) mods(Γ, k) = ν α : µ ν

Γ ⊢ne vα
k : A[{α} ◦ (p.{νk−1}) · · · ◦ (p.{ν0})] @m

Γ ⊢nf tt : Bool@m Γ ⊢nf ff : Bool@m

Γ ⊢ne e : Bool@m

Γ ⊢nf up(e) : Bool@m

Γ.(idm | Bool) ⊢nf τ @m
Γ ⊢ne e : Bool@m Γ ⊢nf v1 : A[id.tt] @m Γ ⊢nf v2 : A[id.ff] @m

Γ ⊢ne if(τ ; e; v1; v2) : A[id.|e|] @m

Γ ⊢nf u : A@m

Γ ⊢nf refl(u) : Id(A,M,M) @m

Γ ⊢M0,M1 : A Γ ⊢ne e : Id(A,M0,M1) @m

Γ ⊢nf up(e) : Id(A,M0,M1) @m

Γ ⊢M0,M1 : A

Γ ⊢ne e : Id(A,M0,M1) @m Γ.(idm | A).(idm | A).(idm | Id(A[p2],v[p],v)) ⊢nf τ @m
Γ.(id | A) ⊢nf u : C[id.v.v.reflv] @m

Γ ⊢ne J(τ ;u; e) : C[id.M0.M1.P ] @m

Γ.(µ | A) ⊢nf u : B@m

Γ ⊢nf λ(u) : (µ | A)→ B@m

Γ ⊢ne e : (µ | A)→ B@m Γ ⊢nf u : A@m

Γ ⊢ne e(u) : B[id.|u|] @m

Γ.{µ} ⊢nf u : A@n

Γ ⊢nf modµ(u) : ⟨µ | A⟩@m

Γ ⊢ne e : ⟨µ | A⟩@m

Γ ⊢nf up(e) : ⟨µ | A⟩@m

Γ.{µ} ⊢ne u : ⟨ν | A⟩@n
Γ.(µ | ⟨ν | A⟩) ⊢nf τ @m Γ.(µ ◦ ν | A) ⊢nf u : B[p.modν(v)] @m

Γ ⊢ne letmod(µ; ν; τ ; e;u) : B[id.|e|] @m

Γ ⊢ne e : U@m

Γ ⊢nf up(e) : U@m

Γ.{µ} ⊢nf u : U@m

Γ ⊢nf ⟨̂µ | u⟩ : U@m

Γ ⊢ne e : U@m Γ ⊢ne f : El(|e|) @m

Γ ⊢nf up(f) : El(|e|) @m

Γ.{µ} ⊢ A : U @ n Γ ⊢ne e : El(Modµ(A)) @m

Γ ⊢ne dec▷(e) : ⟨µ | El(A)⟩@m

Γ ⊢nf u : ⟨µ | El(A)⟩@m

Γ ⊢nf dec◁(u) : El(Modµ(A)) @m

Figure 8.2: Definition of selected normals, neutrals, and normal types



Models and cosmoi 161

morphisms between them are difficult to construct, however, because of the extreme
strictness of morphisms and the requirement that each τm be a representable natural
transformation. Prior to normalization, therefore, we introduce a weakened notion of
model: an MTT cosmos. An MTT cosmos is an axiomatization of a natural model of
MTT, but rather than working in presheaf topoi and requiring that τm is a representable
natural transformation a cosmos requires only that τm be a morphism in a locally
cartesian closed category equipped with structure such as Components 7.1.6 and 7.1.7.

Definition 8.3.1. A cosmos is a pseudofunctor F : M Cat such that each F (m) is
a locally cartesian closed category and each F (µ) has a left adjoint F!(µ) ⊣ F (µ).

Example 8.3.2. A model of MTT F assembles into a cosmos G by taking G(m) =
PSh(F (m)) and G(µ) = F (µ)∗. In particular, we write S : M Cat for the cosmos
induced by the initial model of MTT specified by Theorem 7.1.8.

The additional requirements imposed by natural models of MTT to encode various
connectives can be transferred mutatis mutandis to a cosmos; they are all stated within
the language of locally cartesian closed categories.

Definition 8.3.3. An cosmos F is an MTT cosmos when equipped with the following
structure:

1. In F (m), there is a universe τm : Tm Tm with a choice of codes witnessing its
closure under dependent sums and products, identity types, and booleans. For
instance, a choice of pullback square of the following shape:

∑
A:F (µ)(Tm)

∑
B:F (µ)(τn[A])→Tm

∏
a:F (µ)(τn[A]) τm[B(a)]

∑
A:F (µ)(Tn)

F (µ)(τn[A])→ Tm

Tm

Tm

lam

Prod

2. For each µ, there exists a chosen commuting square

F (µ)(Tn)

F (µ)(Tn)

Tm

Tm
Mod

(8.1)

3. For each µ : n m and ν : o n, there is a chosen lifting structure F (µ)(m) ⋔
F (µ ◦ ν)(To)× τm, where m : F (ν)(To) F (ν)(To)×Tn Tn is the comparison map
induced by Eq. (8.1).

4. τm contains a subuniverse also closed under all these connectives.



Models and cosmoi 162

Definition 8.3.4. A morphism between MTT cosmoi α : F G is a 2-natural transfor-
mation α such that αm is an LCCC functor and preserves all connectives strictly.

Furthermore, we require that α satisfies the Beck-Chevalley condition so that there
is a natural isomorphism βµ : αn ◦ F (µ)! ∼= G(µ)! ◦ αm commuting with transposition.
Precisely, if a : X F (µ)(Y ) : F (m) the transposition of αµ ◦ αm(a) is αn(â) ◦ β−1µ .

A morphism of MTT cosmoi is both more and less restrictive than a morphism of
MTT models. While a morphism of models need not induce an LCC functor between the
relevant presheaf categories, a morphism of cosmoi is not required to strictly preserve
context extension or the choice of terminal context. It so happens that the only map
of consequence in this proof is locally cartesian closed, so the additional structure of
morphisms of cosmoi poses no issue. Not requiring the strict preservation of context
extension and dropping the representability requirements from MTT cosmoi, however,
ensures that cosmoi are far easier to construct.

Merely defining a normalization cosmos G and projection π : G S, however, is not
enough to prove normalization; we also need a section to π. In the category of models,
this section would exist as a consequence of initiality, but S is not initial in the category
of MTT cosmoi.2 Accordingly, we cannot easily obtain a section of a map into S and in
fact sections rarely exist. Any such map, however, is surjective on definable terms and
this ‘quasi-projectivity’ is sufficient:

Theorem 8.3.5. Fix an MTT cosmos G and π : G S.

1. For ⊢ Γ cx @ m, there exists JΓK : G(m) and a canonical isomorphism αΓ : π(JΓK) ∼=
y(Γ).

2. For every Γ ⊢ A type @ m, there exists JAK : JΓK Tm such that π(JAK)◦αΓ = ⌊A⌋.

3. For every Γ ⊢M : A @ m, there exists JMK : JΓK Tm lying over JAK such that
π(JMK) ◦ αΓ = ⌊M⌋.

Here ⌊−⌋ is the isomorphism induced by the Yoneda lemma.

Remark 8.3.6. While we have proven this result at quite generally, we will apply it only
in the special case where π is a 2-natural transformation between strict 2-functors and
required isomorphisms of left adjoints are likewise identities. The reader may accordingly
safely ignore these coherences when reading the proof without consequence. ⋄

Remark 8.3.7. Both Theorems 7.1.8 and 8.3.5 are categorical abstractions of rule
induction. Indeed, Theorem 7.1.8 is used to prove Theorem 8.3.5—via the construction
of an appropriate displayed model [KKA19]—and the latter takes the place of rule
induction in the proof of normalization (see Theorem 8.6.4). ⋄

Proof. We write Elm, Tym and Tmm instead of τm, Tm, and Tm in the syntactic model,
reserving the latter exclusively for G. We write JµK for the functor sending Γ to Γ.{µ}.
We begin by replacing G by an equivalent strict 2-functor so that π becomes strictly
2-natural.

22-monad theory [GS20; KPT99] yields an initial cosmos I but we work with S because—unlike I—it
is known to adequately represent syntax.



Models and cosmoi 163

We construct a displayed model of MTT [KKA19] which lies over the syntactic model.
Using the existing coherence result for MTT [Gra+20b], we only ensure that Γ.{µ}.{ν}
and Γ.{µ ◦ ν} agree up to pseudonatural isomorphism.

• A context in m is a triple X : G(m), ⊢ Γ cx @ m, and α : π(X) ∼= y(Γ).

• A type in a context (X,Γ, α) is a pair of Ā : X Tm and Γ ⊢ A type @ m such
that π(Ā) = ⌊A⌋ ◦ α.

• A term in a context (X,Γ, α) of type (A∗, A) is a pair M∗ : X τm[A∗] and
Γ ⊢M : A @ m such that π(M∗) = ⌊M⌋ ◦ α.

• A substitution (X,Γ, α) (Y,∆, β) is a pair f : X Y and Γ ⊢ δ : ∆ @ m
satisfying β ◦ π(f) = y(δ) ◦ α

Once this model is constructed, the result is follows from Theorem 7.1.8. The construction
of contexts, substitutions, terms, and types is straightforward as π is a 2-natural
transformation which preserves finite limits, and commutes with all connectives. We
show two cases.

The action of a modality on a context Given a triple (X,Γ, α) at mode n and a modality
µ : n m, we define the ‘locked’ context to be the following:

(G(µ)!(X),Γ.{µ}, γ ◦ JµK!α ◦ β)

Here β : π(G(µ)!X) ∼= JµK!π(X) and γ : JµK!y(Γ) ∼= y(Γ.{µ}) are the canonical isomor-
phisms.

Modal types Suppose we are given a context (X,Γ, α) and a type (A∗, A) in the context
(G(µ)!(µ)(X),Γ.{µ}, γ ◦ JµK∗(α) ◦ βµ). We form the modal type as

(Modµ(Â∗), ⟨µ | A⟩)

It remains to check that these types are coherent i.e.:

π(Modµ(Â∗)) = ⌊⟨µ | A⟩⌋ ◦ α

By assumption, π(A∗) = ⌊A⌋ ◦ γ ◦ JµK∗(α) ◦ β. By our assumption that π satisfies

Beck-Chevalley π(Â∗) = ⌊̂A⌋ ◦ γ ◦ α. The result follows from the fact that π preserves
Modµ.

8.3.2 Presheaf cosmoi

Example 8.3.2 shows that each model of MTT induces an MTT cosmos. In fact, such
cosmoi are particularly well-behaved as they are comprised of presheaf topoi connected
by adjoint triples. These cosmoi enjoy a privileged role in our proof and we observe some
of their unique behavior.

Definition 8.3.8. A presheaf cosmos F is a cosmos where each F (m) is a presheaf
topos and each right adjoint F (µ) sends small families to small families.



Multimodal Synthetic Tait computability 164

What distinguishes presheaf cosmoi from other cosmoi is the rich internal language
they offer. Gratzer et al. [Gra+21] have proven that such a cosmos F supports a model
of extensional MTT with the same mode theory where ⟨µ | −⟩ is interpreted by F (µ).
We will now use extensional MTT as a multimodal metalanguage to specify the structure
of an MTT cosmos as a sequence of constants, thereby reducing its construction to a
series of programming exercises. It is this characterization of MTT-cosmoi that we will
use in Section 8.5 to construct the normalization cosmos.

Remark 8.3.9. Some caution is required here, as a presheaf cosmos will frequently host
more than one interpretation of MTT. A presheaf cosmos is always equipped with this
modal metalanguage (extensional MTT) which can then be used to specify a model of
(intensional) MTT. This is comparable to some of the diagrams used in e.g. Awodey
[Awo18] or Chapter 3, where type theory is used to describe a model of type theory. ⋄

Within this internal language, the universe τm : Tm Tm is encoded by a pair of
types:

Tym : U0 Tmm : (A : Tym)→ U0

Each of the diagrams discussed in Section 8.3.1 can then be translated into con-
stants within this language with the use of dependent types automatically encoding
commutativity. For instance, Eq. (8.1) becomes the following pair of constants:

Modµ : (µ | Tyn)→ Tym mµ : (A : (µ | µ))Tyn(µ | Tmn(A))→ Tmm(Modµ(A))

In this language it is far easier to specify the modal elimination principle:

letmodµ;ν :

(A : (ν ◦ µ | Tyn)) (B : (µ | Tmn(Modµ(A)))→ Tyo)(
b :
(
x :
(
ν ◦ µ | Tmn(A)

))
→ Tmo

(
B(mµ(A, x))

))
→ (a : (ν | Tmm(Modµ(A))))→ Tmo(B(a))

Each argument to letmodµ;ν corresponds directly to a premise of the rule given
in Section 6.2. The hypothetical judgment is encoded by the dependent products
in the language and each occurrence of −.{−} is replaced with an occurrence of the
corresponding modal type within the metalanguage. The β-rule for this elimination
principle is encoded by another constant inhabiting the equality type:

Mod/betaµ;ν :

(A : (ν ◦ µ | Tyn)) (B : (µ | Tmn(Modµ(A)))→ Tyo)(
b :
(
x :
(
ν ◦ µ | Tmn(A)

))
→ Tmo

(
B(mµ(A, x))

))
→ (a : (ν ◦ µ | Tmm(A)))→ letmodµ;ν(A,B, b,mµ(A, a)) = b(a)

The remaining connectives are detailed in Fig. 8.3.

8.4 Multimodal Synthetic Tait computability

In light of Section 8.3, we revise the proof outlined in Section 8.1: instead of constructing
a glued model of MTT, we will construct a glued MTT cosmos. In fact, we will construct



Multimodal Synthetic Tait computability 165

Prod : (A : (µ | Tym)) (B : (µ | Tmm(A))→ Tym)→ Tym
αProd : (A : (µ | Tym)) (B : (µ | Tmm(A))→ Tym)

→ Tmm(Prod(A,B)) ∼= [(a : (µ | Tmm(A)))→ Tmm(B(a))]

Sig : (A : Tym)→ Tmm(A)→ Tym → Tym
αSig : (A : Tym)(B : Tmm(A)→ Tym)

→ Tmm(Sig(A,B)) ∼=
[∑

a:Tmm(A) Tmm(B(a))
]

Bool : Tym
true, false : Tmm(Bool)

if : (A : Tmm(Bool)→ Tym)

→ Tmm(A(true))→ Tmm(A(false))→ (b : Tmm(Bool))→ Tmm(A(b))

: (A : Tmm(Bool)→ Tym) (t : Tmm(A(true))) (f : Tmm(A(false)))

→ (if(A, t, f, true) = t)× (if(A, t, f, false) = f)

Id : (A : Tym)(a0, a1 : Tmm(A))→ Tym
refl : (A : Tym)(a : Tmm(A))→ Tmm(Id(A, a, a))

J : (A : Tym) (B : (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0, a1)))→ Tym)

→ ((a : Tmm(A))→ Tmm(B(a, a, refl(a))))

→ (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0a1)))→ Tmm(B(a0, a1, p))

: (A : Tym) (B : (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0, a1)))→ Tym)

→ (b : (a : Tmm(A))→ Tmm(B(a, a, refl(a))))

→ (a : Tmm(A))→ J(A,B, b, a, a, refl(a)) = b(a)

Uni : Tym
El : Tmm(Uni)→ Tym

Ŝig : (A : Tmm(Uni))→ (Tmm(El(A))→ Tmm(Uni))→ Tmm(Uni)

P̂rod : (A : Tmm(Uni))→ (Tmm(El(A))→ Tym)→ Tmm(Uni)

B̂ool : Tmm(Uni)

M̂od : (µ | Tmn(Uni))→ Tmm(Uni)

dec
Ŝig

: (A : Tmm(Uni))(B : Tmm(El(A))→ Tmm(Uni))

→ Tmm(El(Ŝig(A,B, ))) ∼= Tmm(Sig(El(A),El ◦B))

dec
P̂rod

: (A : Tmm(Uni))(B : Tmm(El(A))→ Tmm(Uni))

→ Tmm(El(P̂rod(A,B))) ∼= Tmm(Prod(El(A),El ◦B))

dec
B̂ool

: Tmm(El(B̂ool)) ∼= Tmm(Bool)

dec
M̂od

: (A : (µ | Tmm(Uni)))→ Tmm(El(M̂od(A))) ∼= Tmm(Modµ(El(A)))

Figure 8.3: Internal presentation of an MTT cosmos



Multimodal Synthetic Tait computability 166

a glued presheaf cosmos, and take advantage of the internal language discussed in
Section 8.3.2 to upgrade it to an MTT cosmos with a projection onto S. Prior to this,
however, we must show that (1) a pair of cosmoi can be glued together and (2) that each
mode of the internal language of the resulting cosmos can be extended with synthetic
Tait computability primitives compatible with the already-present MTT modalities.

8.4.1 Synthetic Tait computability

We briefly recall the language of synthetic Tait computability to fix notation. For this
subsection, fix two presheaf topoi E and F along with a continuous functor ρ : E F.

We will work with Gl(ρ). Intuitively Gl(ρ) is a category of proof-relevant F-predicates
on ρ-elements of E. To cultivate this intuition, consider F = Set and ρ = hom(1,−). An
object of Gl(hom(1,−)) is a triple of (S,E, f) which induces a proof-relevant predicate
Φ(e) = f−1(e) on the global points of E. Following Tait [Tai67], we refer to elements in
the image of f as computable elements. Morphisms are then morphisms of E equipped
with additional structure ensuring that computable elements are sent to computable
elements.

We now reap the first reward from considering proof-relevant predicates: Gl(ρ) is
extremely well-behaved.

Theorem 8.4.1 (Artin et al. [AGV72] and Carboni and Johnstone [CJ95]). Gl(ρ) is a
presheaf topos and π0 is a logical functor with left and right adjoints.

As a presheaf topos, Gl(ρ) enjoys a model of extensional type theory with a strictly
cumulative hierarchy of universes and a universe of propositions Ω. We can use this
language to synthetically build logical relations models [SH21]. In order to effectively
construct such models, however, we must supplement type theory with primitives specific
to Gl(ρ). The most fundamental of these is a proposition:

Definition 8.4.2. The syntactic proposition syn : Ω is interpreted in Gl(ρ) as the
subterminal object (1E,0F, !).

Recalling the correspondence between objects of Gl(ρ) and predicates, syn is the
predicate on 1E with no computable elements. What makes this proposition useful
is its ability to wipe out the obligation to track computable elements. A morphism
f : syn×A B must contain a morphism π0(f) : π0(syn×A) ∼= π0(A) π0(B), but
there are no computable elements of syn× A so π0(f) entirely determines f ; there is
a bijection homGl(ρ)(syn×A,B) ∼= homE(π0(A), π0(B)). Internally, hypothesizing syn
collapses the category to E:

Lemma 8.4.3. There is an equivalence E ≃ Gl(ρ)/syn.

In topos-theoretic terms, E is an open subtopos of Gl(ρ). As an open subtopos, we can
present E internally to Gl(ρ) through a lex idempotent monad �A = syn→ A [RSS20].
This modality has a strongly disjoint lex idempotent modality, �A [RSS20, Section 3.4].
While we could work with � entirely through this characterization, it is helpful to fix a



Multimodal Synthetic Tait computability 167

definition:
syn×A

syn

A

�A (8.2)

Intuitively, �A is the portion of A with a trivial E component. This is even clearer if one
calculates the behavior of � on a closed type A = (E,F, f) as �A = (1, F, !). Just as
hypothesizing syn i.e., working under �, recovers E internally to Gl(ρ), working under
� recovers F. Phrased in topos-theoretic terms, F is a closed subtopos of Gl(ρ).

The final ingredient we must add to our type theory is the realignment axiom [Bir+19;
OP18; SH21], stating that the following canonical map has an inverse re for any B : U:(∑

A:U[A ∼= B]
)
→
(∑

A:syn→U

∏
z:synA(z) ∼= B

)
(8.3)

Unfolding these conditions yields the following:

Definition 8.4.4. Fix B : U, A : �U, and α :
∏

z:synA(z) ∼= B. The realignment
re(B,A, α) of B along α is a term of type

∑
A∗:UA

∗ ∼= B satisfying the following
condition: ∏

z:syn re(B,A, α) = (A(z), α(z))

More intuitively, realignment states that a predicate lying over an object in E can
be shifted to lie over an isomorphic object. A proper motivation of realignment is
deferred to its use in Section 8.5, but broadly realignment will be used to satisfy the
strict equalities demanded by Definition 8.3.4 where a priori two constants might agree
only up to isomorphism.

Theorem 8.4 of Orton and Pitts [OP18] shows that a Hofmann–Streicher universe
satisfies realignment for levelwise decidable propositions. Using the presentation of Gl(ρ)
as a presheaf topos [CJ95], syn is clearly levelwise decidable and so realignment at syn
is constructively valid.

Definition 8.4.5. The language of synthetic Tait computability is extensional type
theory with a cumulative hierarchy of universes and a universe of propositions equipped
with a distinguished proposition syn : Ω such that each universe satisfies the realignment
axiom for syn.

This subsection is summarized by the following result, which might be termed the
‘fundamental lemma’ of STC:

Theorem 8.4.6. Gl(ρ) is a model of STC.

8.4.2 Gluing together cosmoi

While a model in Gl(ρ) for a carefully chosen E, F, and ρ is sufficient to prove many
results of MLTT [Coq19] the situation for MTT is more complex. Rather than gluing
along a single functor, it is necessary to glue along an entire 2-natural transformation of
continuous functors between 2-functors of presheaf topoi. We begin by considering a pair



Multimodal Synthetic Tait computability 168

of presheaf cosmoi for the mode theory
{
µ : n m

}
and a 2-natural transformation of

right adjoints between them:

En

Em

f

Fn

Fm

ρn

g

ρm
(8.4)

Let us further assume that f and g preserve finite colimits.
Gluing ‘horizontally’, we obtain a pair of categories Gl(ρn) and Gl(ρm) and by

Theorems 8.4.1 and 8.4.6 both are presheaf topoi and models of STC. Artin gluing is
functorial, and Eq. (8.4) induce a functor Gl(f, g) : Gl(ρn) Gl(ρm) sending (En, Fn, x)
to (f(En), g(Fn), g(x)).

Lemma 8.4.7. Gl(f, g) : Gl(ρn) Gl(ρm) is a right adjoint.

Proof. While this follows classically from the special adjoint functor theorem, an explicit
construction is useful. There is a comparison β : g! ◦ ρm ρn ◦ f! induced by transpo-
sition and the unit of the f! ⊣ f . The left adjoint Gl(f, g)! sends f : F ρm(E) to
β ◦ g!(f) : g!(F ) ρn(f!(E)). The isomorphism hom([f, g]!(X), Y ) ∼= hom(X, [f, g](Y ))
is given component-wise by the isomorphisms associated with f! ⊣ f and g! ⊣ g.

Remark 8.4.8. This calculation show that πn : Gl(n) En and πn : Gl(m) Em

assemble into a natural transformation which satisfies Beck-Chevalley. ⋄

Lemma 8.4.9. The adjunction Gl(f, g)! ⊣ Gl(f, g) induces a dependent right adjoint
with respect to sufficiently large Hofmann-Streicher universe U.

Proof. It suffices to argue that Gl(f, g) sends a U-small family in Gl(ρn) to a U-small
in Gl(ρm). This is proven by e.g., Gratzer et al. [GSS22, Lemma 3.3.7].

As a consequence of Lemma 8.4.9, we obtain a model of MTT with the mode theory{
µ : n m

}
which interprets n, m, and µ as Gl(ρn), Gl(ρm), and Gl(f, g) respectively.

This model of MTT is particularly well-behaved: equality is extensional and Gl(f, g)
validates the strong transposition-style elimination rules specified by Birkedal et al.
[Bir+20].

Lemma 8.4.10. In this model of MTT, ⟨µ | synn⟩ ∼= synm

Proof. Externally, synn = (1,0, !) but g preserves 0 and f preserves 1, so we have the
following:

Gl(f, g)(synn) ∼= (1,0, !) = synm

Lemma 8.4.11. In this model of MTT, �⟨µ | A⟩ ∼= ⟨µ | �A⟩ and �⟨µ | A⟩ ∼= ⟨µ | �A⟩.

Proof. We consider the only case of �, as the argument for � is identical. First,
we observe that Gl(f, g) preserves � externally. That is, there is an isomorphism
α : Gl(f, g) ◦ � ∼= � ◦ Gl(f, g). It remains to show that this isomorphism can be



The normalization cosmos 169

internalized. Let us write τm : Tm Tm for the universe of types in Gl(ρm) and write
τn for its counterpart in Gl(ρn). Let us further write i, �̂m, and �̂n for the cartesian
natural transformations Gl(f, g)(τn) τm, �τm τm, and �τn τn that are used to
interpret ⟨µ | −⟩ and � in both Gl(ρn) and Gl(ρm), respectively.

Unfolding this statement into the model, we must argue that the following pair of
maps classify isomorphic families:

Gl(f, g)(�Tn) Gl(f, g)(Tn) Tm

Gl(f, g)(�Tn) �Tm Tm

Gl(f, g)(�̂) i

�i ◦ α �̂

We directly check that both classify Gl(f, g)(�τn) using the fact that both Gl(f, g)
and � preserve finite limits.

Remark 8.4.12. Technically, syn, �, and � should be always annotated with a mode. In
light of these results, however, we shall omit this annotation and systematically identify
synm and ⟨µ | synn⟩. As both are subterminal, there are no coherence issues in this
identification. ⋄

Definition 8.4.13. The language of multimodal STC (MSTC) is extensional MTT with
a cumulative hierarchy of universes and a universe of propositions such that

• Each mode is equipped with a proposition syn.

• Each universe satisfies the realignment axiom for syn.

• MTT modalities commute with syn, �, and �.

Summarizing the preceding discussion:

Theorem 8.4.14. Gl(ρn), Gl(ρm), and Gl(f, g) assemble into a presheaf cosmos and
a model of MSTC.

In fact, it is only a small step from this result to the full fundamental lemma of
multimodal STC:

Theorem 8.4.15. Given a pair of presheaf cosmoi F,G : M Cat and a 2-natural
transformation ρ : F G such that each F (µ), G(µ) preserves finite colimits and each
ρm is continuous, Gl(ρ) : M Cat both a presheaf cosmos and a model of MSTC.
Furthermore π0 : Gl(ρ) F is a morphism of cosmoi.

8.5 The normalization cosmos

Recall from Section 8.2 the 2-functor of categories of renamings Ren−. By an identical
construction to Example 8.3.2, we obtain the cosmos of renamings R(−) = PSh(Ren−)
and the 2-natural transformation i[−] : Ren− Cx− acts by precomposition to yield a
2-natural transformation i[−]∗ : S R. Theorem 8.4.15 then yields the following:



The normalization cosmos 170

Definition 8.5.1. The normalization cosmos G is a presheaf cosmos and model of MSTC
where G(m) = Gl(i[m]∗).

As a further consequence of Theorem 8.4.15, the projection map π0 : G S is a
morphism of cosmoi. In this section, we equip G with the structure of an MTT cosmos
and show that π0 extends to a morphism of MTT cosmoi.

8.5.1 Prerequisites for the normalization cosmos

Before we extend G to an MTT cosmos, we import features of G into the language of
MSTC to specialize the latter to this situation. In this section, we begin using the
interpretation of MTT to work internally to G and explicitly record the extensions to
MSTC required for the normalization proof.

Notation 8.5.2 (Dependent open modality). As �A = syn→ A, we will write �zA(z) =
(z : syn)→ A(z) for the dependent version of the open modality.

Notation 8.5.3 (Extension types). Given a type A, a proposition ϕ, and an element
a : ϕ→ A, we write {A | x : ϕ 7→ a(x)} for subtype of A of elements equal to a under ϕ.
Formally:

{A | x : ϕ 7→ a(x)} =
∑

a′:A (x : ϕ)→ a′ = a(x)

We treat the coercion {A | x : ϕ 7→ a(x)} → A as silent and refer to the equation a′ = a(x)
as a boundary condition.

Recall from Example 8.3.2 that S already contains the structure of an MTT cosmos.
As a presheaf cosmos, this manifests through a series of constants in the internal language
of S. Using Lemma 8.4.3 we import these constants into G.

Extension 8.5.1. For each m : M, there is a pair of constants z : syn ⊢ Tym(z) : U0

and z : syn, A : Tym(z) ⊢ Tmm(z,A) : U0. These constants are further equipped with
operations à la Fig. 8.3 closing them under dependent sums, dependent products, modal
types, etc.

Next, observe that normals, neutrals, and normal types are equipped with an action
by renamings, so that they can be structured as presheaves over Ren−. The decoding
operations further organize them into proof-relevant predicates over terms and types
e.g., the presheaf of normal types as an object of G lying over the presheaf of types from
S(m). In fact, because renamings map variables to variables, the collection of variables
of a given type organizes into a presheaf over Ren− and part of an object in G. We
import these objects into the internal language as additional constants:

Extension 8.5.2. Given m : M and A : �zTym(z), we have constants

Nfm(A),Nem(A),Vm(A) : {U0 | z : syn 7→ Tmm(z,A(z))}
NfTym : {U0 | z : syn 7→ Tym(z)}

We treat the coercion from Vm(A) to Nem(A) as silent.

Notation 8.5.4. We frequently omit z : syn as an argument to M : �X. For instance,
given A,B : �Tym we write Nfm(Prod(A,B)) not Nfm(λz. Prod(z,A(z), B(z))).



The normalization cosmos 171

The normals and neutrals themselves lift to constants of type Nfm(A), Nem(A), and
NfTym using a form of higher-order abstract syntax [Hof99]. These operations collapse to
the corresponding syntactic constants specified by Extension 8.5.1 under z : syn—recall
from Extension 8.5.2 that here e.g. Nfm(A) = Tmm(z,A). The full collection of constants
is specified in Fig. 8.4.

Extension 8.5.3. There are constants internalizing normals, neutrals, and normal
types.

Finally, inspecting Definition 8.5.1 reveals that modalities are interpreted by functors
which are both left and right adjoints. As a result, modalities preserve coproducts:

Extension 8.5.4. ⟨µ | A+B⟩ ∼= ⟨µ | A⟩+ ⟨µ | B⟩

8.5.2 The MTT cosmos

We now extend G to an MTT cosmos. To ensure that π0 induces a morphism of MTT
cosmoi, it suffices to ensure that each constant we add to G is equal to the corresponding
piece of S as internalized by Extension 8.5.1 under z : syn.

The universe of computable types and terms We begin with the definition of types and
terms in this cosmos. Concretely, we require the following for each m : M:

Ty∗m : {U2 | z : syn 7→ Tym(z)}
Tm∗m : (A : Ty∗m)→ {U1 | z : syn 7→ Tmm(z,A)}

We start with the following putative definition of types:

record T : U2 where
code : NfTym
pred : {U1 | z : syn 7→ Tmm(z, code)}
reflect : {Nem(code)→ pred | syn 7→ id}
reify : {pred→ Nfm(code) | syn 7→ id}

(8.5)

In prose, A : T contains the code of a normal type A.code as well as a proof-relevant
predicate on the elements of A.code.

The last two fields ensure that (1) all elements tracked by this predicate can be
assigned normal forms, and (2) all neutrals lie within the predicate. We write ↓A and
↑A for A.reify and A.reflect. Of the two, the reify is the crucial operation needed for
the normalization algorithm: it ensures that computable elements can be given normal
forms. Tait [Tai67], however, has shown that the pair of operations is necessary to close
all type formers under just reify.

We cannot simply define Ty∗m = T , as T does not satisfy the equation z : syn ⊢ T =
Tym(z). It does, however, satisfy this condition up to isomorphism: under z : syn, the
types of pred, reflect, and reify collapse to singletons, while the type of code collapses to
Tym(z) by Extension 8.5.2:

α�(z,A) = A.code :
∏

z:syn T
∼= Ty∗m(z)



The normalization cosmos 172

Prod : (A : NfTym)(B : Vm(A)→ NfTym)→ NfTym

Sum : (A : NfTym)(B : Vm(A)→ NfTym)→ NfTym

Bool : NfTym

Modµ : (µ | NfTyn)→ NfTym

lam : (A : �Tym)(B : �Tmm(A)→ �Tym)

→ ((a : Vm(A))→ Nfm(B(a)))→ Nfm(Prod(A,B))

app : (A : (µ | �Tym))(B : �Tmm(A)→ �Tym)

→ Nem(Prod(A,B))→ (a : Nfm(A))→ Nem(B(a))

up : Nem(Bool)→ Nfm(Bool)

tt,ff : Nfm(Bool)

if : (A : Vm(Bool)→ NfTym)

→ Nfm(A(true))→ Nfm(A(false))→ (b : Nem(Bool))→ Nem(A(b))

up : (A : �Tym)(a0, a1 : �Tmm(A))

→ Nem(Id(A, a0, a1))→ Nfm(Id(A, a0, a1))

refl : (A : �zTym(z))(a : �zTmm(z,A(z)))→ Nfm(Id(A, a, a))

J : (A : �Tym) (B : (a0, a1 : Vm(A))(p : Vm(Id(A, a0, a1)))→ NfTym)

→ ((a : Vm(A))→ Nfm(B(a, a, refl(a)))) (a0, a1 : �zTmm(A))(p : Nem(Id(A, a0, a1)))

→ Nem(B(a0, a1, η(p)))

up : (A : (µ | Tyn))→ Nem(Modµ(A))→ Nfm(Modµ(A))

modµ : (A : (µ | �Tyn))(µ | Nfn(A))→ Nfm(λz. Modµ(z,A(z)))

letmodµ;ν : (A : (ν ◦ µ | �Tyn)) (B : (a : (ν | Vm(Modµ(A))))→ NfTyo)

→ ((a : (ν ◦ µ | Vn(A)))→ Nfo(B(mµ(a))))

→ (a : (ν | Nem(Modµ(A))))→ Neo(B(a))

Uni : NfTym

El : Nfm(Uni)→ NfTym

up : Nem(Uni)→ Nfm(Uni)

M̂odµ : (µ | Nfn(Uni))→ Nfm(Uni)

dec▷
M̂odµ

: (A : (µ | Nfn(Uni)))→ Nfm(Modµ(A))→ Nfm(El(M̂od(A)))

dec◁
M̂odµ

: (A : (µ | Nfn(Uni)))→ Nem(El(M̂od(A)))→ Nem(Modµ(A))

Figure 8.4: Neutral and normal forms, internally



The normalization cosmos 173

Observe (Tym, α�) :
∑

A:�U

∏
z:synA(z) ∼= T , so the realignment axiom of Defini-

tion 8.4.4 applies and we can define

(Ty∗m, α) = re(T,Tym, α�) (8.6)

The equation z : syn ⊢ Ty∗m = Tym(z) follows immediately from the second half of
Definition 8.4.4. On elements A : Ty∗m, this implies z : syn ⊢ A = α(A).code. For
readability, we continue to use record notation to manipulate Ty∗m.

Given A : Ty∗m, we define Tm∗m(A):

Tm∗m(A) = A.pred : {U1 | z : syn 7→ Tm∗m(z,A)} (8.7)

To see that this is well-typed, we must show Tm∗m(A) = Tmm(z,A) given z : syn. The
type of A.code in Eq. (8.5) ensures Tm∗m(A) = Tmm(z,A.code). We have observed that
A = A.code under z : syn so Tm∗m(A) = Tmm(z,A).

Type connectives It remains only to close (Ty∗m,Tm
∗
m) under all connectives. For mode-

local connectives, these constructions are very similar to those given by Sterling [Ste21]
(Lemmas 8.5.7 to 8.5.10). Modal types and dependent products, however, are involve
modalities and thus are different than the other connectives (Lemmas 8.5.5 and 8.5.6).

Lemma 8.5.5. (Ty∗m,Tm
∗
m) is closed under dependent products.

Proof. We must define two constants:

Prod∗ : (A : (µ | Ty∗n))(B : (µ | Tm∗n(A))→ Ty∗m)→ Ty∗m

αProd∗ : (A : (µ | Ty∗n))(B : (µ | Tm∗n(A))→ Ty∗m)→ Ty∗m

→ Tm∗m(Prod∗(A,B)) ∼= [(a : (µ | Tm∗n(A)))Tm∗m(B(a))]

Additionally, we must show that if z : syn then Prod∗ = Prod(z) and αProd∗ = αProd(z).
We begin by fixing (A : (µ | Ty∗m)) and B : (µ | Tm∗n(A)) → Ty∗m. Define Φ =

(a : (µ | Tm∗n(A))) → Tm∗m(B(a)) and observe under z : syn, the following equality
holds:

Φ = (a : (µ | Tmn(z,A)))→ Tmm(B(z, a))

We may apply realignment using αProd(z) : Tmm(z,Prod(z,A,B)) ∼= Φ. This realign-
ment yields a type Ψ and isomorphism β : Ψ ∼= Φ. Under z : syn, these restrict to
Tmm(z,Prod(z,A,B)) and αProd(z) respectively.

With these to hand we define Prod∗ and αProd∗ as follows:

Prod∗(A,B).code = Prod(A.code, λv. B(↓Av).code)

Prod∗(A,B).pred = Ψ

Prod∗(A,B).reflect = λe. β−1(λa. app(e, ↓Aa))

Prod∗(A,B).reify = λf. lam(λv. ↓B(↑Av)β(f)(↑Av))

αProd∗ = β

It remains to check a variety of boundary conditions under z : syn. In particular,
we must show that Prod∗(A,B) = Prod(z,A,B) and that reflect and reify become the



The normalization cosmos 174

identity. These follow directly from assumptions about A, B, and the boundaries of
various constructors. For instance

Prod∗(A,B) = Prod∗(A,B).code

= Prod(A.code, λv. B(↓Av).code)

= Prod(z,A.code, λv. B(↓Av).code)

= Prod(z,A, λv. B(↓Av))

= Prod(z,A,B)

Lemma 8.5.6. (Ty∗m,Tm
∗
m) is closed under modal types.

Proof. Fix a modality µ : n m. In this case we define the four constants specified by
Fig. 8.3, subject to the expected boundary conditions. Fix a variable A : Ty∗n under the
modal annotation µ i.e., A : (µ | Ty∗n). We define the unaligned predicate as follows:

record Φ : U1 where
tm : Nfm(Modµ(A))

prf : �

( ∑
e:Nem(Modµ(A)) tm = up(e)

+
∑

a:⟨µ|A.pred⟩ tm = modµ(↓Aa)

)
For the first time, we have used the closed modality � to explicitly tweak the proof-
relevant predicate. Intuitively, Φ is a predicate on Tmm(z,Modµ(z,A)) and tm ensures
that this predicate tracks elements with normals forms. The second field, moreover,
ensures that these normal are either neutral or modµ(a) where a is computable. Without
the closed modality shielding the second field of Φ, however, this could never have the
correct extent along z : syn. Using ��X ∼= 1 and the boundary of Nfm(Modµ(A)), we
can now define the following isomorphism:

α�(z, p) = p.tm :
∏

z:syn Φ ∼= Tmm(z,Modµ(z,A))

Realigning Φ along α� , we obtain Ψ and α : Ψ ∼= Φ which under z : syn become
Tmm(z,Modµ(z,A)) and α� .

We now define Mod∗µ:

Mod∗µ(A).code = Modµ(A.code)

Mod∗µ(A).pred = Ψ

Mod∗µ(A).reflect = λe. α−1⟨up(e), η�in1⟨e, ⋆⟩⟩
Mod∗µ(A).reify = λm. α(m).tm

Unlike Lemma 8.5.5, the introduction and elimination principles are not automatically
obtained from α and they must be constructed separately:

m∗µ(A, a) = α−1⟨↓Aa, η�in2⟨a, ⋆⟩⟩

It remains to define the elimination principle letmod∗µ;ν . This is an involved affair
and we describe it step-by-step. Begin by fixing ν : m o along with the following:

B : (ν | Tm∗m(Mod∗µ(A)))→ Tyo



The normalization cosmos 175

b : (x : (ν ◦ µ | Tm∗n(A)))→ Tm∗o(B(m∗µ(A, x)))

m : (ν | Tm∗m(Mod∗µ(A)))

We must construct an element of Tm∗o(B(a)). We begin by inspecting m. As MTT
modalities in extensional MTT commute with dependent sums, equality, �, and—by
Extension 8.5.4—with finite coproducts, m can be decomposed into the following:

tm : (ν | Nfm(Modµ(A)))

prf : �

( ∑
e:⟨ν|Nem(Modµ(A))⟩modν(tm) = up⊛ e

+
∑

a:⟨ν◦µ|A.pred⟩modν(tm) = (modµ ◦ ↓A)⊛ a

)
Recall from Eq. (8.2) that �X is a pushout of syn and X. To define a map out of

�X, therefore, it suffices to define a map out of X which is constant assuming z : syn.
We conclude by scrutinizing prf:{

in1(modν(e), ) 7→ ↑letmodµ;ν(A, λv. B(↑v).code, λx. ↓b(↑x), e)

in2(modν(a), ) 7→ b(a)

Given z : syn, both branches collapse to letmodµ;ν(z,A,B, b, a) so this yields a well-
defined map. The boundary conditions follow from routine computations.

Lemma 8.5.7. (Ty∗m,Tm
∗
m) is closed under dependent sums.

Proof. Fixing A : Ty∗m and B : Tm∗m(A)→ Ty∗m. We must construct the following pair
of constants:

Sig∗(A,B) : Ty∗m

αSig∗ : Tmm(Sig∗(A,B)) ∼=
∑

a:Tm∗
m(A) Tm

∗
m(B(a))

Such that they lie over Sig and αSig respectively.
We begin by applying realignment to the following:(∑

a:A.predB(a).pred, αSig(z)

)
This produces Ψ : U1 and αSig∗ : Ψ ∼=

∑
a:A.predB(a).pred such that under the assumption

z : syn the following holds:

Ψ = Sig(z,A,B) αSig∗ = αSig(z)

We now define Sig∗(A,B) as follows:

Sig∗(A,B).code = Sum(codeA, λv. B.code(↑Av))

Sig∗(A,B).pred = Ψ

Sig∗(A,B).reflect = λe. α−1Sig∗⟨↑A(proj0(e)), ↑B(↑A(proj0(e)))
(proj1(e))⟩

Sig∗(A,B).reify = λp. pair(↓A(αSig∗p.0), ↓B(αSig∗p.0)
(αSig∗p.1))

The fact that ↓ and ↑ lie over the identity follows directly from the β and η laws of
dependent sums in MTT. We show the calculations for ↑. Fix z : syn:

↑Sig∗(A,B)(e) = α−1Sig∗⟨↑A(proj0(e)), ↑B(↑A(proj0(e)))
(proj1(e))⟩



The normalization cosmos 176

= α−1Sig⟨proj0(e),proj1(e)⟩

= α−1Sig⟨αSig(A,B)(e)0, αSig(A,B)(e)1⟩
= e

Finally, Sig∗(A,B).code and Sig∗(A,B).pred lie over Sig(A,B) and Tmm(z, Sig(z,A,B))
by inspecting their definition and realignment.

Lemma 8.5.8. (Ty∗m,Tm
∗
m) is closed under booleans.

Proof. We must implement the following constants:

Bool∗ : {Ty∗m | z : syn 7→ Bool(z)}
true∗ : {Tm∗m(Bool) | z : syn 7→ true}
false∗ : {Tm∗m(Bool) | z : syn 7→ false}
if∗ : (A : Tm∗m(Bool(z))→ Ty∗m)

→ Tm∗m(A(true∗))

→ Tm∗m(A(false∗))

→ (b : Tm∗m(Bool∗))

→ {Tm∗m(A(b)) | z : syn 7→ if(A, t, f, b)}
: (A : Tm∗m(Bool∗)→ Ty∗m)

→ (t : Tm∗m(A(true∗)))

→ (f : Tm∗m(A(false∗)))

→ (if∗(A, t, f, true∗) = t)× (if∗(A, t, f, false∗) = f)

First, we define Φ by realignment:

record Φ : {U1 | z : syn 7→ Tmm(z,Bool)} where
tm : Nfm(Bool)

prf : �

( ∑
e:Nem(Bool) tm = up(e)

+
∑

b:2 tm = rec2(b; tt;ff))

)
We may now define Bool∗:

Bool∗.code = Bool

Bool∗.pred = Φ

Bool∗.reflect = λe.⟨up(e), η(in1(e, ⋆))⟩
Bool∗.reify = λb. b.tm

It remains to define the introduction and elimination forms.

true∗ = ⟨tt, η(in2(0, ⋆))⟩
false∗ = ⟨ff , η(in2(1, ⋆))⟩

The elimination form is defined by constructing a map out of �X, by taking advantage
of its definition as a pushout (Eq. (8.2)):

if∗(A, t0, t1, b = ⟨tm, prf⟩) =



The normalization cosmos 177


if(z, Tm, t0, t1, s) prf = in1(z)

↓A(b)if(λv. A(↑v).code, ↓t0, ↓t1, e) prf = in2(in1(e, ))

ti prf = in2(in2(i, ))

Lemma 8.5.9. (Ty∗m,Tm
∗
m) is closed under intensional identity types.

Proof. We must implement the following constants:

Id∗ : (A : Ty∗m)(a0, a1 : Tm∗m(A))

→ {Ty∗m | z : syn 7→ Id(z,A, a0, a1)}
refl∗ : (A : Ty∗m)(a : Tm∗m(A))

→ {Tm∗m(Id(A, a, a)) | z : syn 7→ refl(z,A, a)}
J∗ : (A : Ty∗m)

→ (B : (a0, a1 : Tm∗m(A))→ Tm∗m(Id∗(A, a0, a1))→ Ty∗m)

→ (b : (a : Tm∗m(A))→ Tm∗m(B(a, a, refl(a))))

→ (a0, a1 : Tm∗m(A))(p : Tm∗m(Id∗(A, a0, a1)))

→ {Tm∗m(B(a0, a1, p)) | z : syn 7→ J(z,B, b, p)}
: (A : Ty∗m)

→ (B : (a0, a1 : Tm∗m(A))→ Tm∗m(Id∗(A, a0, a1))→ Ty∗m)

→ (b : (a : Tm∗m(A))→ Tm∗m(B(a, a, refl(a))))

→ (a : Tm∗m(A))→ J∗(A,B, b, refl∗(a)) = b(a)

Fix A : Ty∗m and a0, a1 : Tm∗m(A). Just as with the normalization structure for
booleans, we begin by defining Φ by realignment:

record Φ : {U1 | z : syn 7→ Tmm(z, Id(A, a0, a1))} where
tm : Nfm(Id(A, a0, a1))

prf : �

( ∑
e:Nem(Id(A,a0,a1))

tm = up(e)

+
∑

a:A.pred tm = refl(↓Aa)

)
We now define Id∗:

Id∗(A, a0, a1).code = IdcodeA(↑Aa0, ↑Aa1)
Id∗(A, a0, a1).pred = Φ

Id∗(A, a0, a1).reflect = λe.⟨up(e), η(in1(e, ⋆))⟩
Id∗(A, a0, a1).reify = λp. p.tm

We define reflexivity by refl∗ = ⟨refl, η(in2(⋆, ⋆))⟩. Finally, the elimination principle is
defined using the induction principle for �X.

J∗(B, b, a0, a1, p = ⟨tm, prf⟩) =
J(z,B, b, a0, a1, p) prf = in1(z)

↓J(λl, r, p.B(↑l, ↑r, ↑p).code, λa.↓b(↑a), e) prf = in2(in1(e, ))

b(a0) q = in2(in2( , ))



The normalization cosmos 178

Lemma 8.5.10. (Ty∗m,Tm
∗
m) is closed under a universe.

Proof. We begin by constructing the two constants for the universe and the decoding
family:

Uni∗ : {Ty∗m | z : syn 7→ Uni}
El∗ : (A : Tm∗m(Uni∗))→ {Ty∗m | z : syn 7→ El(A)}

At this point we take advantage of the fact that pred is an element of U1; in particular,
we use the fact that is a universe U0 small enough to fit inside U1.

We may then define Ψ by realigning the following element of U1 along the evident
isomorphism to Tm∗m(z,Uni(z)):

record Ψ : {U1 | z : syn 7→ Tm∗m(z,Uni)} where
code : Nfm(Uni)
pred : {U0 | z : syn 7→ Tmm(z,El(code))}
reflect : {Nem(El(code))→ pred | z : syn 7→ id}
reify : {pred→ Nfm(El(code)) | z : syn 7→ id}

With Ψ in hand, we may define Uni∗:

Uni∗.code = Uni

Uni∗.pred = Ψ

Uni∗.reflect = λe. ⟨up(e);Nem; id;λe. up(e)⟩
Uni∗.reify = λA. A.code

The definition of El∗ is essentially cumulativity:

El∗(⟨code; pred; reify; reflect⟩) = ⟨El(code); pred; reify; reflect⟩

It remains to show that (Uni∗,El∗) is closed under various type formers. We show a
representative cases: modal types. This concretely entails implementing the following
constants:

M̂od
∗

: (A : (µ | Tm∗n(Uni∗)))→ {Tm∗m(Uni∗) | z : syn 7→ M̂od(z,A)}
dec∗

M̂od
: (A : (µ | Tm∗n(Uni∗)))

→ {Tm∗m(El∗(M̂od
∗
(A))) ∼= Tm∗m(Mod∗µ(El∗(A))) | z : syn 7→ dec

M̂od
(z,A)}

Fix A : (µ | Tm∗n(Uni∗)). We realign Tm∗m(Mod∗µ(El∗(A))) along the isomorphism
dec

M̂od
to obtain a type Ψ and an isomorphism:

dec∗Modµ : {Tm∗m(El∗(M̂od
∗
(A))) ∼= Tm∗m(Mod∗µ(El∗(A))) | z : syn 7→ dec

M̂od
(z,A)}

It remains only to define M̂od
∗
(A) such that M̂od

∗
(A).pred = Ψ:

M̂od
∗
(A).code = Modµ(A.code)

M̂od
∗
(A).pred = Ψ



The normalization algorithm 179

M̂od
∗
(A).reflect = λe. (dec∗

M̂od
)−1(↑Mod∗µ(El

∗(A))dec
▷(e))

M̂od
∗
(A).reify = λm. dec◁(↓Mod∗µ(El

∗(A))dec
∗
M̂od

(m))

The checks that all constructions lie over their syntactic counterparts follow immediately
from the conclusions of realignment.

Theorem 8.5.11. G supports an MTT cosmos built around (Ty∗m,Tm
∗
m) and π0 : G S

is a map of MTT cosmoi.

8.6 The normalization algorithm

After Theorem 8.5.11, it remains only to parlay the existence of the normalization cosmos
into a normalization function.

8.6.1 The normalization function

At this point, it becomes necessary to shift from working purely internally to G to
inspecting some constructions externally. Accordingly, we will have use for the total
spaces of terms and normal forms e.g. Tm∗m =

∑
A:Ty∗m

Tm∗m(A). We write Tm and Tm

for the presheaves of types and terms in S(m) to disambiguate them from Ty∗m and Tm∗m.

Lemma 8.6.1. There is a morphism ↓ : Tm∗m Nfm which restricts to id under syn.

Proof. Working internally, ↓(A,M) = (A, ↓AM).

Fix a term Γ ⊢M : A. Theorems 8.3.5 and 8.5.11 define a map JMK : JΓK Tm∗m
in G(m) along with an isomorphism α : π0(JΓK) ∼= y(Γ) such that π0(JMK) = ⌊M⌋ ◦ α.

We would like to obtain a normal form for M from JMK. To this end, we can unfold
JMK along with ↓ from Lemma 8.6.1 to obtain a commuting diagram:

π1(JΓK)

i[m]∗(y(Γ))

α ◦ JΓK

π1(Tm
∗
m)

i[m]∗(Tm)
i[m]∗(⌊M⌋)

π1(Nfm)

To normalize M , it suffice to construct atomsΓ : π1(JΓK)Γ such that α(JΓK(atomsΓ)) =
id : i[m]∗(y(Γ))Γ: pushing atomsΓ along the top of the diagram would yield a normal
form (an element of π1(Nfm)) which decodes to M by Yoneda.

Lemma 8.6.2. For any ⊢ Γ cx there exists atomsΓ : π1(JΓK)Γ lying over id : i[m]∗(y(Γ)).

Proof. This proof proceeds by induction on Γ.

Case Γ = 1
Here JΓK is terminal, so atoms1 is its unique element.



The normalization algorithm 180

Case Γ = ∆.(µ | A)
In this case JΓK = J∆K×G(µ)(Ty∗n)

G(µ)(Tm∗n). First, we reindex atoms∆ by Γ ⊢ p : ∆
to obtain δ ∈ J∆KΓ. Next, using the element v ∈ G(µ)(Nen(A))Γ we define
atomsΓ = (δ, ↑Av).

Case Γ = ∆.{µ}
We define atomsΓ = G(µ)!(atoms∆)

Remark 8.6.3. atomsΓ is analogous to the initial environment used in classical NbE
proofs to kick off normalization. Abel [Abe13], for instance, denotes the environment
↑Γ. ⋄

Combining Lemma 8.6.2 with the argument above, we conclude that for term
Γ ⊢M : A, there exists Γ ⊢nf u : A@m such that |u| = M . Moreover, because we have
consistently worked with equivalences class of terms, this function automatically respects
definitional equality. Summarizing:

Theorem 8.6.4. There is a function nfΓ(−, A) sending terms of type Γ ⊢ A type to
normal forms such that

1. If Γ ⊢M : A then Γ ⊢ |nfΓ(M,A)| = M : A.

2. If Γ ⊢M = N : A then nfΓ(M,A) = nfΓ(N,A).

We can repeat this process to normalize types instead of terms. Given Γ ⊢ A type,
we obtain JAK : JΓK Ty∗m which unfolds to an analogous diagram with only a small
change: rather than using ↑ to pass from π1(Tm

∗
m) to normal forms, we use code to shift

from Ty∗m to normal types:

π1(JΓK)

i[m]∗(y(Γ))

α ◦ JΓK

π1(Ty
∗
m)

i[m]∗(Tm)
i[m]∗(⌊A⌋)

π1(NfTym)

By again pushing atomsΓ along the top of this diagram, we obtain a normalization
function for types.

Theorem 8.6.5. There is a function nftyΓ(−) sending types to normal types such that

1. If Γ ⊢ A type then Γ ⊢ |nftyΓ(A)| = A type.

2. If Γ ⊢ A = B type then nftyΓ(A) = nftyΓ(B).



The normalization algorithm 181

8.6.2 Corollaries of normalization

A number of important theorems follow as corollaries of Theorems 8.6.4 and 8.6.5. For
instance, we can reduce the decidability of conversion to the decidability of the mode
theory.

Corollary 8.6.6 (Decidability of conversion).

1. Γ ⊢M = N : A iff nfΓ(M,A) = nfΓ(N,A).

2. Γ ⊢ A = B type iff nftyΓ(A) = nftyΓ(B).

Proof. We show only the proof for this first claim. The ‘only if’ direction is established
by the second point of Theorem 8.6.4. Suppose instead nfΓ(M,A) = nfΓ(N,A), so
|nfΓ(M,A)| = |nfΓ(N,A)|. By the first point of Theorem 8.6.4, |nfΓ(M,A)| = M and
|nfΓ(M,A)| = N , so the conclusion follows.

Equality of normal forms and normal types is evidently decidable if equality in M is
decidable, so this proves the promised sharp bound on the decidability of conversion in
MTT. While we have not developed a bidirectional syntax for MTT, the fully annotated
presentation of its syntax is decidable precisely when conversion is decidable:

Corollary 8.6.7. If M is decidable, type checking is decidable.

A priori, however, a given term could have multiple normal forms which complicates
further analysis. We therefore strengthen Theorem 8.6.4 with the following:

Theorem 8.6.8 (Tightness).

1. If Γ ⊢nf u : A@m, then nfΓ(|u|, A) = u.

2. If Γ ⊢nf τ @m, then nftyΓ(|τ |) = τ .

Proof. Recall that Theorems 8.3.5 and 8.5.11 induce a function J−K sending a piece
of syntax to its interpretation in the normalization model. Furthermore, recall the
(|Θ|)-element atomsΘ : JΓK constructed in Lemma 8.6.2.

We begin by strengthening the statement to make it more amenable to induction:

1. If Γ ⊢ne e : A@m, then J|M |K(atomsΘ) = ↑JAK(atomsΘ)e

2. If Γ ⊢nf u : A@m, then ↑JAK(atomsΘ)J|u|K(atomsΘ) = u.

3. If Γ ⊢nf τ @m, then codeJ|A|K(atomsΘ) = τ .

Here we have identified a code u (resp. e) as an (|Θ|) element of NfA (resp. NeA). All
three follow straightforwardly from mutual induction and the relevant definitions.

Corollary 8.6.9. Normalization is an isomorphism between equivalence classes of terms
(resp. types) and normal forms (resp. normal types).

Proof. Corollary 8.6.6 already shows that normalization is injective and Theorem 8.6.8
provides a section.



Normalization in the presence of extensions 182

These results imply the injectivity of type constructors, an essential property for
implementation.

Corollary 8.6.10. If Γ ⊢ A0 → B0 = A1 → B1 type then Γ ⊢ A0 = A1 type and
Γ.(id | A0) ⊢ B0 = B1 type.

Proof. Set τi = nftyΓ(Ai) and σi = nftyΓ.(id|A0)(Bi). Unfolding definitions shows that
|τi → σi| = |τi| → |σi| = Ai → Bi. By Corollary 8.6.9, nftyΓ(Ai → Bi) = τi → σi.

Next, we recall that Γ ⊢ A0 → B0 = A1 → B1 type by assumption, so τ0 → σ0 =
τ1 → σ1. As an operation on normal forms, however, − → − is clearly injective, so
τ0 = τ1 and σ0 = σ1. The result now follows from Corollary 8.6.6.

Gratzer et al. [Gra+20a] show canonicity for MTT extended with the equality
1.{µ} = 1. Normalization provides a (heavy-handed) proof of canonicity without this
equation by scrutinizing the definition of normal forms:

Corollary 8.6.11. If 1.{µ} ⊢M : Bool then M ∈ {tt,ff}.

Finally, we are now in a position to show the independence of strict dependent right
adjoints from ordinary MTT.

Theorem 8.6.12. In MTT with the adjoint mode theory (Example 6.1.6), the right
adjoint is not a strict dependent right adjoint.

Proof. The argument is similar to the one used in Corollary 8.6.10. Let us write µ for
the internal right adjoint and suppose that ⟨µ | −⟩ was a strict dependent right adjoint.
In this case, there would exist a term Γ.(id | ⟨µ | A⟩).{µ} ⊢ unmod(v) : A[p.{µ}] such
that modµ(unmod(v)) = v; the existence of unmod(v) is one formulation of the stronger
elimination rule.

Normalization shows that no such term can be defined in MTT; we may compute
the normal forms of the left- and right-hand sides of the equation modµ(unmod(v)) = v
and note that the left-hand side must begin modµ(. . . ) while the right-hand side will be
up(vid

0 ). The completeness of normalization implies that modµ(unmod(v)) can never be
equal to v which contradicts our assumptions on unmod(−).

8.7 Normalization in the presence of extensions

To demonstrate the flexibility of the normalization argument given in Sections 8.5 and 8.6,
we now show how it may be extended to accommodate modal principles not included in
MTT discussed in Section 6.3.

8.7.1 Crisp identity induction principles

The modularity of our proof of normalization ensures that only local changes to the
construction of identity types in G are needed to adapt the entire proof to support
crisp induction. Concretely, two changes to primitive constants added to MSTC by
Section 8.5.1. One alteration to the definition of cosmoi and one to the definition of
neutral forms:

Jµ : (A : (µ | Tyn)) (B : (a0, a1 : (µ | Tmn(A)))(p : (µ | Tmn(Id(A, a0, a1))))→ Tym)



Normalization in the presence of extensions 183

→ ((a : (µ | Tmn(A)))→ Tmm(B(a, a, refl(a))))

→ (a0, a1 : (µ | Tmn(A)))(p : (µ | Tmn(Id(A, a0, a1))))

→ Tmm(B(a0, a1, p))

Jµ : (A : (µ | �Tyn)) (B : (a0, a1 : (µ | Vn(A)))(p : (µ | Vm(Id(A, a0, a1))))→ NfTym)

→ ((a : (µ | Vn(A)))→ Nfm(B(a, a, refl(a))))

→ (a0, a1 : (µ | �zTmn(z,A(z))))(p : (µ | Nen(Id(A, a0, a1))))

→ Nem(B(a0, a1, η(p)))

These changes simply reflect the change to the elimination principle of the identity type.
After having made this change, only one portion of Section 8.5.2 must change:

Lemma 8.5.9 which shows that the gluing cosmos is closed under identity types. We
must show that (Ty∗m,Tm

∗
m) is closed under crisp induction.

Lemma 8.7.1. (Ty∗m,Tm
∗
m) supports crisp identity induction.

Proof. This argument is similar to Lemma 8.5.6, as the induction principle for modal
types is always ‘crisp’ in MTT. We must implement the following constant.

J∗µ : (A : (µ | Ty∗n)) (B : (a0, a1 : (µ | Tm∗n(A)))(p : (µ | Tm∗n(Id∗(A, a0, a1))))→ Ty∗m)

→ (b : (a : (µ | Tm∗n(A)))→ Tm∗m(B(a, a, refl∗(a))))

→ (a0, a1 : (µ | Tm∗n(A)))(p : (µ | Tm∗n(Id(A, a0, a1))))→
→ {Tm∗m(B(a0, a1, p)) | z : syn 7→ Jµ(A,B, b, p)}

Let us fix A, B, b, a0, a1, and p with the types described above. Recalling the
definition of Id∗(A, a0, a1).pred from Lemma 8.5.9, we can commute ⟨µ | −⟩ past the
dependent sum, closed modalities, equality types, and coproducts to decompose p into a
pair of the following:

(tm : (µ | Nfn(Id(A, a0, a1))))

prf : �

[∑
e:⟨µ|Nen(Id(A,a0,a1))⟩ up⊛ e = modµ(m)

+ modµ(m) = modµ(refl(a0))

]

We then define J∗µ(B, b, a0, a1, p) by analyzing prf:
J(z,B, b, a0, a1, p) prf = in1(z)

↓J(λa0, a1, p. B(↑a0, ↑a1, ↑p).code, λa. ↓b(↑a), e) q = in2(in1(e, ))

b(a0) q = in2(in2( ))

Having made this alteration, the remainder of Section 8.5 and Section 8.6 are
unchanged. In particular, all the results of Section 8.6 continue to hold in the presence
of crisp induction.



Normalization in the presence of extensions 184

8.7.2 Strict dependent right adjoints

For this subsection, suppose we are given an internal right adjoint µ : n m ∈M i.e.
we suppose that there exists a modality ν : m n together with 2-cells η : id µ ◦ ν
and ϵ : ν ◦ µ id satisfying the triangle identity. In Section 6.3, we noted that the
existence of the left adjoint enables us to present a modal type for µ with an η law
without sacrificing good syntactic properties:

⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n

Γ ⊢ µ⇒ A type @ m

⊢ Γ cx @ m Γ.{µ} ⊢ A type @ n Γ.{µ} ⊢M : A @ n

Γ ⊢ {M}µ : µ⇒ A @ m

⊢ Γ cx @ n Γ.{ν ◦ µ} ⊢ A type @ n Γ.{ν} ⊢M : ⟨µ | A⟩ @ m

Γ ⊢ !µM : A[Γ.{ϵ}] @ n

We now show that the normalization proof can extend to support these strict modal
types while retaining all the corollaries derived in Section 8.6.

Just as with crisp identity induction principles, the changes are essentially local.
We must extend normal and neutral forms to account for this new connective, specify
how µ ⇒ − is represented internally in a presheaf cosmos and then show that the
normalization cosmos can be extended to support these types. In fact, all of these
tasks are easier than the corresponding exercises for standard modal types owing to the
presence of the η law.

The following constants suffice to represent µ⇒ − internally:

SModµ : (µ | Tyn)→ Tym

αSModµ : (A : (µ | Tyn))→ ⟨µ | Tmn(A)⟩ ∼= Tmm(SModµ(A))

In particular, the presence of an η law ensures that the introduction, elimination, β
and η laws can all be bundled up into a single isomorphism. The constants encoding
normal and neutral forms for this type former are internalized as follows:

SModµ : (µ | NfTyn)→ NfTym

smodµ : (A : (µ | �Tyn))(a : (µ | Nfn(A)))→ {Nfm(SModµ(A)) | z : syn 7→ αSModµ(a)}
unmodµ : (A : (µ | �Tyn))(e : Nem(SModµ(A)))→ {Nen(A) | z : syn 7→ α−1SModµ

(e)}

It remains only to adapt the normalization cosmos to include this additional type.

Lemma 8.7.2. (Ty∗m,Tm
∗
m) supports a strict dependent right adjoint type for µ.

Proof. We must construct the following constants:

SMod∗µ : (µ | Ty∗n)→ Ty∗m

αSMod∗µ
: (A : (µ | Ty∗n))→ ⟨µ | Tm∗n(A)⟩ ∼= Tm∗m(SMod∗µ(A))

We must further arrange that SMod∗µ = SModµ(z) and αSMod∗µ
= αSModµ(z) after

assuming z : syn.



Normalization in the presence of extensions 185

Assuming z : syn, we have the following:

αSModµ : ⟨µ | Tm∗n(A)⟩ = ⟨µ | Tmn(A)⟩ ∼= Tmm(z, SModµ(A))

Accordingly, we realign along αSModµ to obtain Φ along with the following isomorphism:

αSMod∗µ
: {⟨µ | Tm∗n(A)⟩ ∼= Φ | z : syn 7→ αSModµ(z)}

It remains to parlay Φ to SMod∗µ:

SMod∗µ(A).code = SModµ(A.code)

SMod∗µ(A).pred = Φ

SMod∗µ(A).↑ = unmodµ(A)

SMod∗µ(A).↓ = λa. smodµ(A, ↓A(a))

Familiar calculations ensure that all relevant boundary conditions are satisfied.



Part III

Applications of multimodal type
theory

186



9 Guarded recursion

One good example is worth a host
of generalities

Martin Hyland
The Effective Topos

In this chapter, we investigate various formulations of guarded recursion within
MTT. While it was briefly touched upon in Section 5.1, we begin with a description and
motivation of guarded recursion broadly.

9.1 Introduction

The original motivation for guarded recursion is relatively concrete [Nak00]. Suppose one
is designing a programming language with infinite data but where programs that loop
forever without producing output are forbidden. To ensure that recursive definitions do
not introduce such divergent programs, we must ensure that each definition is productive;
it should be the case that producing a finite prefix of the output stream takes only a
finite amount of time. For instance, consider the following programs computing infinite
streams:

ones = cons(1, ones)
uhoh = let (h, t) = uhoh in (h+ 1, t)

The first definition defines an infinite stream, but any finite prefix of this infinite
stream can be obtained after unfolding ones a finite number of times. The second
definition is different: we are not even able to produce the first element of uhoh.

In these examples there are syntactic checks one could impose to rule out uhoh while
permitting ones. Indeed, syntactic checks of this form are presently implemented in
systems like Coq or Agda to ensure the soundness of their coinductive mechanisms. By
their nature, however, syntactic checks are brittle. Changing a program—even while
ensuring that it remains the same up to definitional equality—can cause an algorithm to
go from passing to failing a syntactic check.

Guarded recursion promises to reduce the syntactic check to a type-checking problem.
Rather than providing unrestricted recursive definitions and attempting to check after
the fact that a definition was well-formed, guarded-recursive systems limit the recursion
that is available from the start. They add a new type former ▶− along with the following
principle:

loeb : (▶A→ A)→ A

187



Introduction 188

This combinator mirrors the standard fixed-point combinator but with the recursive
argument replaced by ▶A. Intuitively, ▶A classifies computations which will eventually
compute to A but which are only safe to access after some computation has taken place.
This intuition is codified by shaping ▶ into an applicative functor [MP08] and inserting
it into the types of constructs like cons : A → ▶Str(A) → Str(A). Indeed, we can see
that while ones can be elaborated to a definition using loeb, the same is not true of uhoh.

Guarded domain theory While coinductive definitions are certainly useful, much of the
focus on guarded recursion has come from its use in the theory of programming languages.
Analysis of programming languages with features like recursive definitions or general
store is fraught with recursive equations, some of which cannot be handled by traditional
domain-theoretic technology.

In the context logical relations, for instance, these recursive equations are handled
through step-indexing [Ahm04; AM01]. While originally step-indexing was motivated
very operationally—it ensured that certain constructions were well-defined—later work
isolated a certain logical substrate of the technique by connecting it with guarded
recursion [DAB11] and the canonical model of guarded recursion PSh(ω) [Bir+12].

Remark 9.1.1. For those familiar with step-indexed logical relations but not guarded
recursion, we provide a sketch of the connection. The key idea of step-indexed logical
relations is to avoid defining a single relation for a type JτK but to instead define a family
of relations indexed by the natural numbers JτKn. In particular, one defines JτKn+1 using
the definition of JτKn so that one may simulate complicated recursive definitions.

Dreyer et al. [DAB11] observed that it was not necessary to explicitly carry through
the actual n; rather, it suffices to implicitly thread the number through all constructions
and to extend the language with a connective allowing one to express “Pn−1 if n > 0
or ⊤ if n = 0”. Implicitly threading n through a logical expression is the domain of
the Kripke-Joyal interpretation of logic into PSh(ω) and the novel connective is ▶.
Finally, the ability to define JτKn by induction on n follows immediately from loeb. In
other words, the logical aspect of step-indexed logical relations is precisely the logic of
PSh(ω). ⋄

Recasting step-indexed logical relations in this way has proven to be a highly successful
idea and has led to a cottage industry of logical relations and program logics based upon
guarded recursion, for instance [DNB12; Jun+16; Jun+18; Jun+15; TDB13; Tur+13].
However, it was apparent already in Birkedal et al. [Bir+12] that it would be useful to
have not merely a logic for guarded recursion, but a full dependent type theory.

For an example of where such a dependent type theory might be useful consider the
guarded program logic Iris. In Iris, like all such program logics, it is often necessary to
define data through guarded recursion instead of merely propositions; the core notion of
proposition must be defined simultaneously with a highly recursive notion of resource
to support the impredicativity crucial to the system. When working only with guarded
logic, these proof-relevant constructions must be carried out through an entirely separate
mechanism and, more concerningly, this apparatus is the most complex part of the Coq
formalization of Iris.

With a full dependent type theory, it becomes possible to give denotational semantics
in a similar style to step-indexed logical relations, but without limiting semantic types



Introduction 189

to predicates [BBM14; Biz+16; MP16; MV19; MV21; PMB15; VV20]. This style
of semantics has been referred to as synthetic guarded domain theory as it replaces
traditional domains with a type X equipped with a map ▶X → X.

Finally, a guarded dependent type theory offers a chance for unification. It enables
a programmer to take advantage of the productive recursive definitions that originally
motivated Nakano [Nak00] in the same system that a mathematician may construct Iris.

Guarded dependent type theory With motivation coming from several different directions,
it should be no surprise that several different guarded dependent type theories have been
proposed. The vast majority of these type theories are extensions of extensional MLTT
and as such were created without implementation considerations in mind—they were
designed to serve as pen-and-paper metalanguages for informal guarded reasoning.

One such system was proposed already in Birkedal et al. [Bir+12, Section 4]. It
includes a fibered ▶ modality along with the operations of an applicative functor and Löb
induction. This type theory also includes a somewhat technical excursion to allow for
types to be defined via a principle akin to loeb induction. It was quickly recognized [BM13]
that this addition could be replaced by plain loeb induction and a dependent version
of ▶ given the more refined type ▶U → U. Working directly with the applicative
functor operations proved cumbersome in general, and they were replaced by a more
sophisticated notion of delayed substitution and accompanying equations which was
better suited for reasoning about complex guarded types [Biz+16; Clo+15]. The syntax
and equational theory around delayed substitutions was quite complex and sparked a
search for a suitable replacement while retaining the same flexibility and concision they
offered.1

The development of delayed substitutions happened more-or-less simultaneously
with the introduction of clocks into dependent type theory. Roughly, guarded type
theory captures programs that compute a stream of information measured by a single
time stream.2 The ▶ modality allows us to describe computation available one step in
the future and Löb induction allows us to perform induction on the time remaining.
Clocks generalize the situation by allowing for multiple independent streams of time and,
therefore, multiple independent ▶ modalities. Concretely, clocked type theories add a
new sort of variable (clock variables) and each such variable indexes a separate time
stream. Consequently, streams can be bound and manipulated. Originally introduced
in Atkey and McBride [AM13], the primary draw of clocks was a crucial increase in
expressivity; the ability to bind a clocked variable allowed one to express a computation
which could be examined for arbitrarily many steps internally to the type theory. While
this may appear like a somewhat arcane goal, it has immediate consequences. For
instance, with the type of (guarded) streams described above, there is no way to describe
a function tail : Str(A) → Str(A). Instead, one can only define tail : Str(A) → ▶Str(A)
and this version of tail is insufficient to e.g., define a map between streams dropping
every other element. With the addition of clocks [Møg14], guarded type theory could
therefore express not only guarded operations on streams, but define and reason about
arbitrary coinductive types [Biz+16].

1See Section 5.3 for an extended discussion of the trade-offs of delayed substitutions.
2Returning to the early connection with step-indexing, all definitions are indexed by a single natural

number.



Introduction 190

After this rapid development from 2011 through 2017, two main issues remained. The
first was the implementability of guarded type theory. Even if one removed extensional
equality from these systems, the delayed substitutions and Löb induction which were
so convenient for reasoning on paper obstructed the decidability of conversion and
therefore type-checking. Moreover, while clocks gave a way to reason about global
behavior in a syntactically convenient way, their semantics were far more complicated
than PSh(ω) [BM15; BM20]. Some exploration of using the global sections comonad on
PSh(ω) by Clouston et al. [Clo+15] showed that many of the applications of clocks could
be recovered in this simpler semantics but the syntax of the global sections comonad
(particularly in conjunction with ▶) is highly non-trivial.

Clocked type theory The first complete guarded type theory CloTT (Clocked Type
Theory) to include all the features necessary for synthetic guarded domain theory while
remaining implementable was proposed by Bahr et al. [BGM17]. Summarizing, CloTT
included the following:

• A full dependent type theory.

• A version of the ▶ modality with a novel syntax of ticks for its manipulation and
no delayed substitutions. 3

• Full integration of clocks with clock quantification properly interacting with ▶.

• A version of loeb which limits unfolding to enjoy normalization.

To elaborate on the last point, loeb induction in CloTT is restricted so that the
expected computation rule holds only when used “at the top-level”. The precise mechanics
of this rule are slightly more complex and center around the interaction between clock
quantification and ▶ but the salient point is that one cannot rely only on definitional
equality when dealing with loeb. While the first approach to CloTT did not fully address
this gap, later iterations built upon a marriage of guarded type theory and cubical type
theory [Bir+19] to add a path unfolding loeb induction in all cases [KMV22]. The earlier
restriction on computation is still present: the path only degenerates to reflexivity in the
“top-level” cases. The resulting system is undoubtedly complex, but it marries together
cubical type theory and guarded type theory in a way that conjecturally still satisfies
decidable type-checking. Moreover, CloTT has been implemented in Agda and used in
several case studies [MV21; VV20].

Guarded MTT While CloTT has proven to be a highly versatile system, we choose to
revisit the foundations of guarded type theory once more in search of simpler semantics.
Indeed, the semantics of (cubical) CloTT are substantially more complex than the already
difficult models of clocked type theory [KMV22; MMV20]. Given all that the system
includes, this is to be expected. If, however, one is merely interested in providing an
implementable metalanguage for synthetic guarded domain theory, the full power of
clocks and cubical type theory seems unnecessary.

We note that both of these additions made a great deal of sense when extending type
theory with a global sections comonad was just as costly, but the purpose of Part II

3This latter point was seen as so crucial that it found its way into the title of the paper.



Presheaf models of guarded recursion 191

was to demonstrate that this could be done without significant complications. Indeed,
the work done in Chapters 6 to 8 shows that one can obtain a type theory with □
and ▶ correctly interacting without any further work.4 In fact, in Section 9.3 we show
that there is a whole family of mode theories one can instantiate MTT with to capture
different aspects of guarded type theory in PSh(ω) and generalizations thereof.

Unfortunately, □ and ▶ doth not a guarded type theory make. We shall see that
introducing Löb induction is a complex task and seemingly cannot be done without some
cost. In fact, there are two canonical ways to extended MTT with □ and ▶ to a full
guarded type theory:

1. Lean into undecidable conversion and work with extensional MTT with □, ▶, and
an axiomatized loeb.

2. Work in standard MTT and postulate certain crisp induction principles along with
loeb and an explicit unfolding term.

Neither approach is fully satisfying: the first approach does not enjoy decidable
type-checking while the second system does not satisfy canonicity. Both of type theories,
however, are not without merit. We shall see in Section 9.4 that extensional guarded
MTT can be seen as a completion of the program started by Clouston et al. [Clo+15]. It
can be used to reason about synthetic guarded domain theory and coinductive types
within the same language and with minimal syntactic burden. On the other hand, in
Section 9.6 we will show that working with a version of loeb is not only theoretically
possible but a practical reality.

Finally, we show how to merge these two systems into a stratified system for guarded
recursion. In such a system, programs are type-checked using the intensional system
and run a system where loeb unfolds definitionally. We prove that the latter satisfies a
guarded version of canonicity. These two results form the basis for an alternative strategy
for implementing guarded recursion: program in a “static” system and run programs in
a “dynamic” system.

In this chapter, we explore the space of trade-offs available for guarded MTT. In
Sections 9.2 and 9.3, we describe the intended models and typical mode theories for
guarded MTT. These give an overview of the relatively uncontroversial semantic side of
guarded recursion. In Section 9.4 we introduce guarded extensional MTT and carry out
several case studies to show its utility—at least when working on paper. In Section 9.5
we state and prove a no-go theorem showing that in the presence of Löb induction,
extensional guarded MTT is the best one can do. Finally, in Section 9.6 we show how one
may modify and restrict Löb induction to obtain a system which enjoys normalization (but
not canonicity) and can be compiled to one satisfying canonicity (but not normalization).
This stratified fragment splits the difference between the two approaches described above
to yield a reasonable candidate for an implementable guarded type theory.

9.2 Presheaf models of guarded recursion

Birkedal et al. [Bir+12] introduced the canonical model for guarded domain theory and
guarded dependent type theory: the topos of trees PSh(ω). The appeal of this model is

4Of course, this is not a coincidence; this situation was a motivating example for MTT.



Presheaf models of guarded recursion 192

its simplicity: it is a presheaf category whose base category is a poset. This makes it
extremely amenable to calculation. The challenge of guarded type theory is to construct
a well-behaved internal language that captures the salient features of PSh(ω). In this
section, we review those features.

To begin with, PSh(ω) is a topos and therefore contains a rich internal type the-
ory with all the features one could desire: dependent products, an impredicative uni-
verse of propositions, a hierarchy of universes. What distinguishes PSh(ω) from other
Grothendieck topoi is a collection of endofunctors on PSh(ω) which we use to capture
guarded recursion.

We begin with the realization of the ▶ modality as a functor on PSh(ω).

Lemma 9.2.1. The ▶ functor on PSh(ω) is part of an infinite chain of adjoints:
. . . ⊣ ◀ ⊣ ▶.

Proof. We define the ▶ modality as follows:

(▶X)(n) =

{
1 n = 0

X(m) n = m+ 1

For purely formal reasons, this modality is a right adjoint: it is accessible and
commutes with all limits. However, we can also explicitly construct its left adjoint:

(◀X)(n) = X(n+ 1)

This operation is given by precomposition with n 7→ n+ 1, which is a right adjoint
on ω with the left adjoint defined by predecessor. Accordingly, ◀ itself is a right adjoint:

(?0X)(n) = X(predn)

In turn, ?0X is a right adjoint as its given by precomposition. The left adjoint is
given as follows:

(!1X)(n) =

{
X(0) n = 0

X(n+ 1) otherwise

More generally, we define ?iX and !iX as follows:

(?iX)(n) =

{
X(n) n ≤ i
X(n− 1) n > i

(!iX)(n) =

{
X(n) n < i

X(n+ 1) n ≥ i

In particular, !(0) = ◀. Then !i+1 ⊣ ?i ⊣ !i. This chain continues indefinitely.

Lemma 9.2.2. The ▶ modality commutes with connected limits and has a canonical
point next : id ▶.

While we will defer the proof until Section 9.4 (where we will prove a more general
result), we note that ▶ satisfies the expected principle of Löb induction.



Mode theories for guarded recursion 193

Theorem 9.2.3. For any X : PSh(ω), there is a map loeb : X▶X → X such that
loeb ◦ f = ϵ ◦ ⟨f, next ◦ loeb ◦ f⟩.

The next class of functors we are concerned with is the chain of adjoints between
PSh(ω) and Set. Some of these may be composed to obtain the interpretation of the □
modality mentioned above.

Lemma 9.2.4. The global sections functor Γ : PSh(ω) Set is part of an adjoint
chain: . . . ⊣ Π0 ⊣ ∆ ⊣ Γ

Proof. As a presheaf topos, the rightmost adjoints ∆ ⊣ Γ always exist. In particular,
(∆S)(n) = S for all n. The left adjoint to this operation is defined by evaluation at the
initial object of ω, so Π0X = X(0). As this functor is defined by precomposition, it has
a left adjoint given as follows:

(LS)(n) =

{
∅ n > 0

S n = 0

Here the adjoint chain ends: L1 is not terminal so L cannot be a right adjoint.

Corollary 9.2.5. □ = ∆ ◦ Γ is a right adjoint and preserves filtered colimits.

Remark 9.2.6. Thus far, our discussion of guarded recursion has been limited to the
functors ▶ and □ and those that arise in their study. A much richer framework of
“time-altering” functors is available in PSh(ω). This theory has been explored by Guatto
and collaborators under the name time-warps [Goo+21; Gua18]. Roughly, a time-warp
is given by a cocontinuous functor w : ω + 1 ω + 1. Each such functor induces a right
adjoint w∗ : PSh(ω) PSh(ω) by taking right Kan extension and taking advantage of
the equivalence between PSh(ω) and Sh(ω + 1) with the canonical topology. ⋄

9.3 Mode theories for guarded recursion

While we have discussed several possible functors for working with guarded recursion,
we will limit ourselves to just three functors: □ (though often decomposed into its
constituent adjoints), ▶, and ◀. We will therefore consider MTT instantiated with some
fragment of the following mode theory whose 0 and 1-cells are generated by the following
diagram:

t s

d

g

l, e (9.1)

Remark 9.3.1. It may surprise the reader to see two modes in this mode theory given
that the goal was to study PSh(ω). It proves easier to work with the □ modality after
decomposing it into a pair of adjoint modalities. We therefore introduce a mode to
represent Set as well as PSh(ω) to facilitate this decomposition. This approach to
guarded recursion is unique to MTT, as it was the first system for guarded recursion to
facilitate multiple modes. ⋄



Extensional guarded MTT 194

We will supplement the hom-sets of this category with a partial order. In particular,
we require that (d, g) and (e, l) form Galois connections d ⊣ g and e ⊣ l. We additionally
require a 2-cell id ≤ l as well as identifications g ◦ d = id, e ◦ l = id and g ◦ l = g.

Notation 9.3.2. We will write b : t t as shorthand for d ◦ g.

Definition 9.3.3. Let Mg denote the 2-category generated by the above data. Note
that while we treat Mg as a 2-category, its hom-categories are always posets.

Intuitively, l = ▶, e = ◀, g = Γ, and d = ∆. The identities posited by this mode
theory are all trivially satisfied up to isomorphism by PSh(ω) and they are strictly
satisfied by the relevant left adjoints (which are all defined by precomposition).

The reason to work with this more restrictive mode theory is the greater degree
of generality it affords. We can interpret all of these functors in Sh(α) where α is an
arbitrary inaccessible ordinal rather than merely over PSh(ω).

Lemma 9.3.4. Given any inaccessible ordinal α, there exists a pseudofunctor F :
Mg Cat sending t to Sh(α) and s to Set. The 1-cells are interpreted by corresponding
generalizations of ▶, ◀, Γ, and ∆.

Proof. We shall construct a strict 2-functor F̂ : Mg
coop Cat choosing left adjoints

and obtain the required functor by transposing. The 0-cells have been fixed already, so
it suffices to define F̂ on 1- and 2-cells. We define each 1-cell by precomposition. In
particular, l = succ∗, e = pred∗, g = const(⋆)∗ and d = const(0)∗.

All the relevant 2-cells are obtained by applying precomposition to the (necessarily
unique) inequalities of these operations.

9.4 Extensional guarded MTT

In this section, we examine in some detail the model of MTT induced by Lemma 9.3.4.
In particular, we show that this functor extends to a model of extensional MTT which
validates Löb induction. We may then use MTT as an internal language for this model
which can construct and reason about coinductive types. The results in this section
form the basis and motivation of the constructions given in Chapter 10 where we use
similar ideas to construct a synthetic model of Iris. Many of these results were present
in Gratzer et al. [Gra+21], but we take advantage of improvements in the model theory
of MTT and generalize all our results to apply to α for an arbitrary ordinal α.

9.4.1 A model of extensional guarded MTT

The first order of business is to improve Lemma 9.3.4 into a model of extensional MTT.
Fortunately, both Set and Sh(α) are Grothendieck topoi so this is a direct consequence
of Theorem 7.2.12:

Theorem 9.4.1. The functor defined in Lemma 9.3.4 induces a model of MTT internal-
izing these functors.

Notation 9.4.2. The fact that Mg is locally posetal ensures that a 2-cell is uniquely
determined by its type. Accordingly, we will routinely elide 2-cells when writing terms
in MTT instantiated with this mode theory.



Extensional guarded MTT 195

Theorem 9.4.3. This model of MTT validates Löb induction and its corresponding
computation principle along with the evident substitution law:

Γ.(l | A) ⊢M : A @ t

Γ ⊢ loeb(M) : A @ t

Γ.(l | A) ⊢M : A @ t

Γ ⊢ loeb(M) = M [id.loeb(M)] : A @ t

Proof. Fix an interpretation X of Γ in Sh(α). We first observe that the slice Sh(α)/X
has a particularly concrete presentation as Sh(

∫
X). We also have a relative version

of ▶X on this slice category using the point id ▶. Unfolding definitions, we may
interpret A and M as an object Y of Sh(

∫
X) and a morphism f : ▶XY Y .

It suffices to argue that Y has a suitable global element α satisfying α = f ◦ next ◦ α.
At this point, we take advantage of the presentation described above to construct α by
describing its behavior at each (β, x ∈ Xβ). We proceed by induction on β.

The 0 case is trivial by the sheaf condition5 so we begin with β = 1. In this case,
(▶XY )(1, x) = 1, so we define α(1,x) = f(⋆). There is no naturality obligation in this
case, and the required computation rule is immediate. The case where β is a limit
ordinal is immediate; the sheaf condition on

∫
X gives a unique α by amalgamating and

it automatically satisfies the required equation by unicity of amalgamations.
The interesting case, therefore, is the case where β = γ + 1. In this case, we define α

as follows:
αβ,x = fβ,x(αγ,x|γ )

The computation rule for αγ,x|γ ensures that this definition is natural and αβ,x

satisfies the computation rule by construction.
We omit the arguments regarding the substitution principle, as it follows essentially

from the standard proof that guarded fixed points are unique.

Notation 9.4.4. We avail ourselves of more standard notation for ⟨l | A⟩ and ⟨d ◦ g | B⟩
by writing ▶A and □B respectively. Notice that these are the “dependent” forms of
these modalities so e.g. A is essentially an element of ▶U.

9.4.2 Programming in guarded MTT

Having constructed a model of extensional MTT with Mg and Löb induction, we now
put it to use to reconstruct several familiar results from guarded recursion. In particular,
we will the standard type of guarded streams and show that it can be used to define the
final coalgebra for the functor A×−. With this theorem to hand, we show that we can
define and reason about stream combinators (constructed in the mode modeled by Set)
using the guarded apparatus.

Preliminaries Before developing these examples, we define and prove some preliminary
results which internalize the structure of the mode theory. We give more memorable
names to some operations which are frequently used:

next : A→ ▶A (9.2)

5In this model, the case of 0 is trivial: any sheaf X must satisfy X(0) = {⋆}.



Extensional guarded MTT 196

now : □▶A ≃ □A (9.3)

extract : □A→ A (9.4)

dup : □A ≃ □□A (9.5)

Notation 9.4.5. Throughout this subsection we work internally to MTT and avail ourselves
of the notation introduced in Section 6.1. We also write a = b rather than Id(a, b).

Recall in Section 6.1.5, the equations between 2-cells in a mode theory manifest into
equations between the combinators they induce. In this theory, all 2-cells are equal and
so essentially every coherence equation one might expect to hold, does hold. We record
two instances of this phenomenon for future use.

Lemma 9.4.6. (□, extract, dup) is an idempotent comonad.

Proof. We must show that these operations satisfy the comonad laws. That is, we wish
to show that the following equations hold:

(a : □A)→ extract(dup(a)) = a (9.6)

(a : □A)→ (modb(extract)⊛ dup(a)) = a (9.7)

(a : □A)→ (modb(dup)⊛ dup(a)) = dup(dup(a)) (9.8)

Each one of these identities follows from induction on a. The proofs are considerably
simpler than those of Section 6.1.5 because there is no need to keep track of particular
2-cells; only their boundaries.

We describe the proof of the first identity to give a flavor for the proofs. Fix a :id □A.
By induction on □A, we may assume that a = modb(a0) for some a0 :b A. In this case,
the necessary equation reduces to the following:

extract(dup(modb(a0)))

= extract(modb(modb(a0)))

= modb(a0)

= a

The conclusion then follows immediately.

Lemma 9.4.7. The map modb(next)⊛− : □A→ □▶A is a section to now. In particular,
it is an equivalence.

Proof. We prove only the first claim, as the second is a routine calculation. We must
show the following equation holds:

(a : □▶A)→ (modb(next)⊛ now(a)) = a

To this end, fix a :id □▶A. Using the elimination principles for □ and ▶, we may
assume that a = modb(modl(a0)) for some a0 :b A. In this case, now(a) = modb(a0).
Computing further, we see the left-hand side of the desired equality is modb(modl(a0))
which is equal to a by assumption.



Extensional guarded MTT 197

Constructing guarded streams We now set out to define guarded streams and the various
combinators around them. To begin with, we prove an often-used result showing that
guarded fixed points are unique. This proof also illustrates the general flavor of working
in this guarded type theory.

Notation 9.4.8. When working in this informal style, it is often convenient to treat loeb as
a closed element of (▶A→ A)→ A subject to the equation loeb(f) = f(next(loeb(f))).
We will pass back and forth between loeb which accepts a function and loeb which
directly uses a binder.

Lemma 9.4.9. Given A : U, f : ▶A→ A, and a : A, if a = f(next(a)) then a = loeb(f).
Phrased differently, the type of guarded fixed points is contractible:∑

a:A a = f(next(a))

Proof. Suppose that a = f(next(a)). We will show that a = loeb(f) by constructing a
proof of equality using loeb itself. To this end, we recall that the following map is an
equivalence (Lemma 6.3.4): (a b :l A)→ modl(a) = modl(b)→ ▶(a = b). In particular,
using the inequality id ≤ l we conclude obtain the following map:

(a, b : A)→ ▶(a = b) ≃ next(a) = next(b) (9.9)

With this in mind, we use loeb to prove a = loeb(f). Accordingly, we may assume
▶(a = loeb(f)) and therefore next(a) = next(loeb(f)). Applying f to both sides of the
equivalence, we obtain:

a = f(next(loeb(f))) = f(next(loeb(f))) = loeb(f)

The actual definition of guarded streams is straightforward. We have access to a
universe and a dependent form of the ▶ modality, so we can define streams through Löb
induction.

Definition 9.4.10. We define GStreamA = loeb(s. A×▶s).

As a consequence of loeb unfolding definitionally, we immediately conclude that
GStreamA = A×▶GStreamA. We use this equality to define the expected introduction
and elimination forms for streams:

gcons : A→ ▶(GStreamA)→ GStreamA
gcons a s = ⟨a, s⟩

ghd : GStreamA→ A
ghd ⟨a, s⟩ = a

gtl : GStreamA→ ▶(GStreamA)
gtl ⟨a, s⟩ = s

The β and η equalities for these operations hold by virtue of the corresponding
equations for dependent sums:



Extensional guarded MTT 198

Lemma 9.4.11. The β and η principles for streams hold for GStreamA. Explicitly:

(s : GStreamA)→ s = gcons (ghd s) (gtl s)

(a : A)(s : ▶(GStreamA))→ ghd(gcons a s) = a

(a : A)(s : ▶(GStreamA))→ gtl(gcons a s) = s

The presence of the ▶ on the second argument to gcons enables us to use loeb
induction to construct elements of GStreamA. For a pair of classic examples, we provide
the following code which computes a constant stream of a given element along with the
stream of Fibonacci numbers:

const : A→ GStreamA
const a = loeb(s. gcons a s)

helper : Nat→ Nat→ GStreamNat
helper = loeb(f. λnm. gconsnmodl(f m (n+m)))

fib : GStreamNat
fib = helper 0 1

We may just as easily define higher-order stream combinators and reason about them
using guarded recursion. For instance, we may define the mapping operation on streams:

map : (A→ B)→ GStreamA→ GStreamB
map f = loeb(λr. λs. gcons (f(ghd s)) (r ⊛ gtl s))

Reasoning about guarded-recursive combinators like map also factors through loeb
(and judicious application of Lemma 6.3.4).

Lemma 9.4.12. Given a pair of functions f : A → B and g : B → C, we have an
equality map g ◦map f = map (g ◦ f).

Proof. By function extensionality, we may fix s : GStreamA and show that the following
equation holds:

map g (map f s) = map (g ◦ f) s

We proceed by guarded recursion (after generalizing over s). Accordingly, we may
assume the following:

▶((s :id GStreamA)→ map g (map f s) = map (g ◦ f) s)

Using the η principle for streams, we may assume that s = gconsh t for some h : A and
t : ▶GStreamA. Using the elimination principle for ▶, moreover, we assume t = modl(t)
for some t0 :l GStreamA. We may now compute and observe that the above equation
reduces to the following:

gcons (g(f h))modl(map g (map f t0)) = gcons (g(f h))modl(map (g ◦ f) t0)

Using congruence, it therefore suffices to argue that modl(map g (map f t0)) and
modl(map (g ◦ f) t0) are equal. Using Lemma 6.3.4, we may construct such an identifica-
tion from a term of the following type:

▶(map g (map f t0) = map (g ◦ f) t0)



Extensional guarded MTT 199

At this point, we invoke our induction hypothesis. By instantiating it with t0, the
desired conclusion is immediate.

The combinators that cannot be described on GStreamA are just as interesting. The
presence of the ▶ in the type of gcons allows us to use Löb induction to define streams
but it forces the type of gtl to also contain a ▶. This, in turn, prevents us from defining
natural combinators that do not produce their output in perfect lock-step with their
input. For instance, we might reasonably hope to define a combinator that selects the
elements of a stream at odd positions (the first, third, fifth elements, etc.), but this
cannot be done with GStreamA.

It is instructive to see why a naive attempt to define such a function fails. Let us at-
tempt to use loeb to define this function and therefore fix r : ▶(GStreamA→ GStreamA)
along with s : GStreamA. Selecting the first element of s is easy: a0 = ghd s suffices.
The complication comes from attempting to apply r. To ensure that we skip the second
element, we want to apply r not to gtl s but to gtl⊛gtl s. The type of this latter expression
is ▶▶(GStreamA) and so if we apply r to it (using ⊛), we obtain ▶▶(GStreamA). This
term, however, cannot be used as the tail of our stream; it has the type ▶▶(GStreamA)
rather than the required ▶(GStreamA). At this point, we are stuck. If we attempted
to adjust the type of this “drop” function, we would also change the type of r and we
would end up with a nearly identical position.

In some ways, this is a feature of the GStream type; operations GStreamA →
GStreamA are cut down to synchronous operations. Indeed, we can argue internally
that it is impossible to define a function that violates this invariant:

Lemma 9.4.13. If we are able to construct gtl′ : GStreamBool → GStreamBool such
that s = gcons (ghd s) (next(gtl′ s)) then ▶⊥.

Proof. Suppose that gtl′ exists. We will first use it to obtain an (impossibly) well-behaved
function ▶Bool→ Bool:

f : ▶Bool→ Bool
f b = ghd(gtl′(gcons tt (const⊛ b)))

Unfolding the definitions of const and using our presumed equations for gtl′, we see
that f satisfies the following equation:

next(f b) = b

Let us now consider the following boolean:

b = loeb(not ◦ f)

Unfolding, we conclude that not b = f(next b). Applying next to both sides we have
next(not b) = next(b). Using Lemma 6.3.4, we conclude ▶(not b = b) and obtain ▶⊥ from
the standard argument.

While it is interesting to be able to define such a strict type of streams, it is still often
necessary to work with processors which violate such a strict productivity invariant. To
accommodate them, we could consider enriching GStream to allow for a variable number
of ▶s (Section 9.6.2) but in this section, we opt to instead use the other modalities



Extensional guarded MTT 200

available in guarded MTT to produce a type of coinductive streams from the type of
guarded streams.

Intuitively, we will define the type of coinductive streams as something like StreamA =
⟨g | GStreamA⟩ but some care is needed: what mode does this definition live at and
what, precisely, is the type of A? When working with guarded streams, we were able to
work purely within mode t and take advantage of 1 ≤ l to essentially ignore modalities.
For coinductive streams, we will define StreamA @ s. We will draw A from mode s as
well and so rather than taking the global sections of GStreamA (which is ill-moded) we
will instead take global sections of GStream ⟨d | A⟩.6 In total:

StreamA @ s = ⟨g | GStream ⟨d | A⟩⟩

Recall that g ◦ d = id, so no modification is needed to A to move it to a context
restricted by g and then restricted again by d. Every modality in MTT satisfies a
dependent version of axiom K so that, in particular, ⟨µ | A×B⟩ ≃ ⟨µ | A⟩ × ⟨µ | B⟩.
Instantiating µ = g, we now obtain the following equivalences:

StreamA

= ⟨g | GStream ⟨d | A⟩⟩
≃ ⟨g | ⟨d | A⟩⟩ × ⟨g | ▶GStream ⟨d | A⟩⟩ Axiom K

≃ A× ⟨g | GStream ⟨d | A⟩⟩ g ◦ d = id and g ◦ l = g

≃ A× StreamA

This equivalence induces the introduction and elimination rules for Stream:

cons : A→ StreamA→ StreamA
hd : StreamA→ A
tl : StreamA→ StreamA

The β and η principles for GStream follow directly from those for dependent sums.
Unlike with GStream, the presence of this isomorphism does not fully constrain

Stream; there is no analog of Lemma 9.4.9 which ensures that all fixed points to A×−
are unique. In particular, we do not a priori have an induction or coinduction principle
for Stream while GStream had both in the guise of Löb induction. We will now show,
however, that Löb induction on GStream is sufficient to induce a coinduction principle
on Stream.

Theorem 9.4.14. StreamA together with ⟨hd, tl⟩ is the final coalgebra for the functor
A×−.

Proof. Fix another coalgebra (Z,α) for A × − so α : Z → A × Z. Let us write αi for
the composite πi ◦ α. We must show that there is a unique function f : Z → StreamA

6Similar restrictions are manifested in prior work on guarded type theories with coinductive
types [Biz+16; Clo+15; KMV22] where A must be suitably constant.



Extensional guarded MTT 201

such that the following diagram commutes:

Z

A× Z

StreamA

A× StreamA

We begin by defining f . Recall that StreamA = ⟨g | GStream ⟨d | A⟩⟩ and we have
assumed that ⟨g | −⟩ is a right adjoint. Using Lemma 6.4.2, it suffices to construct a
transposed version:

f̂ : ⟨g | ⟨d | Z⟩ → GStream ⟨d | A⟩⟩

This type is amenable to Löb induction:

{g} ⊢ helper : ⟨d | Z⟩ → GStream ⟨d | A⟩ @ t
{g} ⊢ helper = loeb(f. λz. gcons (modd(α1)⊛ z) (modl(f (modd(α2)⊛ z))))

f̂ = modg(helper)

f z = modg(helper modd(z))

In the above code, we have used {g} ⊢ − to indicate that the entire definition of
helper takes place with the ambient context restricted by g. For convenience, we have
unfolded the definition of f for later use; it is particularly simple in this case because
the unit of the adjunction is an isomorphism.

It remains to show that f fits into the necessary commuting square. Note that the
map ⟨hd, tl⟩ is an isomorphism, so it suffices to show that the map gcons ◦ (A× f) ◦ α
is equal to f . This, in turn, follows more-or-less by computation; up to some details
around guarded recursion, this is how f was defined:

f z

= modg(helper modd(z))

= modg(gcons (modd(α1 z)) (next(helper modd(α2 z))))

= cons (α1 z)modg(helper modd(α2 z))

= cons (α1 z) (f(α2 z))

It remains to show unicity.
Suppose we are given a second coalgebra morphism h : Z → StreamA. By

Lemma 6.4.2, this is equivalent to an element ĥ : ⟨g | ⟨d | Z⟩ → GStream ⟨d | A⟩⟩. Our
assumption that h is a coalgebra morphism can be rephrased in terms of ĥ. To make
the type easier to state, let us use the elimination principle for ⟨g | −⟩ and assume
ĥ = modg(h0):

⟨g | (z :id ⟨d | Z⟩)→ h0 z = gcons (α1 ⊛ z) (next(h0modd(α2 ⊛ z)))⟩

Notice, however, that this condition ensures that h0 is a fixed point of a guarded
equation. Using Lemma 9.4.9, we may therefore replace this condition with the following:

⟨g | h0 = loeb(r. λz. gcons (α1 ⊛ z) (modl(rmodd(α2 ⊛ z))))⟩



Extensional guarded MTT 202

We immediately recognize the right-hand side of this equation as helper. Therefore,
h0 and f̂ are equal by Lemma 6.3.4 and so f and h are equal by Lemma 6.4.2.

Notation 9.4.15. We write corec(Z,α) : StreamA→ Z for the unique coalgebra homo-
morphism induced by Theorem 9.4.14.

In a precise sense, Theorem 9.4.14 ensures that can construct all of the expected
stream operations on StreamA. For instance, the problematic example cited earlier
(dropping every other element) is now straightforward to define. We must construct a
non-standard coalgebra structure on StreamA and then simply apply Theorem 9.4.14 to
obtain a unique coalgebra homomorphism witnessing the desired combinator:

β : StreamA→ A× StreamA
β s = ⟨hd s, tl(tl s)⟩

dropodds = coiter(StreamA, β)

The presence of dependent types ensures that we are also able to effectively reason
about programs computing with streams inside of guarded MTT and without the need
for separate logic [Clo+15]. We conclude, therefore, with an example of such reasoning.

Theorem 9.4.16. There exists a combinator zipWith with the following type:

(A→ B → C)→ StreamA→ StreamB → StreamC

Moreover, if f : A→ A→ B is commutative then so is zipWith f .

Proof. We begin by defining zipWith. In this case, it is easier to use guarded recursion
as zipWith is synchronous and processes two streams at the same time.

{g} ⊢ helper : ( :d A→ B → C)→
GStream ⟨d | A⟩ → GStream ⟨d | B⟩ → GStream ⟨d | C⟩

{g} ⊢ helper (⊕) = loeb(λr l r. gcons (modd(ghd l ⊕ ghd r)) (r ⊛ gtl l ⊛ gtl r))

zipWith : (A→ B → C)→ StreamA→ StreamB → StreamC
zipWith f l r = modg(helper f)⊛ l ⊛ r

We now turn to commutativity. Examining definitions, it suffices to argue that if ⊕ is
commutative then helper (⊕) is commutative. In this case, we are able to take advantage
of guarded recursion and the proof is straightforward.

Concretely, suppose fix the following induction hypothesis:

▶((l r : GStreamA)→ helper (⊕) l r = helper (⊕) r l)

Fix l, r : GStreamA. We wish to show now that helper (⊕) l r = helper (⊕) r l. Un-
folding, it suffices to show the following pair of equalities:

modd(ghd l ⊕ ghd r) = modd(ghd r ⊕ ghd l)

next(helper (⊕))⊛ gtl l ⊛ gtl r = next(helper (⊕))⊛ gtl r ⊛ gtl l

The first follows immediately from Lemma 6.3.4 and our assumption that ⊕ is
commutative. The latter follows from Lemma 6.3.4 and the induction hypothesis.



Decidable conversion and Löb induction 203

9.5 Decidable conversion and Löb induction

Extensional guarded MTT is a very usable approach to internalizing guarded recursion
in type theory, but with a major caveat: as it is based on extensional type theory,
type-checking is undecidable. Recall from Section 9.1 that guarded type theories based
on delayed substitutions suffered from two deficiencies: undecidable type-checking and
unwieldy syntax. We have essentially shown that extensional MTT addresses the second
point, but it does not offer any solution to the first.

Näıvely, one might hope that restricting from extensional MTT to intensional MTT
is sufficient to solve the problem. It is certainly true that the result enjoys decidable
type-checking absent Löb induction (Chapter 8), but one must then reintegrate Löb in-
duction. Doing so by directly adding the rules specified in Theorem 9.4.3 is unfortunately
impossible. We show in this section that in the presence of a few minor requirements
(implied, for instance, by the presence of □) that the resulting system cannot have
decidable type-checking.

This is an unfortunate state of affairs; a major motivation for MTT was the ability
to integrate □ and ▶ into a single system without compromising either usability or
decidability of type-checking. Having accomplished this, we find that the challenges
around Löb induction and decidable type-checking are just as severe.

9.5.1 The no-go theorem

To make this theorem as broadly applicable as possible, we work in a stripped-down
guarded type theory and isolate the minimal requirements for our theorem. For this
section, we therefore fix Martin-Löf type theory extended with ▶, ⊛, next and loeb.
Suppose further that the following conditions hold:

1. loeb unfolds (as in Theorem 9.4.3)

2. There exists a type S equipped with an isomorphism ι : Nat×▶S ∼= S

3. next is globally adequate.7

Definition 9.5.1. We call next globally adequate if it is injective on closed terms.

Remark 9.5.2. Notice that next is automatically globally adequate in a system with □
or ◀ as it has a retraction on closed terms. Similarly, the existence of S is automatic in
the presence of a dependent ▶ and a universe. ⋄

We will show that if type-checking is decidable for this system, then we are able to
solve the following (undecidable) problem:

Theorem 9.5.3 (Rosser [Ros36], Kleene [Kle50], Trahtenbrot [Tra53]). There is no
total computable function which separates the following sets:

A = {M |M ↓ 0} B = {M |M ↓ 1}

In other words, no function terminates on all inputs while returning 0 on machines
that terminate with output 0 and 1 on those that return 1.

7The terminology is borrowed from Palombi and Sterling [PS23], though their definition is incompa-
rable; it applies only to natural numbers but requires next to be an isomorphism in this case.



Decidable conversion and Löb induction 204

Remark 9.5.4. The following reduction to Theorem 9.5.3 is directly inspired by the
similar result due to Berger and Setzer [BS18]. It is from them that we also draw the
above references to Theorem 9.5.3. ⋄

Essentially, we shall argue that the ability to decide definitional equality enables
us to separate these two sets of Turing machines. To this end, we require several facts
about encoding Turing machines and their execution within type theory. None of this
is specific to our setting, indeed, it is well-known that the following operations can be
defined in any logic supporting primitive recursion.

Lemma 9.5.5. The following types and operations are definable within type theory:

• A type TM of effective encodings of Turing machines (TM = Nat is sufficient).

• A type State representing the state of a tape and a Turing machine.

• init : TM→ State converting a Turing machine to a state with a fresh tape.

• step : State→ State which advances the state by one step of computation or does
nothing if the machine has halted.

• done : State→ Bool which returns tt just when the machine is in a halted state.

• result : State→ Nat which returns the result of the computation if the machine has
halted and 0 otherwise.

With these operations to hand, we now give associate to each M : TM an (infinite)
stream exec(M) which represents the progress of its computation. Intuitively, if M
halts with result ϵ in n steps then exec(M) will be of the form 0nϵω and if M diverges
then exec(M) = 0ω. Defining exec requires only a few combinators specific to guarded
recursion:

exec : TM→ S
exec(M) = go(initM)

go : State→ S
go = loeb(r. λs. if done s then const(result s) else ι(0, r ⊛ next(step s)))

In particular, we require the following lemma characterizing the behavior of exec
which follows directly from computation.

Lemma 9.5.6. If M : TM represents a Turing machine that terminates in n steps with
result ϵ then execM = ι(0, next(ι(0, next(. . . (const ϵ))))).

Corollary 9.5.7. If M0 computes to 0 and M1 computes to 1, then execM0 is not
definitionally equal to execM1.

Proof. Suppose Mϵ terminates after nϵ steps. Using Lemma 9.5.6, the elements at
of these two streams at k = max(n0, n1) differ: one will be nextk(0) and one will be
nextk(1). Invoking our assumption that next is globally adequate, if nextk(0) = nextk(1)
definitionally, then 0 = 1 definitionally: a clear contradiction.

Corollary 9.5.8. If M computes to 0 then execM0 = const(0).



Stratified guarded MTT 205

Proof. This again follows from Lemma 9.5.6. In particular, we see that these two terms
become identical after finitely many unfoldings of both.

Theorem 9.5.9. Guarded type theory with the above assumptions cannot have decidable
type-checking.

Proof. If the theory had decidable type-checking, then we could decide the equality of
two terms (using, for instance, refl). In this case, we could separate the set of Turing
machines computing to 0 and 1 by virtue of the following function:

F (M) = exec M̄
?
= const 0

Using Corollary 9.5.8, this returns 1 for machines which terminate with 0 and by
Corollary 9.5.7 it returns 0 for machines which compute to 1.

9.6 Stratified guarded MTT

At this point the state of affairs for guarded MTT is as follows:

• if we are not concerned about implementability, extensional guarded MTT satisfies
all the desired criteria;

• if we are concerned about implementability, there is no direct way to include Löb
induction (irrespective of how we handle ▶ and □).

If we want to find an implementable version of guarded MTT, only one possible
path remains then: find some alternative way to present Löb induction so as to escape
Theorem 9.5.9.

A possible solution to the problem of Löb induction is suggested by CloTT: integrate
Löb induction but severely curtail the situations where it can unfold. In particular, CloTT
allows loeb to unfold just when the clock of the relevant ▶ is suitably fresh. In practice,
this happens just when the clock has just been bound using the clock quantification
operator so that one is reasoning about a “closed” program. While this approach is
conjecturally sufficient to prove canonicity, most occurrences of Löb induction will not
satisfy these requirements. In order to compensate for this fact, CloTT also includes
an identification relating loeb(M) to its unfolding along with an equation forcing this
identification to become reflexivity when loeb does compute.

Therefore, when one is using CloTT it is necessary to work with a version of Löb
induction which does not unfold. Remarkably, the myriad of case studies carried out
within CloTT show that this is not the show-stopper one might guess [MV21; VV20].8

We are therefore led to consider intensional guarded MTT extended with a constant
for Löb induction and a further constant identifying loeb(M) with its unfolding. We refer
to this system as static guarded MTT (sGuTT). In Section 9.6.1, we properly specify this
system and use Chapter 8 to derive several important results regarding its metatheory.
We also carry out an extended case study of a model of synchronous programming to
demonstrate its usability even without a definitional unfolding for loeb.

8Indeed, until recently the Agda implementation of CloTT lacked the tick constant enabling any
computation with loeb.



Stratified guarded MTT 206

While sGuTT may suffice for constructing guarded programs and reasoning about
them, there is no escaping the fact that it is ill-adapted to actually run programs. This
situation parallels the fact that while the equations in CloTT may not be useful when
reasoning, they are crucial for executing closed programs and obtaining canonical results.
To calculate programs in sGuTT, we introduce a second system DynGuTT in which Löb
induction always unfolds. This system certainly does not admit decidable type-checking,
but we show in Sections 9.6.3 and 9.6.4 that it does admit a form of guarded canonicity.

These two systems combined give rise to a lightweight discipline for guarded recursive
type theory: write programs in sGuTT and run them in DynGuTT. The metatheory for
both individually is unsatisfactory, but when combined they suffice.

9.6.1 Static guarded MTT

For technical reasons in the proof of guarded canonicity, it is simpler to limit sGuTT to
a subset of Mgtt ⊆Mg. In particular, we consider only a single mode t along with the
two endomodalities representing earlier and later. In total, we have the following mode
theory:

Definition 9.6.1. Mgtt is the mode theory generated by one mode t, two modalities
e and l, and four generating 2-cells: id l, id l ◦ e, e ◦ l ∼= id. We further quotient
Mgtt so that it is merely poset-enriched rather than a full 2-category.

We extend MTT instantiated with sGuTT with three additional principles: crisp
identity induction for ⟨l | −⟩ (Section 6.3) along with the following two terms:

Γ.(l | A) ⊢M : A @ t

Γ ⊢ loeb(M) : A @ t
(9.10)

Γ.(l | A) ⊢M : A @ t

Γ ⊢ unfold(M) : Id(loeb(M),M [id.loeb(M)]) @ t
(9.11)

Crucially, we do not equip either loeb or unfold with any equations.

Definition 9.6.2. sGuTT is the type-theory obtained by extending MTT instantiated
with Mgtt with these three features.

As a first step, we note that sGuTT internalizes the same guarded situations as
extensional guarded MTT.

Theorem 9.6.3. The interpretation of the t mode in any model of extensional guarded
MTT (such as Sh(α)) is a model of sGuTT.

Proof. Extensional equality suffices to validate crisp identity induction (Lemma 6.3.4)
so the result immediately follows.

The second crucial feature of sGuTT comes from what it lacks compared to extensional
guarded MTT. Having removed all additional definitional equalities available in the latter
system, we may apply the results of Chapter 8 without additional effort.

Theorem 9.6.4. Type-checking in sGuTT is decidable.



Stratified guarded MTT 207

Proof. Let us observe that a program in sGuTT is the same as a program in MTT with
mode Mgtt in a context extended with two additional variables (one for loeb and one
for unfold). Accordingly, using Section 8.7, it suffices to argue that Mgtt is decidable.
The cases for 0-cells and 2-cells are immediate (both are propositional), so it remains
only to show the (in)equality of modalities is decidable. Inspection shows that each
modality in Mgtt can be uniquely presented as lnem for some n,m. It remains to show
that ln0em0 ≤ ln1em1 is decidable.

First, we observe that if this holds we must have n0 ≤ n1: inspection on the model
in PSh(ω) shows that we can parlay the inequality ln0em0 ≤ ln1em1 into a morphism
▶n00 ▶n10 which only exists if n0 ≤ n1. Let us therefore assume n0 ≤ n1. In this
case, we may transpose along e ⊣ l so that it suffices to consider en1 ◦ ln0 ◦ em0 =
em0+(n1−n0) ≤ em1 . This, in turn, holds if and only if m0 + (n1 − n0) ≥ m1.

In total, ln0em0 ≤ ln1em1 if and only if n0 ≤ n1 and m0 + (n1 − n0) ≥ m1. This is
clearly decidable.

9.6.2 Programming in sGuTT

While Theorem 9.6.4 assures us that it is possible to implement sGuTT, this is only part
of the picture. After all, sGuTT was deliberately chosen to contain only the portions
of guarded type theory which were amenable to decidable type-checking. The real
question was whether the resultant system would be expressive enough to actual carry
out case studies. We demonstrate the utility of sGuTT through one such example: a
reconstruction of the model of synchronous programming due to Boulmé and Hamon
[BH01]. In so doing, we are able to simplify several of the constructions given in op. cit.:
working in a guarded theory allows us to avoid some manual productivity checks which
were required in order to encode the model in Coq.

Essentially our model of synchronous programming will interpret types in a simple
first-order object language as a special stream of values. Unlike the streams described
in Section 9.4, we will refine these streams by indexing them over a warp—an abstract
representation of the rate of production of the stream.9 Our reinterpretation of Boulmé
and Hamon [BH01] will proceed in two steps. First, we will define warped streams as a
type dependent on an ordinary guarded stream of booleans. Second, we will construct the
suite of combinators on warp streams on warped streams to interpret a toy synchronous
programming language.

We begin by recalling the definition of guarded streams.

GStreamA = loeb(S.A× ⟨l | S⟩)

Unlike before, however, we only have a propositional equality:

unfold(S.A× ⟨l | S⟩) : Id(GStreamA,A×▶GStreamA)

This is sufficient to define gcons, ghd and gtl with the expected types using transport,
but we only have the β- and η-laws up to further propositional equalities:

β0 : Id(ghd(gcons a s), a) β1 : Id(gtl(gcons a s), t) η : Id(s, gcons (ghd s) (gtl s))

9In the literature, these objects are sometimes referred to as clocks. While it predates the terminology
in clocked type theory, we opt to follow Guatto [Gua18] and refer to the objects from synchronous
programming by this term.



Stratified guarded MTT 208

As mentioned, for our purposes we are concerned about a particular class of streams:

W : U
W = GStreamBool

With this definition of warps to hand, we can define the aforementioned type of
warped streams. To facilitate doing so, however, we fix a few useful syntactic conveniences.
First, when defining a function accepting an element of W, we will use Agda-style pattern-
matching syntax rather than directly using ghd and gtl. While translating between the
two approaches is mechanical, they are equivalent only up to propositional equality.
We will similarly allow ourselves to pattern-match on elements of ⟨µ | −⟩ rather than
explicitly using the eliminator for modal types. Second, rather than explicitly using
loeb induction to define a guarded recursive function, we will simply use ordinary self-
referential definitions. Once again, translating between the two styles is mechanical but
computation rules are merely propositional.

Remark 9.6.5. In general, we will start to specify various notational conveniences for
working with sGuTT in this section. This is a concession to the fact that writing terms
in pure Martin-Löf type theory without the help of an elaborator is a chore. However,
we strive to only include notations that could be supported by an elaborator such as
implemented in e.g., Agda. Accordingly, these notations help maintain readability in
these constructions without undermining the basic point that sGuTT would be usable if
implemented. ⋄

WStream : U→W→ U

WStream A (gcons(h,modl(t))) = (if h then A else Unit)× ⟨l |WStreamA t⟩

Notation 9.6.6. As it is defined by Löb induction, WStream unfolds only propositionally.
We write WStreamUnfold for the proof that WStream is equal to its unfolding. More
generally, given a guarded recursive definition foo, we will denote the associated unfolding
proof fooUnfold.

Intuitively, WStreamw is a guarded stream that contains an element only when w
is true. The degenerate case where w = const ff is simply the unit type, while taking
w = const tt recovers the standard type of guarded streams.

The type of head and tail on warped streams are somewhat involved. In particular,
the operation giving a first element of a stream is available only when the indexing warp
indicates that the stream produces an element at this time. The result is that the types
governing whd and wtl are fairly dependent:

whd : {A : U}{w : W} →WStreamA (gcons ttw)→ A
whd {Aw} rewrite WStreamUnfold, β1 ttw = λ(a, t). a

wtl : {A : U}{b : Bool}{w : W} →WStreamA (gcons bw)→ ▶WStreamAw
wtl {Abw} rewrite WStreamUnfold, β2 bw = λ(a, t). t

Remark 9.6.7. In order facilitate writing such dependent definitions, we have availed
ourselves of a convenient rewrite syntax akin to what is present in Agda. Essentially,
in order to ensure that the WStream type computes correctly we must transport it along
the identification associated with loeb induction and then the proofs which have replaced
the β- and η-laws for streams. ⋄



Stratified guarded MTT 209

We also have a version of cons, though it is parameterized by a boolean to allow us
to choose whether or not we wish to append data:

wcons : {A : U}{b : Bool}{w : W}
→ (if b then A else Unit)→ ▶WStreamAw →WStreamA (gcons bw)

wcons{A, b, w} h t rewriteWStreamUnfold, β1 bw, β2 w = (h, t)

Finally, we will go one step further and allow ourselves to pattern-match on elements
of WStream. Once again, this can be justified only up to propositional equality but this
is not an undue burden.

We are now in a position to construct the desired model of synchronous programming
by providing implementations for a series of combinators on WStream. Some are auto-
matic in fact: loeb gives rise to exactly the correct fixed point combinator for WStream
and, crucially, the presence of ▶ allows us to avoid manually ensuring productivity in
our system. In particular, this ensures that our definition of streams is substantially
simplified from Boulmé and Hamon [BH01] where a “failure case” must be explicitly
added. The following equivalence ensures that loeb can be used without any particular
reference to ▶ and with the standard formulation in synchronous programming:

WStreamA (gcons ff w) ≃ ▶(WStreamAw)

The key remaining combinators are wconst, wzipWith, and fby. Others are presented
in op. cit., but these three suffice for examples and to illustrate the general pattern.
Indeed, in all three cases, the machinery and notation presented thus far make their
definitions straightforward:

wconst : A→WStreamA (const tt)
wconst a rewrite constUnfold = wcons amodℓ(wconst a)

wzip : (w1w2 : W)(A→ B → C)→WStreamAw1 →WStreamBw2

→WStreamC (zipWith andw1w2)

wzip(gcons ttw1) (gcons ttw2) f (wcons a s1) (wcons b s2) rewrite zipWithUnfold =

wcons (f a b) (modℓ(wzipw1w2 s1 s2))

wzip(gcons w1) (gcons w2) f (wcons s1) (wcons s2) rewrite zipWithUnfold =

wcons ⋆modℓ(wzipw1w2 s1 s2)

fby : {w : W} → A→WStreamA (gcons ff w1)→WStreamA (gcons ttw1)
fby a (wcons ⋆ s) = wcons a s

The remaining connectives follow this pattern. Importantly, the fact that Löb
induction does not unfold definitionally can be managed through careful use of common
conveniences available in most proof assistants.



Stratified guarded MTT 210

9.6.3 Dynamic guarded MTT

While the previous subsection shows that we are able to define a language for guarded
recursion with decidable type-checking, sGuTT does not enjoy canonicity in any sense.
This is hardly surprising: we have added several axioms to MTT without providing any
computational justification. In this section, we introduce DynGuTT, a minimal extension
of sGuTT with definitional equalities ensuring that unfold and loeb both compute. While
this language does not have decidable type-checking (Theorem 9.5.9), we will show that
it admits a form of guarded canonicity in Section 9.6.4.

Importantly, DynGuTT constitutes a small extension of sGuTT so that the majority
of models of sGuTT are also models of DynGuTT. This allows us to write programs in
sGuTT and run them in DynGuTT when attempting to reason about a model such as
those introduced in Section 9.2.

DynGuTT extends sGuTT in two ways. The first we have already mentioned: a pair
of definitional equalities governing loeb and unfold:

Γ.(l | A) ⊢M : A @ t

Γ ⊢ loeb(M) = M [id.loeb(M)] : A @ t
(9.12)

Γ.(l | A) ⊢M : A @ t

Γ ⊢ unfold(M) = refl(loeb(M)) : Id(loeb(M),M [id.loeb(M)]) @ t
(9.13)

Remark 9.6.8. We choose to keep the explicit term form unfold to make plain the
embedding of sGuTT into DynGuTT. Of course, the added definitional equality ensures
that it is merely shorthand for refl(loeb(M)) ⋄

The other extension is more surprising. Briefly, we extend the contexts in DynGuTT
with a new context former: 0[µ]. This context is meant to represent the initial object
under the modality µ. So, in particular, 0[id] is the initial object and trivializes all
judgments: every type is uniquely inhabited and there exists a unique substitution out
of 0 ≜ 0[id]. The following rules govern this new form of context:

⊢ 0[µ] cx
(9.14)

0.{µ} ⊢ ! type 0.{µ} ⊢ ! : A 0.{µ} ⊢ ! : ∆
(9.15)

∆ ⊢ ρ : 0.{µ} ∆ ⊢M : A ∆ ⊢ γ : Γ

∆ ⊢ A = ![ρ] type ∆ ⊢M = ![ρ] : A ∆ ⊢ γ = ! ◦ ρ : Γ
(9.16)

hom(Γ,0[µ]) ∼= hom(Γ.{µ},0) (9.17)

The first few rules ensure that 0 behaves like an initial object while simultaneously
ensuring that it is preserved by −.{µ}. The final rule can be seen as capturing several
separate rules: two for transposing between substitutions Γ 0[µ] and Γ.{µ} 0 and
others for ensuring that these operations are inverses and natural. Stated even more
concisely: 0[µ] represents the action of a right adjoint to −.{µ} on 0.

Remark 9.6.9. Semantically, 0 is interpreted by the initial object and so in the model
within PSh(ω), we interpret 0[ln] as ▶n0. ⋄



Stratified guarded MTT 211

Remark 9.6.10. The rules governing 0[id] are similar to those of cubical type theory
around the cofibration 0 = 1. ⋄

The reason for this addition—unlike the above definitional equalities—is not to
facilitate additional computation. Rather, these contexts are added so that we may
formulate guarded canonicity. Let us postpone this motivation for the moment to discuss
the model theory of DynGuTT.

Using the same observations as with sGuTT, a model of DynGuTT is a model of
sGuTT extended with some extra data, in particular:

Definition 9.6.11. A model of DynGuTT is a model I of sGuTT in which unfold is
interpreted by reflexivity (and so loeb unfolds definitionally) together with the following:

• An initial object 0 in the category of contexts which is preserved by I(µ) for all µ.

• The presheaves of terms and types are both orthogonal to 0 y(0).

• An object representing hom(I(µ)−,0) for each µ.

Corollary 9.6.12. The syntax of DynGuTT is a model of sGuTT i.e. one may interpret
sGuTT into DynGuTT.

In practice, naturally-arising models of sGuTT will satisfy these requirements auto-
matically. For instance, the first requirement is automatic in the presence of equality
reflection. Furthermore, if the interpretation of modalities arises from adjunctions on the
category of contexts (e.g., if the model is democratic Remark 7.2.3), both requirements
reduce to the existence of an initial object in the category of contexts. We may package
these requirements up as follows:

Theorem 9.6.13. A model of sGuTT which validates equality reflection, possesses a
strict initial object such that T(0) = T•(0) = 1, and where each modality is interpreted
by a DRA arising from a weak CwF morphism is also a model of DynGuTT.

Corollary 9.6.14. The sheaf models of sGuTT given by Theorem 9.6.3 extend to models
of DynGuTT.

The force of this last theorem comes from the fact that these models of DynGuTT
extend those of sGuTT. In a situation where we wish to use sGuTT as an internal language
of these topoi, this result guarantees that we may freely compute using DynGuTT
to simplify a troublesome equation away and return to working in sGuTT without
compromising our ability to interpret the results in the intended model.

Guarded canonicity and 0 With these formal details in place, we return to 0 and guarded
canonicity. We begin by taking a moment to discuss the broad idea of guarded canonicity.
Typically, a canonicity statement for type theory says that each closed boolean is
equivalent to tt or ff. In the case of DynGuTT, this is insufficient: we want to not only
characterize the closed values of Bool, but also of ▶Bool and ◀Bool. Contemplating the
shape of closed forms for either of these, we see that we must consider not only a closed
context but a context of the form 1.{l} or similar. This, however, presents a secondary
problem: what should the canonical form of an infinite stream be?



Stratified guarded MTT 212

Given that we wish our canonicity theorem to apply to ▶nBool, one possible answer
would be to allow for infinite canonical forms. This option is initially appealing but
the technical challenges become apparent if we consider it in more depth. We must not
only deal with canonical forms of types like streams but arbitrary guarded types. It is
then unclear whether or not canonical forms can be characterized coinductively in such
circumstances. Instead of attempting to produce a single canonical form characterizing all
the information of a closed term, our result will produce an arbitrary finite approximation
of a closed term. In spirit, this is similar to step-indexing: a program is run or verified
with respect to some fuel.

Unlike with a programming language, however, DynGuTT is a type theory and
therefore comes equipped only with a specified notion of equality. In particular, equality
is not a directed reduction relation and so we cannot discuss what it means for a program
to run for n steps. It is for this purpose that we have added 0[µ]. Rather than specify a
natural number to represent fuel, we will allow our canonicity theorem to apply only in
contexts of the form 0[µ].{ν} and this context will encode the fuel intrinsically. This
“fuel” is not consumed by a program evaluating—this notion is no longer available—but
rather as we descend further and further into a type more and more fuel is consumed.

A small example of the process is in order. Suppose we are given a term 0[l] ⊢
M : ⟨l | A⟩, the guarded canonicity theorem will ensure that M = modl(M0) where
0[l].{l} ⊢ M0 : A. At this point, however, guarded canonicity applies again but it is
trivial: 0[l].{l} has a map onto 0 and this trivializes the statement: all types are uniquely
inhabited in this context. Intuitively, applying the canonicity theorem with 0[l] as the
starting context allows us to descend only beneath one ▶. If we instead started with 0[ln],
we could descend beneath n ▶s before the terms trivialize. As a rough approximation,
typically step-indexed fuel decreases as a program evaluates while this approach decreases
fuel in conjunction with the type of the term. This approach is only possible with the
addition of 0[µ]; without it, there is no way to force the contexts to eventually trivialize.

In total, the formal statement for guarded canonicity is the following:

Theorem 9.6.15. Given a term 0[µ].{ν} ⊢M : A, the following conditions hold:

• If A = Nat then M = n̄ for some numeral n.

• If A = ⟨ξ | B⟩ then M = modξ(N) where 0[µ].{ν ◦ ξ} ⊢ N : B.

• If A = Id(B,N0, N1) then 0[µ].{ν} ⊢ N0 = N1 : B and M = refl(N0).

9.6.4 Proving guarded canonicity

Remark 9.6.16. The material in this section is directly adapted from Section 4 and
Appendices B and C of Gratzer and Birkedal [GB22]. The text has been modified to
better fit this context as well as to integrate the proofs deferred to appendices in op. cit.
back into the main text. ⋄

After Chapters 4 and 8, it should be unsurprising that we will prove Theorem 9.6.15
using synthetic Tait computability. As in the prior proofs, we will construct a gluing
cosmos modeling DynGuTT and use this to obtain the required result. Compared to
the proof of canonicity of MLTT and the proof of normalization of MTT, two unique
challenges present themselves: the interpretation of 0 and the interpretation of loeb.



Stratified guarded MTT 213

Interpreting 0 poses some challenges: in Chapter 8, we introduced the notion of an
MTT cosmos to simplify some aspects of the construction of the normalization model.
While cosmoi axiomatize the salient features of presheaves over context categories, 0
does not have a simple universal property in this setting; the Yoneda embedding does
not preserve initial objects. we rectify this by passing to certain sheaf subtopos in which
0 has the expected universal property. A similar localization is required for codomain of
the functor we will glue along.

Interpreting loeb poses a challenge for a similar reason. The entire syntactic cosmos
will not satisfy Löb induction—only terms—and so some care is required to set up the
construction of the attendant computability structure.

Modulo these differences, the proof is similar to those we have encountered before.
Accordingly, we will focus on the differences from Chapter 8 rather than belaboring
points which have already been made there.

We begin with the revised definition of an MTT cosmos specialized to this setting an
extended to include Löb induction:

Definition 9.6.17. A Löb cosmos is a strict 2-functor G : Mgtt Cat such that G(t)
(which we abusively write G) is a locally Cartesian closed category with an initial object
and each G(µ) is a right adjoint. We require the following additional structure:

1. A morphism τG : T•G TG in G representing the universe of types and closed
under all the connectives of MTT e.g. for each µ a map G(µ)(TG) TG encoding
the formation rule for modal types.

2. An element loeb with the appropriate type and necessary equation.

A morphism of Löb cosmoi is a 2-natural transformation of LCC functors satisfying
Beck-Chevalley which preserves all structure.

In Chapter 8, could organize syntax into a cosmos enjoying a property akin to
initiality by taking presheaves on the category of contexts and substitutions Cx, the
same maneuver is not available here: 0 would no longer be initial when embedded into
PSh(Cx). We therefore localize at 0PSh(Cx) y(0[)] and consider sheaves over the
category of contexts. Explicitly, we equip Cx with a Grothendieck topology J :

J(Γ) =

{
{hom(−,Γ), ∅} if there exists a substitution Γ 0

{hom(−,Γ)} otherwise

The rules for 0 are organized to ensure that this Grothendieck topology is subcanonical
and that the presheaves of types and terms are in fact sheaves for this topology. It
is also easily seen that the precomposition functors induced by −.{µ} restrict to right
adjoints on sheaves and that Sh(Cx) is closed under finite limits and dependent products
in PSh(Cx).

Theorem 9.6.18. There is a Löb cosmos S(t) = Sh(Cx) where T (respectively T•) are
realized by the sheaves of types (respectively terms) and S(µ) is given by precomposition
with −.{µ}.

Passing to sheaves enables us to recover quasi-projectivity as in Theorem 8.3.5.



Stratified guarded MTT 214

Theorem 9.6.19. Given a Löb cosmos G and a map π : G S, the following holds:

1. For every context ⊢ Γ cx, there exists an object JΓK : G and αΓ : π(JΓK) ∼= y(Γ).

2. For every type Γ ⊢ A type, there is a morphism JAK : JΓK TG such that π(JAK) ◦
αΓ = ⌊A⌋.

3. For every Γ ⊢M : A, there exists JMK : JΓK T•G over JAK such that π(JMK)◦αΓ =
⌊M⌋.

Here ⌊−⌋ is half of the isomorphism induced by the Yoneda lemma.

Just as with normalization we will now construct a particular Löb cosmos and use
Theorem 9.6.19 to derive the theorem. We now turn to constructing this Löb cosmos by
gluing the syntactic cosmos along a functor to a Grothendieck topos.

As in all gluing proofs, the choice of functor to glue along is crucial. For instance, when
proving a standard canonicity result in Chapter 4 we used PSh(Cx) Set = PSh(1)
given by precomposition with 1 Cx. For normalization in Chapter 8 we worked
with arbitrary contexts but normal forms are stable under a limited class of renamings.
Accordingly, one glues along PSh(Cx) PSh(Ren) given by precomposing with the
inclusion Ren Cx.

In our case, because we wish to prove a result about terms in context 0[µ].{ν} we will
take a category spanned by contexts of this form. Moreover, because guarded canonical
forms are stable under the natural transformations 0[µ].{ν0} 0[µ].{ν1}, we can recast
this subcategory Cx spanned by contexts 0[µ].{ν} as a partial order:

Definition 9.6.20. Define (P,≤) to be a partial order whose elements are pairs of
modalities (µ, ν) such that (µ0, ν0) ≤ (µ1, ν1) if µ0 = µ1 and ν1 ≤ ν0. There is a functor
i : P Cx sending (µ, ν) to 0[µ].{ν}

Unlike in prior gluing proofs, we represent syntax with Sh(Cx) rather than PSh(Cx).
Accordingly, we must impose a Grothendieck topology on P so that the inclusion P Cx
induces a functor Sh(Cx) Sh(P ) and it is this functor that we will glue along.

Definition 9.6.21. Transporting the Grothendieck topology on Cx along the functor i :
P Cx yields a new topology on P covering (µ, ν) with the empty family if ∃ξ. µ◦ξ ≤ ν.

Lemma 9.6.22. Precomposition by (µ, ν) 7→ (µ, ν ◦ ξ) induces a right adjoint Rξ :
Sh(P ) Sh(P ).

Lemma 9.6.23. Recalling S(ξ) = (−.{ξ})∗ from Theorem 9.6.18, i∗ ◦ S(ξ) = Rξ ◦ i∗.

Observe that for any pair (µ, ν), there exists n such that ∃ξ. µ◦ξ ≤ ν◦ℓn. Accordingly,
given X : Sh(P ) and (µ, ν) : P there exists n such that Rn

ℓ (X)(µ, ν) = {⋆}. This eventual
trivialization ensures that Sh(P ) satisfies Löb induction:

Lemma 9.6.24. For any X : Sh(P ) there is a morphism loebX : XRℓ(X) X satisfying
the unfolding equation for Löb induction.

Lemma 9.6.25. Precomposition with i induces a right adjoint i∗ : S = Sh(Cx) Sh(P ).



Stratified guarded MTT 215

Gluing along i∗, we obtain a Grothendieck topos G(t) = Gl(i∗) whose objects
are triples

(
X : Sh(Cx), Y : Sh(P ), f : Y i∗X

)
. Intuitively, these are proof-relevant

predicates on syntax so that constructing a Löb cosmos in G is akin to a proof-relevant
logical relation.

Lemma 9.6.26. There is a strict 2-functor G : M Cat sending G(t) = Gl(i∗) and
G(µ) is determined component-wise by S(µ) and Rµ. Furthermore, π : G S is a
2-natural transformation spanned by LCC functors and satisfying Beck-Chevalley.

Proof. This follows from a slight variation on Theorem 8.4.15 and Lemma 9.6.22.

It remains only to equip G with the structure of a Löb cosmos i.e. a universe
τG : T•G TG closed under various connectives. In fact, this process is remarkably routine.
G is a Grothendieck topos and therefore models extensional Martin-Löf type theory with
a hierarchy of cumulative universes (Theorem 3.3.12) satisfying the realignment principle
formulated by externally by Shulman [Shu15a] and internally by Orton and Pitts [OP18].
Moreover, G is a model of extensional MTT with a pair of complementary idempotent
monads � and � defined by a proposition syn presenting Sh(Cx) (respectively Sh(P ))
as an open (resp. closed) subtopos. The structure of a Löb cosmos in Sh(Cx) yields a
family of constants in this internal language. This combination of modalities shapes G

into a model of multimodal synthetic Tait computability as described in Section 8.4. We
note that in a context with z : syn we have the following constants manifesting some of
the Löb cosmos structure on S:

Ty(z) : U
Tm(z) : (A : Ty)→ U

loeb(z) : (A : Ty)→ (⟨l | TmA⟩ → TmA)→ TmA

While there are minor differences in the precise properties of multimodal synthetic Tait
computability, this interpretation ensures that we can virtually replay the construction
of a universe closed under the connectives of MTT given in Section 8.5. In particular,
we can construct a universe of types and terms laying strictly over Ty and Tm:

record Ty∗ : {U2 | z : syn 7→ Ty(z)} where
code : �zTy(z)
pred : {U1 | z : syn 7→ Tm(z, code)}

Tm∗(A) = A.pred

Closing (Ty∗,Tm∗) under the standard connectives of type theory is routine, so we
focus on the last remaining novelty of the construction: Löb induction. Interpreting loeb
hinges on the fact that Sh(P ) and Rℓ satisfy Löb induction. Lifting Lemma 9.6.24 this
into the internal language of G gives us a variant of Löb induction:

loeb� :
∏

A:U(⟨ℓ | �A⟩ → �A)→ �A

This limited constant is sufficient to construct the proper interpretation of Löb
induction:



Stratified guarded MTT 216

Lemma 9.6.27. There is a constant loeb∗ : (⟨ℓ | Tm∗(A)⟩ → Tm∗(A))→ Tm∗(A) lying
strictly over loeb and satisfying the unrolling rule.

Proof. Let us fix f : ⟨ℓ | Tm∗(A)⟩ → Tm∗(A). We must construct loeb∗(f). We now use
the fracture theorem: A ∼= �A×��A �A.

We have the left component of this pullback already: λz. loeb(z, f). It remains to
construct an element of �Tm∗(A) which coheres appropriately with loeb. Here we use
loeb� induction with the target �Tm∗(A). We must produce a function ⟨ℓ | �Tm∗(A)⟩ →
�Tm∗(A). We have g = �f : ⟨ℓ | �A⟩ �A. Therefore loeb�(g) : �Tm∗(A). We must
show the following:

(�η�)(loeb�(g)) = η�(λz. loeb(z, f)) (9.18)

Let us prove this through Löb induction, available because equality of terms of �-modal
type is a �-modal type. We then assume Eq. (9.18) under ⟨ℓ | −⟩. Taking advantage of
⟨ℓ | −⟩ as a fully-fledged dependent right adjoint, we rephrase this assumption as the
equality

next(�η�(loeb�(g))) = next(η�(λz. loeb(z, f)))

We may simplify this by taking advantage of our ability to commute MTT modalities
past those induced by gluing:

�(η� ◦ next)(loeb�(g)) = η�(λz. next(loeb(z, f))) : ��⟨ℓ | Tm∗(A)⟩

Returning now to our goal, after applying both computation rules for the different
forms of Löb induction, we are left with the following:

�η�(g((�next)(loeb�(g)))) = η�(λz. f(nextloeb(z, f)))

Rewriting, we obtain

�(�f ◦ η� ◦ next)(loeb�(g)) = (��f)(η�λz. next(loeb(z, f)))

The result now follows from our induction hypothesis.

We are now able to conclude the fundamental lemma:

Theorem 9.6.28. There is a Löb cosmos in G such that π : G S is a map of Löb
cosmoi.

Finally, from Theorems 9.6.19 and 9.6.28 combined with the definition of terms in G

we can prove guarded canonicity.

Proof of Theorem 9.6.15. Fix a term 0[µ].{ν} ⊢M : A. By Theorem 9.6.19 we obtain
an element of M∗ : A∗ which lies over M up to isomorphism of contexts. We have the
following square in Sh(P )

(Fµ)!(Fν(0Sh(P )))

i∗y(0[µ].{ν})

(τG[A∗])0

i∗(τS[A])

τG[A∗]

i∗y(M)
(9.19)



Conclusions 217

We instantiate this diagram of sheaves at (µ, ν). Let us construct an (µ, ν)-point
of (Fν)!(Fµ(0Sh(P ))). By functoriality, it suffices to construct a (µ, id) point of Fµ(0).
Transposing, it is sufficient to construct a (µ, µ)-point of 0, which exists uniquely (it is a
map between initial objects). Calculating, this lies over id : i∗y(0[µ].{ν})(µ, ν). This,
together with the definition of the computability data for Nat, ⟨− | −⟩, and Id, yields
the desired result.

9.7 Conclusions

This chapter has surveyed several different approaches to guarded recursion within MTT.
The major distinction between each approach is the balance it chooses to strike between
faithfully capturing models like Sh(α) and the extent to which the resulting calculus
satisfies various metatheorems like canonicity and normalization. An unfortunate reality
of guarded recursion is that there can be no calculus which does both simultaneously;
Theorem 9.5.9 proves that faithfully including Löb induction will necessarily preclude
decidable type-checking.

We have therefore presented two rather distinct approaches to guarded recursion
within MTT: one using extensional MTT and therefore best suited to working on paper
and one with ordinary MTT, but split into two systems. The examples carried out in the
extensional system were first presented by Gratzer et al. [Gra+21], but the proofs here
have been simplified and improved. Moreover, advances in the semantics of MTT allow
us to interpret the calculus within sheaves over arbitrary ordinals rather than just ω.
The examples and results governing the stratified system were first presented by Gratzer
and Birkedal [GB22] but we have incorporated additional details in this thesis that were
elided by op. cit.

While not discussed in this thesis, the question of internalizing guarded canonicity in
some form remains a tantalizing prospect. In ongoing work with Jonathan Sterling and
Lars Birkedal, we have shown that one may use multiple modes rather than multiple type
theories to give a suitably internal version of the guarded canonicity theorem. While the
result is still restricted by Theorem 9.5.9, the resulting system is conjectured to enjoy
canonicity in a manner similar to clocked type theory.



10 A synthetic version of Iris

It is now time to discuss the
non-logical notions and to be led
by this discussion even to further
logical notions.

Dana Scott
Advice on modal logic

In Chapter 9, we explored how MTT could be instantiated in various ways to reason
about guarded recursion. In this chapter, we continue the theme but with a particular
focus on using (extensional) guarded MTT to encode a synthetic variant of Iris [Jun+18].
This development is explicitly separated into its own chapter so that it can better serve
as a Rosetta stone for those knowledgeable about Iris who are curious about MTT and,
conversely, modal type theorists who are curious about Iris. We begin by discussing
what Iris is at a high level and what a synthetic account of the theory might entail.

Iris from the top down As mentioned briefly in Chapter 9, Iris is a higher-order impred-
icative separation logic designed with an eye towards concurrent languages with general
references (mutable state that may contain arbitrarily complex data—including other
references or functions).

A first and crucial point to make is that, in some sense, the idea that Iris is a logic
is a pleasant fiction. Rather, Iris is a particular axiomatization of an intended model.
The Coq formalization of Iris maintains strict control over which facts are added to the
internal logic, so this illusion is not completely unfounded. However, there is no proof
theory to speak of, merely a set of axioms and a Hilbert calculus to facilitate working
with the intended model. In practice, therefore, Iris is used as a simply-typed lambda
calculus with a specific type of propositions iProp modeling higher-order logic along with
a handful of axioms and constants importing specific features of iProp from the model.

This sleight of hand is not unique to Iris, but what distinguishes Iris from many
separation logics is the relatively small set of axioms that must be imported. If one were
to inspect a typical statement in an Iris proof, the majority of the connectives being
used are derived operations. Indeed, even the central connective for reasoning about
programs wp e {v.Q(v)} and the rules for manipulating it are entirely derived.

In addition to those of higher-order logic, the primitive connectives and axioms in
Iris fall into three classes:

1. A second symmetric closed monoidal structure (∗,−∗) expressing separating con-
junction.

218



219

2. A family of propositions Own(a) expressing ownership of some particular resource.

3. A handful of modal operators mediating and interpolating between Own, ∗, −∗ and
the other connectives of the logic.

One of the modalities referenced in point (3) is a propositional version of the ▶
modality from Chapter 9. Indeed, the ambient simply-typed lambda calculus used to
manipulate iProp is also extended with guarded primitives to permit guarded recursive
definitions of propositions. Types are not quite presheaves on ω as one might expect from
the preceding discussion of guarded recursion. Rather, they are drawn from a reflective
subcategory of PSh(ω) spanned by flabby presheaves or complete ordered families of
equivalences (COFEs) in the parlance of Iris. The advantage of this subcategory is
pragmatic: the data of such a presheaf is determined by a set together with an ordered
collection of equivalences relations. This is easier to manipulate in Coq than a presheaf as
e.g., a function between such objects is a single Coq function equipped with an additional
property.

However, as Iris is manipulated in practice, the distinction drawn above is far from
perfectly clear. The actual use of Iris in Coq mixes together standard Coq types, COFEs,
standard Coq propositions, and elements of iProp. None of these levels can be entirely
discarded and standard Coq types and propositions are used pervasively. For instance,
a specification of an ordered queue in Iris will necessarily use the Coq type of lists, a
Coq proposition to specify that such a list is ordered and at least one COFE—iProp—to
parlay this information into the program logic.

Thus, while pen-and-paper presentations of Iris often specify it as a guarded higher-
order logic of some sort, this is not truly faithful to how it is used in practice. The goal
of synthetic Iris is then to more faithfully match how the system is used in practice by
taking seriously the ambient language around iProp.

Remark 10.0.1. For those unfamiliar with separation logic, the following toy model may
be helpful. Begin with the category of heaps H specified as a poset under the extension
ordering and adjoin an initial object ⊥ to obtain H⊥. There is a symmetric monoidal
structure ⊗ on this category given by taking the disjoint union of heaps and sending
h1 ⊗ h2 to ⊥ if h1 and h1 are not disjoint or either is ⊥. Passing to presheaves over H,
Day convolution induces a closed symmetric monoidal structure and it descends to a
similar structure on the sheaf topos E given by inverting the map 0 y(⊥).

It is within E that we have a model of separation logic. The closed symmetric
monoidal structure is used to interpret ∗ and −∗ and the primitive ownership propositions
Own(a) are precisely the representables.

In particular, propositions are monotone predicates on heaps and P ∗Q signifies that
one may decompose a heap into two disjoint pieces such that one half satisfies P and
the other satisfies Q. For instance, the following implication holds:

Own({l0 7→ v0}) ∗ Own({l1 7→ v1}) ⊢ l0 ̸= l1

This simple picture is complicated by the realities of program verification. Realistic
programs have invariants that cannot be fully described merely through the heap;
acquiring a lock in a concurrent program grants ownership to some notion of resource
but this resource cannot necessarily be specified merely in terms of the heap. To account



220

for this, rather than taking presheaves on heaps we must take sheaves on a more general
partial commutative monoid.

The situation is somewhat more complex than this may suggest: the aforementioned
impredicativity of Iris ensures that the partial commutative monoid and resultant type
of propositions must be defined simultaneously through a kind of domain equation. For
this reason, Iris also includes guarded recursion (Chapter 9). In particular, the partial
commutative monoid and iProp must be regarded as presheaves in PSh(ω).

As a result, the real model of Iris cannot be constructed through such a direct
procedure, but it is useful to keep the above model in mind in what follows. In some
sense, the goal of a synthetic account of Iris is to parallel this story as closely as
possible. ⋄

Synthetic Iris—a prospectus Generally, the goal of synthetic mathematics is to replace
the base objects of discourse—typically sets of some sort—with objects which carry the
additional structure we wish to study and to ensure that every function preserves it. If
we wish to study differential geometry, make every object a manifold and every map
smooth. Likewise with domain theory, homotopy theory, or algebraic geometry.1

In the case of Iris, it is natural to arrange that all our types admit a guarded structure;
this is what is typically claimed in pen-and-paper presentations of Iris after all. However,
we will arrange for a full dependent type theory and, in particular, a universe of types and
a universe of propositions. Correspondingly, all our functions will respect this guarded
structure and so we will have Löb induction available by default at both a type and
proposition level. For those already familiar with Iris, we will arrange that all types
are (a generalization of) COFEs and all propositions belong to SProp. Unlike the Coq
development, during this process, we have no need to work externally. In effect, this
means that we never need to prove non-expansiveness propositions nor will we ever
explicitly define a COFE structure on some type. Everything will be carried forward
intrinsically. For those familiar with Chapter 9, we will work in guarded extensional
MTT as discussed in Section 9.4.

On top of this layer, we will define and build up iProp and the familiar program
logic. All of the relevant definitions—the generalization of partial commutative monoids
to CMRAs, the solution to the domain equation, the definition of the programming
language, etc.—will all be carried out within this guarded type theory. We shall see
that this yields far more concise and conceptual descriptions than the unfolded versions
familiar to Iris developers.

Adequacy There is one crucial place where some amount of external reasoning is required:
adequacy. This is a fundamental result in Iris which relates a proof of specification of a
program wp e {v.Q(v)} to the actual execution behavior of e. This result is fundamentally
external: it is simply invalid given an internal proof wp e {v.Q(v)} and holds only for a
global element of such a proof. In the parlance of Iris: adequacy is only applicable if we
know that wp e {v.Q(v)} holds at all steps.

1Of course, this replacement cannot come without cost: if we are only able to define smooth functions
we must ensure that e.g., we cannot write down an indicator function separating 0 from the rest of the
interval. Typically, one isolates a class of maps with sufficiently good closure properties so that the
requirement is not overly burdensome.



A type theory for synthetic Iris 221

Fortunately, the machinery for handling such conditions without leaving type theory
is precisely the subject of modal type theory. Accordingly, rather than developing Iris
in just a version of MTT with the ▶ modality, we will also include an additional mode
representing Set along with the adjunction giving rise to the global sections comonad.
The adequacy result can then be formulated within this language as a property about
□wp e {v.Q(v)} rather than wp e {v.Q(v)}.

Remark 10.0.2. While this is the only place within our definition that we require this
additional modal structure, it could potentially be used for an additional purpose. In
the formalization of Iris in Coq, it is typical to regard normal Coq datatypes as discrete
COFEs of some form. We can crystallize this process synthetically with the help of these
additional modalities. Normal Coq types are those types in the mode representing Set
and the process of promoting them to discrete COFEs is half of the adjunction giving
rise to □. In most cases, however, it is more convenient to directly define the type of
e.g., lists observe a posteriori that it is discrete if this fact is necessary. ⋄

Contents The remainder of this chapter is broken into several distinct sections. In
Section 10.1 we give a more precise accounting of the ambient type theory we will use to
construct our version of Iris. In Sections 10.3 to 10.5, we define the various components
of the program logic within this language. Finally, in Section 10.6 we prove the promised
adequacy result.

Remark 10.0.3. Throughout this chapter, we will make extensive use of the informal
discipline for MTT introduced in Section 6.1 but we otherwise strive to make this chapter
as self-contained as possible. In particular, while there is overlap with Chapter 9, the
material there freely passed between informal and formal MTT. Here we shall consistently
use only the informal discipline. ⋄

10.1 A type theory for synthetic Iris

The ambient language for synthetic Iris will be an instantiation of MTT with a few
caveats compared to the theory as it was introduced in Chapter 6. First and foremost, as
we are committed to working on paper, it is convenient to work with extensional MTT.

The mode theory in use here is the mode theory for guarded recursion from Section 9.3.
In particular, we will have two modes: one for guarded recursive types t and one for
“normal” types s. These two modes are related to each other by a pair of modalities
d : s t (vocalized discrete) and g : t s (global). Finally, the guarded mode t has
an additional generating modality l : t t (later). Diagrammatically, the situation is
represented as follows:

t s

g

d

l

In addition to these three generating modalities, we require several 2-cells relating
them to each other. However, in this instance we can identify all 2-cells with a shared



A type theory for synthetic Iris 222

boundary; if α, β : l d ◦ g ◦ l, for instance, then α = β. As an immediate consequence,
any 2-cell from µ to itself must be the identity. Accordingly, instead of naming 2-cells
explicitly in this description we will just note the existence of a 2-cells from µ to ν by
writing µ ≤ ν and this behaves like a partial order; transitivity and reflexivity follow
from vertical composition and identity and antisymmetry follows from the above point.
The generating inequalities are then as follows:

id ≤ l g ◦ d = id d ◦ g ≤ id g ◦ l = g

We note that the ability to horizontally compose 2-cells ensures that ◦ is monotone
in both arguments: if µ0 ≤ µ1 and ν0 ≤ ν1 then ν0 ◦ µ0 ≤ ν1 ◦ µ1.
Notation 10.1.1. As there is at most one choice of 2-cell for any given solution, we will
not bother to write it out in general. Therefore, instead of writing xα when accessing
some variable, we will simply write x and omit the already determined 2-cell.

Notation 10.1.2. We will write the more familiar ▶A rather than ⟨l | A⟩. Note, however,
that ▶A still only requires A to be a type after l-restricting the context; it is a dependent
▶ modality.

We also explicitly extend MTT with Löb induction at mode t. That is, we add the
following rules to the system explicitly:2

x :l A ⊢M : A @ t

loeb(x.M) : A @ t

x :l A ⊢M : A @ t

loeb(x.M) = M [loeb(M)/x] : A @ t

Finally, we extend both modes of our language with an explicit universe of propositions
Ω : U and a decoding map [−] : Ω→ U. The defining property of Ω is that it classifies
the elements of U which have only one element. We further require that Ω is reflective
within U. That is, there exists a map L : U→ Ω and a map η : A→ [L(A)] such that
the following holds:

1. For each ϕ : Ω, the type [ϕ] satisfies the following:

(x y : [ϕ])→ x = y

2. If A,C : U such that (c0 c1 : C)→ c0 = c1 then η induces an isomorphism between
the following types:

(A→ C) ∼= ([L(A)]→ C)

3. We further require that Ω satisfies propositional univalence. That is, if [ϕ] ∼= [ψ]
then ϕ = ψ.

Remark 10.1.3. The second point in particular ensures that every type A : U with at
most one element may be replaced by [ϕ] for some ϕ : Ω. In particular, we may take
ϕ = L(A). ⋄

2Equivalent rules were presented in Section 9.4, though we have chosen to present these in a more
informal style to keep the presentation consistent throughout this section.



A type theory for synthetic Iris 223

This universe is comparable to SProp in Coq or Prop in Agda—all elements are
definitionally subsingleton—but unlike these, our strong defining property for Ω makes it
e.g., impredicative and reflective in U. These additional properties suffice to automatically
close it under all the connectives of higher-order logic e.g., ∀, ∧, ∨, ∃, and similar.

We can construct inductively-defined propositions using either impredicative quantifi-
cation or the reflector L. Propositional univalence ensures that there can be no ambiguity
between the two choices, so we will not belabor the point.

We also note that Lemma 6.3.4 ensures that ⟨µ | −⟩ sends propositions to propositions.
So, for instance, if ϕ is a proposition at mode t in a g-restricted context, ⟨g | ϕ⟩ is a
proposition at mode s. As one might expect, we also require [⟨µ | ϕ⟩] = ⟨µ | [ϕ]⟩ i.e.
modal operators send propositions to propositions. In particular, there is a propositional
version of ▶ and the above equation ensures that it satisfies the appropriate propositional
version of Löb induction.

Finally, we note that if µ is an internal left adjoint then it commutes with L
(Lemma 6.4.16).

Definition 10.1.4. We refer to the total combination of these features as the language
of synthetic Iris.

Remark 10.1.5. For those familiar with it, we will essentially regard Ω as the subobject
classifier of each mode. For instance, the familiar comprehension operator {A | ϕ} is
definable using ordinary dependent sums and [−]. ⋄

Notation 10.1.6. We will generally omit [−] and simply write ϕ : U when ϕ : Ω.

Theorem 10.1.7. The language of synthetic Iris is sound and admits a model which
interprets mode s as Set.

While it is perfectly possible to work with the above language completely axiomatically
and rely on Theorem 10.1.7, it is helpful to have an intended interpretation of these
constructs in mind. We present two explanations below, one for the working Iris
practitioner and one for the more categorically minded.

Remark 10.1.8 (The intended interpretation for Iris researchers). The above language
is meant to capture several salient aspects of the Coq formalization of Iris, with small
adjustments to make the resulting type theory richer. In particular, one should imagine
mode s as the mode of standard Coq types. These are just ordinary types and Ω at this
mode is a version of Coq’s Prop supplemented with a few additional axioms to make it
more pleasant to work with on paper.

The t mode, on the other hand, is an enlargement of the universe of COFEs. Each
type at mode t should be thought of as a (generalized) COFE and every term is a
non-expansive map from the context to the type. The universe of propositions here
is denoted SProp in the Coq formalization of Iris.3 This ensures that we never need
to directly address non-expansiveness or even contractiveness of maps: all maps are
non-expansive and to model a contractive map A → B it suffices to construct a term
▶A→ B.

The two generating modalities between s and t capture the two most common
operations for passing between COFEs and ordinary types. The modality ⟨g | −⟩ forgets

3These are step-indexed propositions and should not be confused with strict propositions.



A language for concurrency and references 224

the guarded structure and gives back the underlying type of global points. In essence,
it just erases the family of equivalences associated to a COFE. The modality in the
reverse direction ⟨d | −⟩ gives an ordinary type a trivial COFE structure wherein each
equivalence relation is simply equality.

With this interpretation to hand, one can easily check that the various identities of
the modalities hold as expected. For instance, our mode theory requires ⟨g | ⟨d | A⟩⟩ ≃ A
which states that taking a type A, equipping it with the trivial COFE structure and
then forgetting this structure results in A which is apparent. We invite the reader to
convince themselves that this interpretation validates d ◦ g ≤ id and g ◦ l = g as well.

As mentioned above types in mode t are properly understood to be generalized
COFEs. In particular, recall that an ordinary COFE is a type A together with a family
of equivalence relations Rn such that Rn ⊇ Rn+1. A type in mode t, by contrast, is a
family of types An together with restriction maps An → An−1. The gap is not quite as
large as it may appear at first: one can obtain such a family from a COFE by setting
An = A/Rn and taking the maps An → An−1 to be the induced maps on quotients. In
fact, a COFE is precisely a generalized COFE whose restriction maps are surjective.

By allowing for non-surjective restriction maps for instance, we obtain a better-
behaved version of the ▶ modality which enables the use of Löb induction at types
without first requiring them to be inhabited. Indeed, rather than merely shifting
equivalence relations ▶A replaces A0 with 1 and An+1 with An. As a result, ▶0 is not
a COFE even though 0 is. Aside from this somewhat technical point, it is acceptable to
continue to regard types in t as COFEs of some sort. ⋄

Remark 10.1.9 (The intended interpretation for modal type theorists). For those more
familiar with the semantics of MTT (Chapter 7), we can give a more concise account
of the intended model. We intend for mode t and s to be interpreted by PSh(ω) and
Set, respectively. The modalities linking t and s are then given by adjunction induced
by the discrete functor and the global elements functor. The modality l : t t is given
by the ▶ modality detailed extensively in Chapter 9. Tersely, it is the right adjoint to
precomposition by n 7→ n + 1. Finally, we note that as a presheaf topos, the discrete
functor is both a left and a right adjoint and therefore all three of these functors are
right adjoints. Theorem 7.2.12 then applies and induces the model.

The strict universe of propositions is interpreted by the subobject classifier in Set and
PSh(ω). That modalities send propositions to propositions is an immediate consequence
of (1) the universal property of subobject classifiers and (2) the fact that all modalities
are interpreted by right adjoints and therefore preserve monomorphisms. Finally, the
validity of loeb induction is a well-known fact [Bir+12]. A direct proof is given in
Theorem 9.4.3. ⋄

10.2 A language for concurrency and references

Before developing a program logic, we need to specify the set of programs and their
behavior. Iris is not tied to any specific programming language and it can accommodate
languages with a wide range of features. We will copy the most widely used programming
language with contains mutable references and fork-based concurrency.

It is at this point that we will work with the second mode s available in our language.
This mode is intended to capture ordinary sets and therefore has no guarded content.



A language for concurrency and references 225

This quite directly reflects what is done already in the Coq formalization of Iris where
the definition of the language and its operational semantics are done with ordinary Coq
types—not COFEs. We will use the modalities relating s and t to lift our language and
its operational semantics into the mode with guarded features in order to define the
program logic (Section 10.5).

This separation gives two key advantages: first, it allows us to ensure that the
programs and operational semantics interact correctly with the ▶ modality, e.g. that
they are timeless in the parlance of Iris. More importantly, it ensures that the adequacy
theorem when unfolds in the intended model coincides with the standard definition.

We would otherwise have to convince ourselves that each object corresponded to
what someone not using guarded type theory would expect.

Convention 10.2.1. Within this section, we work internally to s.

The language under question is an untyped version of PCF with mutable references
and fork(−). The language itself is fairly standard and does not differ substantively from
its presentation in Iris, so we will be relatively terse in our exposition. We present the
grammar for the language below:

(Expressions) e ::= xi | ℓ | e e | fixlam(e) | e← e | ! e | ref(e) | fork(e)
| e = e | n̄ | ifz(e; e; e) | cas(e; e; e) | . . .

(Values) v ::= ℓ | λ e | n̄

We formally can organize this grammar into a pair of inductive types Exp and Val
closed under the expected operators e.g., − ← − : Exp → Exp → Exp. Unlike Iris, we
have chosen to use De Bruijn indices to represent binding but we will not belabor the
details of binding or substitution and simply use these operations without comment. We
likewise note the evident inclusion Val→ Exp which we will treat silently.

Remark 10.2.2. We note both Exp and Val are countable: we can form equivalences
Exp ≃ Nat and Val ≃ Nat using e.g., some form of Gödel encoding. In particular, this
ensures that ⟨d | Exp⟩ and ⟨d | Val⟩ are both inductive types closed under the expected
operations in mode t. ⋄

The semantics of this language are specified through small-step operational semantics.
This is complicated by two factors: the presence of concurrency and state. In order to
accommodate the former, we will introduce two distinct “steps” relation. One of these
will specify the process of stepping a single expression by a single step relating an input
expression to the reduced expression and the collection of expressions forked off during
this step. This relation is then used by a secondary stepping relation which steps a
thread pool to another thread pool. To account for state, both of these relations will
manipulate a heap σ mapping a finite set of locations to values.

Definition 10.2.3. Define Heap = Nat→fin Val to be the type of partial maps Nat→ Val
with (specified) finite support. We write alloc : Heap → Nat for the function which
sends a heap to the smallest number not in the support of the input. We write
extend : Heap→ Nat→ Val→ Heap for the function which extends a heap to map some
supplied natural number to a supplied value.

The operational semantics are then specified by the following binary relations:

(7→) : Exp× Heap→ Exp× Heap× List Exp→ Ω



Cored resource algebras 226

(⇝) : List Exp× Heap→ List Exp× Heap→ Ω

These relations are both specified inductively—recall that Ω models higher-order logic
and so constructions such as the Knaster-Tarski theorem are available [BL13]. Rather
than specifying the full litany of inferences for these relations, we present a representative
few and refer the reader to e.g., Jung et al. [Jun+18] or Bizjak and Birkedal [BB22] for
more details.

ℓ = allocσ

(ref(v), σ) 7→ (ℓ, extendσ ℓ v, ϵ)

ℓ ∈ domσ

(ℓ← v, σ) 7→ (v, extendσ ℓ v, ϵ)

ℓ ∈ domσ

(! ℓ, σ) 7→ (σ(ℓ), σ, ϵ) (fork(e), σ) 7→ (0̄, σ, [e])

(fixlam(e) v, σ) 7→ (e[id.fixlam(e).v], σ, ϵ)

e⃗0, e, e⃗1 = e⃗ (e, σ) 7→ e′, σ′, e⃗2

(e⃗, σ)⇝ (e⃗0, e
′, e⃗2, e⃗1, σ

′)

Remark 10.2.4. For those unfamiliar with HeapLang, we note that both recursion and
functions are bundled up into a single expression fixlam(−) which defines a recursive
function. ⋄

Remark 10.2.5. We note that there is no static type-system associated with HeapLang.
We shall rely fully on the program logic to establish the runtime properties of a program.

⋄

As is standard, we write 7→∗ and ⇝∗ reflexive transitive closures of 7→ and ⇝,
respectively.

Notation 10.2.6. In what follows, we will frequently have occasion to take a closed
term foo at mode s with the type A → B (both closed) and regard it as a function
⟨d | A⟩ → ⟨d | B⟩. Explicitly, we could write modd(foo)⊛− but this is somewhat unwieldy.
We will therefore write foo† as shorthand for this expression, though we stress that this
is only valid when foo is closed; otherwise modd(foo) may be ill-formed.

Notation 10.2.7. Given an infix operator such as 7→, we write x 7→† y as infix notation
for ( 7→)† x y.

10.3 Cored resource algebras

The first ingredient in our account of Iris is a recasting of CMRAs (cameras) [Jun+18]
into this synthetic setting. Briefly, a CMRA in classical Iris extends the notion of a
commutative monoid in the following ways:

• The carrier set is replaced by a COFE and multiplication is non-expansive.

• Multiplication is allowed to be partial



Cored resource algebras 227

• Rather than asking for a single unit, a partial idempotent operation termed core
gives a partial assignment of unit for each object.

The last change is perhaps the most surprising. In more detail, a CMRA M does
not necessarily have a single unit for multiplication. Rather, there is an operation
|−| : M M which, when defined, satisfies the following:

|x| · x = x

Some other aspects of this definition are motivated by the practicalities of formaliza-
tion. For instance, multiplication and core are partial operations but the encoding of
partiality is not identical: multiplication is represented as a total operation but equips
M with a predicate (valid) delineating between defined and undefined elements of M
while |−| sends M to 1 +M and which sends valid elements to either the left disjunct
or a valid element. As we shall see, in some circumstances having the support of |−|
be decidable is crucial but some structure does not require it. Moreover, partiality for
multiplication interferes with |−| in a subtle way: as a function on M , the latter is
defined even for those invalid elements representing undefined multiplications.

When considering a synthetic reformulation of CMRAs, we therefore have two classes
of decisions to make: how will we encode the salient mathematical aspects of CMRAs in
this new language and to what extent should the synthetic definition preserve aspects of
CMRAs motivated by Coq. We choose not to preserve these aspects of the definition
in our setting—indeed, what is practical in Coq is not usually what is practical on
paper—and therefore focus on capturing the important details on CMRAs as concisely
as possible.

Convention 10.3.1. In this section, we will work exclusively within the language of
synthetic Iris at mode t.

We will decompose our version of CMRAs into two halves: a structure with a partial
multiplication operation and a core operation. Both core and multiplication are partial
and we therefore take a moment to recall the partial map classifier and its role in
encoding partial maps.

Definition 10.3.2. We define the partial map classifier −? : U U as follows:

A? =
∑

ϕ:Ω[ϕ]→ A

An element of A? consists of two pieces of data: a proposition ϕ and a partial element
of A available only when ϕ is true. It is instructive to consider the extreme hypothetical
where Ω = Bool. In this case, A? degenerates to 1 + A so an element of A? consists
either of a genuine element of A or a formally adjoined “undefined” value. In reality, Ω
contains many values between ⊤ and ⊥ so A? is slightly richer, but the same intuition
applies: a map into A? is exactly a partial map into A. The first component dictates
where the map is defined and the second component is the (suitably partially defined)
result.

Remark 10.3.3. It is standard to define a partial map from A to B in a category to
consist of a subobject of A0 of A together with a map from A0 to B. It is clear that this
data is precisely captured by A→ B?. Indeed, the first projection yields a subobject via



Cored resource algebras 228

ϕ : A→ Ω and the assumption of ϕ in the second component ensures that the second
component consists of a map out of this subobject to B. ⋄

Notation 10.3.4. Given x : A? we write x ↓ for π1 x

Theorem 10.3.5. The partial map classifier −? is a monad on U.

Proof. As this is a classical fact, we content ourselves with merely recalling the unit and
join operations and refer to the literature for a verification of the laws:

η : A→ A?

η a = (⊤, a)

µ : (A?)
? → A?

µ (ϕ, a?) = ((∃z : ϕ. π1(a
? z)), λ(z1, z2). π2 (a?z1) z2)

In the definition of join, we have used informal pattern-matching notation for existen-
tial propositions rather than elaborating to a definition using the impredicative encoding
given earlier directly.

In particular, we can use “do notation” to work with partially defined elements by
writing e.g. y ← f x; g y for the composition of two partial maps f and g.

Lemma 10.3.6. The universe of propositions Ω supports a (−)?-algebra structure which
we denote Part : Ω? Ω.

Proof. We define Part(ϕ, ψ) = ∀z : ϕ. ψ(z). It is routine to show that this satisfies the
algebra laws using propositional univalence.

The partial map classifier gives us a uniform way to encode partial operations. To
pass from a totally defined operation multiplication A×A→ A to a partial operation,
we change the type to A×A→ A?.

Definition 10.3.7. A partial commutative semigroup is a type A : U equipped with a
commutative operation (·) : A×A→ A? satisfying the following version of associativity:

(a0 a1 a2 : A)→ (a01 ← a0 · a1; a01 · a2) = (a12 ← a1 · a2; a0 · a12)

Notation 10.3.8. For convenience, we will occasionally write a0 · a1 · a2 as shorthand for
a01 ← a0 · a1; a01 · a2.

Lemma 10.3.9. A partial commutative semigroup structure on A is equivalent to a
commutative semigroup structure on A?.

Corollary 10.3.10. Given a partial commutative semigroup (A, ·), the extension order
⊑ on the commutative semigroup A? restricts to one on A. Explicitly, a ⊏ b if there
exists c : A such that a · c = η b.

Notation 10.3.11. Note that as A? is merely a commutative semigroup, ⊏ is not generally
reflexive; without a unit there need not be some b such that a · b ⊑ a. Jung et al.
[Jun+18] note that the main use of ⊏ is reflexive and therefore accept the definition
as-is. We will take a slightly different approach and write A+ for A+ 1. We then extend
· to a function A+ → A→ A? by setting in2(⋆) · − = id and write a ⊑ b for the formula
∃s : A+. s · a = η b. This is the reflexive completion of the extension order defined above.



Cored resource algebras 229

Definition 10.3.12. A core structure on a partial semigroup (A, ·) is a partial function
|−| : A→ A? satisfying the following properties:

(a : A)→ Part(c← |a|; η(c · a = η a)) (a : A)→ Part(c← |a|; η(η c = |c|))
(a0 a1 : A)→ a0 ⊑ a1 → Part(c0 ← |a0|; η(η c0 ⊑ |a1|))

Roughly, these properties ensure that |−| is a local unit, idempotent, and monotone
with respect to the extension order. We refer to such a partial semigroup as a resource
algebra (RA).

We will take cored resource algebras as our synthetic version of CMRAs. We note
that by virtue of our approach, RAs are intrinsically step-indexed. There is no need to
ensure that multiplication and coring are non-expansive operations, for instance, because
all operations are non-expansive. We further note that we have unified the two disparate
approaches for partiality into the uniform abstraction provided by the subobject classifier.
As a result, we have dropped the validity predicate and the requirement that |−| have a
decidable image. We shall find that the latter must be reintroduced in certain specific
places but we will explicitly mark where it is required.

Remark 10.3.13. Aside from the differences in partiality, we note that the synthetic
approach forces us to take (generalized) COFEs as the carriers of a RA. In Iris, it is a
helpful generalization to consider CMRAs on OFEs—lacking a completeness requirement.
In our setting, an OFE consists essentially of (1) a type A at mode t and (2) a type Ag

at mode s equipped with a map Ag → ⟨g | A⟩. In particular, it is additional data on top
of a type at mode t and therefore somewhat awkward to use in a formulation of resource
algebras. Fortunately, the major motivations for the switch in Iris are obviated by the
switch to more general COFEs. ⋄

Remark 10.3.14. For those not familiar with Iris, some foreshadowing as to why RAs
are a reasonable choice of abstraction is in order. We will eventually fix one RA R
and interpreted propositions as monotone predicates R→ Ω. Within this setting, the
“representable” predicates have a distinguished role and are used to codify ownership of a
resource. Within this setting, owning two representables will—roughly—be equivalent to
owning their product. The partiality allows us to express when such combinations should
be disallowed. In particular, if x, y : R should not be possible to “own” simultaneously,
their product should be undefined. ⋄

10.3.1 Examples of RAs

We now introduce a variety of RAs both to build intuition and for future use in the
development of synthetic Iris. Unlike standard Iris, we begin by defining the (internal)
category of RAs.

Definition 10.3.15. A homomorphism of RAs f : A B consists of a function between
the carrier types satisfying the following additional properties:

(a0 a1 : A)→ Part(a01 ← a0 · a1; η(η(f a01) = f a0 · f a1))
(a : A)→ Part(c← |a|; η(η(f c) = |f a|))



Cored resource algebras 230

Intuitively, a morphism of RAs preserves both multiplication and core when they are
defined.

It is a routine calculation to show that the identity function is a RA homomorphism
and that RA homomorphisms compose. In particular, we may define the category of
RAs as follows:

Definition 10.3.16. The category of RAs RA has RAs for objects and RA homomor-
phisms for morphisms.

Lemma 10.3.17. RA is closed under finite products and coproducts.

Proof. The case for finite products is essentially pointwise, so we show only the case for
coproducts. First of all, the initial object of RA is given by the empty type 0 endowed
with the (necessarily unique) RA structure.

We therefore must only show that RA is closed under binary coproducts. To this
end, fix RAs A and B. We will endow A+B with the structure of a resource algebra as
follows:

ini(x) · inj(y) =

{
z ← x · y; η ini(x) i = j

⊥ i ̸= j

We must show that this operation is associative and commutative and both of these
properties follow immediately from the relevant properties of A and B.

We define the core operation pointwise:

|ini(x)| = c← |x|; η ini(c)

Once more the relevant properties for |−| follow from those of A and B. It is similarly
routine to check that the inclusions A→ A+B and B → A+B are RA homomorphisms.

It remains to show that A+B is indeed the coproduct in RA. Fix a RA C along
with morphisms f : B → C and g : B → C, we must show that there is a unique map
A+B → C extending f and g. First note that since f and g induce morphisms of carriers,
there is at most one RA homomorphism satisfying this property. It remains to check
that this map [f, g] is a RA morphism. We must show that it preserves multiplication
and core when they are defined, but this follows precisely from the fact that f and g are
RA morphisms.

We now turn to two classic examples of RA: the exclusive RA and the agreement RA.
Each captures an important future use of RAs and two ways of viewing the partiality of
the operations. The exclusive RA enforces ownership and the partiality of multiplication
reflects this: multiplication is always undefined because there is no consistent situation
where two “tokens” representing exclusive access can coexist. In particular, the exclusive
ownership is the left adjoint to the forgetful functor RA Type where the latter is
the standard category of small types and functions.

Lemma 10.3.18. The forgetful functor RA Type has a left adjoint Excl.

Proof. Define ExclA to have the carrier A and totally undefined multiplication and
|−|. In particular, there are no additional properties to check on these operations
because all relevant properties apply only when these operations are defined. Moreover, a
homomorphism ExclA→ B is merely a map between the carriers for the same reason.



Cored resource algebras 231

Remark 10.3.19. In fact, RA Type factors through the category of partial com-
mutative semigroups. The functor from RAs to partial commutative semigroups also
admits a left adjoint equipping each RA with a core that is always undefined. We will
identify a partial commutative semigroup with its image under this functor and regard
it as a RA with a trivial core in some situations. ⋄

Definition 10.3.20. An idempotent element r of a RA R is one where η r = |r| i.e.
the core of r is totally defined and equal to r itself. We write Ridem for the subset of
idempotent elements of R.

Lemma 10.3.21. Given a type X, the agreement RA AgX is the unique RA such that
hom(AgX,R) ∼= (X → Ridem). Equivalently, Ag is the unique colimit-preserving functor
Type RA such that Ag 1 corepresents −idem : RA Type.

Proof. We define the carrier of AgX to be X. The core operation is simply η (so core is
in particular total). Multiplication is slightly more involved:

x · y = (x = y, λ . x)

Informally, x · y is partially defined with support x = y. When it is defined—that is,
when x = y—it is simply x. It is routine to show that · is commutative and associative.
It remains to argue that |−| has the expected properties. As |−| is η, computation
shows that it is idempotent and a local unit. It remains to show that |−| respects the
extension order, but in this RA the extension order collapses to equality. Therefore, |−|
is immediately seen to respect extension ordering.

Finally, we turn to the universal property of AgX. A morphism f : AgX → A
contains a map of f : X → A. Moreover, each f x must satisfy |f x| = η(f x) (|−| is
totally defined on AgX and therefore f must respect it). In fact, this condition is also
sufficient: multiplication in AgX is defined just when is of the form x · x = |x| · x.

Definition 10.3.22. A unital RA R is a RA together with a (necessarily unique) element
ϵ : R such that ϵ · − = η : R→ R? and |ϵ| = η ϵ.

Unital RAs play an important role in Iris for two reasons. Firstly, the associated
theory of propositions (Section 10.4) is simpler for unital RAs. More importantly, however,
the most important construction on RAs—the “direct sum” operation—produces a unital
RA.

This construction arises when we attempt to define the special universe of propositions
used for the program logic (in Section 10.4). There, we will have to fix a particular RA
to instantiate things with but frequently we will want to use more than one RA in actual
proofs. To thread this needle, we will require a construction mixing two (or more) RAs
into a single RA. We have already encountered two procedures for doing this: sums and
products. However, neither of these is really satisfactory for our purposes. We wish to
have an operation that allows us to combine two RAs in a more “independent” way.

Given a collection of RAs R : I → RA, we want a single RA
⊕
R such that:

1. for each i : I, there is an inclusion of RAs ini : R(i)→
⊕
R,

2. such that ini x · inj y is defined for all x : R i and y : Rj such that i ̸= j.



Cored resource algebras 232

In practice, we also have an additional requirement that is harder to articulate: we
would like for it to be the case that R i and the RA generated by the image of ini are
closely related. Unfortunately, it is impossible to arrange for them to be isomorphic; it
is easy to arrange for a situation where the core operation on the image of ini is total
even when the same is not true on R i. The best we can hope for is that this is the only
difference between R i and its image. We can capture this fact in several ways, but the
most reasonable is to ask that

⊕
R be unital.

To construct the direct sum, it will be necessary to assume that each R i has a
decidable core. In practice, this is not an issue and it is actually required of all RAs in
Iris. The decidability of core is crucial for the following construction:

Lemma 10.3.23. If X is a RA whose core operation has decidable support, there exists
a unital RA X+ along with a map X X+.

Proof. We take X+ = 1 +X and define multiplication to treat the left-hand disjunct
as a global unit. The definition of |−| is slightly more subtle, we set |in1(⋆)| = in1(⋆)
while |in2(x)| = |x| if the latter is defined and in1(⋆) if it is not. This slightly convoluted
definition is necessary to ensure that |−| is monotone with respect to the extension
order.

Lemma 10.3.24. Fix a type I with decidable equality and a family of RAs with decidable
cores R : I → RA. Under these assumptions, one can construct

⊕
R.

Proof. We content ourselves with only defining
⊕
R and leave the verification of its

universal property to the reader. We take the carrier of
⊕
R to be the subtype of maps

(i : I)→ R(i)+ with finite support:⊕
R = {f : (i : I)→ R(i)+ | ∃m > 0, l : [m]→ I. ∀i : I. f i = ϵ ⇐⇒ i ̸∈ im(l)}

We emphasize that because this is a subtype of dependent functions, we are not
able to depend on the particular labeling function l : [m] → I but—since m exists
uniquely—we are able to use m. This distinction will prove crucial for defining the gap
map witnessing the universal property of

⊕
R.

We must endow this map with suitable core and multiplication operations. We
begin with multiplication. First, notice that because I has decidable equality, given
two maps f : [m1] → I and g : [m2] → I there exists a map h = f ⊎ g : [k] → I which
labels the union of the images of f and g. This map is not unique. Accordingly, fix
x = (f1, l1 : [m1]→ I) and y = (f2, l2 : [m2]→ I) and write l : [m] → I for l1 ⊎ l2. We
define the xy as follows:

xy =

x0 ← f1(l 0)f2(l 0);
. . .
xm−1 ← f1(l(m− 1))f2(l(m− 1));
η ({l k 7→ xk}0≤k<m, l)

In the above, {l k 7→ xk} represents the function which returns xk on l k : I and is ϵ
everywhere else. We note that this operation is well-defined because the monad structure
associated with −? is commutative. This last fact follows in turn from propositional



Cored resource algebras 233

univalence. The verification that this map is commutative and associative is tedious but
unsurprising. Each property hinges on careful case analysis as well as arithmetic and
the relevant property holding for each R(i).

The core operation is defined in a similar manner:

|(f, l : [m]→ I)| =
x0 ← |f(l 0)|;
. . .
xm−1 ← |f(l m)|;
η ({l k 7→ xk}0≤k<m, l)

Its properties again stem from the relevant properties of R(i)+ and case analysis.
Note that |−| is always defined.

Remark 10.3.25. Without propositional univalence, we could only give the above
construction after fixing some total order on I. This is sufficient for all uses; generally,
I will be either finite or Nat—but avoiding such hypotheses is a pleasant side-effect of
working such a rich internal language. ⋄

Remark 10.3.26. A major deficiency of
⊕

is that it does not enjoy an easily stated
universal property. Indeed, it need not even be functorial in R! This is closely related to
the fact that X+ is almost—but not quite!—the unital completion of X.

This suggests that our present definition of the category of RAs is not entirely
satisfactory. The existing definition given in Iris, however, suffers even more deficiencies:
the resulting category lacks sums and products, among other useful constructions. The
search for the correct definition of RA is left to future work, though we do note that
the crux of the issue centers around the core operation. It seems likely that a better
category could be found if one imposes additional requirements on |−| giving it more
structures in order to ensure that e.g.,

⊕
R is a certain unital completion. ⋄

We conclude Section 10.3 with the authoritative RA Auth. This RA is a mix of the
exclusive and agreement RA which will be used to encode a number of features in the
program logic. Fix a unital RA X and define the carrier of AuthX as follows:

AuthX = X +X +
(∑

x,y:X y ⊑ x
)

Borrowing notation from Iris, we will write �x and �y for in1 x and in2 y respectively.
We will not have much occasion to explicitly write in3(x, y) as it will be used to represent
multiplications of �x and � y. Intuitively, �x is leader while �y is the follower. That is
if we own �x then (1) no one else can �x′ for any x′ and every valid �y must satisfy
y ⊑ x. We encode this through RA structure on AuthX as follows (omitting cases forced
by the various laws of a RA):

�x · = (⊥, !)
�y · �y′ = z ← y · y′; η �z
�y · �x = (y ⊑ x, in3(x, y,−))

|�x| = ⊥
|�y| = z ← |y|; η �z



The type of propositions 234

Lemma 10.3.27. AuthX with the above definitions of multiplication and core forms a
RA.

10.4 The type of propositions

With the machinery of RAs available, we are now in a position to define Ω∗. We will
proceed in two steps. First, we will define a type Ω∗R for an arbitrary RA R and show that
this type can be equipped with the structure of a model of higher-order logic along with
several connectives reflecting the structure of R (such as ∗ and −∗). After this machinery
is in place, we will use loeb-induction to construct a suitably recursive version of Ω∗R
which allows R to depend on Ω∗R itself. This type will be the basic type of propositions
within the program logic of synthetic Iris.

10.4.1 Monotone predicates on a RA

For the remainder of this subsection, fix a RA R. Our aim is to define Ω∗R and close it
under various connectives. Intuitively, Ω∗R is the type of monotone predicates on R with
respect to the extension order or, symbolically, Ω∗R = R→mon Ω.

Remark 10.4.1. For those more categorically-minded, this is the type of Ω-valued
presheaves on Rop. This immediately—together with the symmetric monoidal structure
on Rop—yields several of the results of this subsection, but we will spell them out
for clarity. For those more familiar with Iris, the constructions will appear to be
strict simplifications of the definitions given by e.g., Jung et al. [Jun+18]. Indeed, by
working systematically within mode t we are able to avoid any mention of steps or
step-indexing.4 ⋄

We begin by observing that there is a natural ordering on Ω∗R inherited point-wise
from Ω:

(⊢) : Ω∗R × Ω∗R → Ω
Φ ⊢ Ψ ≜ ∀r : R.Φ r → Ψ r

We will now show that this relation ⊢ behaves more-or-less like an entailment
relation from higher-order logic. In particular, we will now define operations like
(∧) : Ω∗R × Ω∗R → Ω∗R satisfying the expected properties:

(Ψ ⊢ Φ0 ∧ Φ1) ⇐⇒ (Ψ ⊢ Φ0) ∧ (Ψ ⊢ Φ1)

Note by propositional univalence that if Φ ⊢ Ψ and Ψ ⊢ Φ then Φ = Ψ.
Fortunately, there is a way to streamline this process. Almost all of the relevant

connectives can be defined provided we can show that (Ω∗R,⊢) is a complete lattice. That
is, it has arbitrary upper- and lower-bounds. For instance, the above specification of
conjunction shows that it boils down to the existence of binary meets. Similar thinking
shows that true, false, disjunction, universal quantification, and existential quantification

4These two facts do give me some concern that the results of this subsection will be obvious to all
prospective readers. However, they will be obvious for such a disjoint set of reasons that I could not
omit them entirely without some guilt.



The type of propositions 235

can be modeled by a top element, a bottom element, binary joins, infinitary meets, and
infinitary joins respectively.

Lemma 10.4.2. (Ω∗R,⊢) is an complete lattice.

Proof. Let us begin by defining infinitary joins as follows:∨
i

Φi = λr. ∃i.Φi r

Inspection shows that this is monotone: if (
∨

i Φi) r0 holds and r0 ⊑ r1, we must have
Φi r0 and therefore Φi r1 for some i. We will now argue that it is the least upper-bound.
To this end, suppose that we are given Ψ such that Φi ⊢ Ψ for all i, we must show that∨

i Φi ⊢ Ψ. To this end, fix r : R so that it suffices now to show that ∃iΦi r → Ψ r holds.
By assumption, Φi r → Ψ r for all i and so the conclusion follows.

The definition and argument for arbitrary meets are symmetric:∧
i

Φi = λr. ∀i.Φi r

Again, monotonicity follows from the monotonicity of each Φi.

Not all of the structure from higher-order logic follows from this result. In particular,
implication is not definable as either a join or a meet. In order to close Ω∗R under
implications, two potential approaches present themselves. First, we could show that
Ω∗R satisfies a certain distributivity law: Ψ ∧

∨
i Φi =

∨
i Ψ ∧ Φi. With this property to

hand, one can define implication as follows:

Φ→ Ψ =
∨
{Ξ | Ξ ∧ Φ ⊢ Ψ}

A standard argument shows that this definition satisfies the intended property. One
can also explicitly define implication through a formula reminiscent of a standard Kripke
semantics for logic. A standard argument shows that if implication exists, then the
aforementioned distributive property holds, so these two approaches are completely
equivalent. We will opt for the latter.

(→) : Ω∗R × Ω∗R → Ω∗R
Φ→ Ψ = λr. ∀r′ ⊒ r.Φ r′ → Ψ r′

Notice that by construction this definition is monotone.

Lemma 10.4.3. This definition of implication satisfies the expected property: Ξ ⊢ Φ→ Ψ
if and only if Ξ ∧ Φ ⊢ Ψ.

Proof. This follows more-or-less by unfolding. ∀r.Ξ r → (∀r′.Φ r → Ψ r) is equivalent
to ∀r.Ξ r ∧ Φ r → Ψ r. It is clear that the first implies the second by choosing r′ = r
and currying. The latter implies the former, however, by instantiating at r′ and using
the monotonicity of Ξ.

Finally, we note that any standard proposition ϕ : Ω gives rise to an element of Ω∗R
and this procedure preserves and reflects provability.



The type of propositions 236

Lemma 10.4.4. There is a function ⌜−⌝ : Ω→ Ω∗R such that if R is non-empty ⌜ϕ⌝ ⊢ ⌜ψ⌝
if and only if ϕ→ ψ.

Proof. There are two ways to construct ⌜ϕ⌝. We can define it explicitly by setting
⌜ϕ⌝ r = ϕ and, calculating using the assumed point r : R, the desired bi-implication
follows immediately. It is worth noting that we can actually define ⌜ϕ⌝ with the already
available machinery as ∃z : ϕ.⊤.

This completes the construction of the normal connectives of intuitionistic logic so
three classes of connectives remain: guarded connectives (▶), resource connectives (Own,
∗, and −∗), novel Iris modalities5 (□, |⇛). We will handle these in order.

Lemma 10.4.5. Ω∗R is close under a ▷ modality satisfying Φ ⊢ ▷Φ, ▷Φ ∧ ▷Ψ =
▷(Φ ∧Ψ) and a version of Löb induction:

(Φ ∧▷Ψ ⊢ Ψ)→ (Φ ⊢ Ψ)

Furthermore,

Proof. Recall by construction that there is a map ▶ : Ω→ Ω using both the restriction
of ⟨l | −⟩ to Ω along with the inequality id ≤ l. We will define ▷ by post-composition:

▷Φ = ▶ ◦ Φ

Monotonicity comes from the fact that all MTT modalities satisfy axiom K along
with the inequality id ≤ l again. Indeed, these same two facts immediately yield Φ ⊢ ▷Φ
and ▷Φ ∧ ▷Ψ = ▷(Φ ∧Ψ). Accordingly, we choose to focus on the Löb induction
scheme.

Let us suppose that Φ ∧▷Ψ ⊢ Ψ and attempt to prove Φ ⊢ Ψ. Unfolding definitions,
let us fix r : R and suppose Φ r holds. We must show Ψ r holds and here we use Löb
induction and thereby suppose ▶(Ψ r) holds. We now instantiate Φ ∧▷Ψ ⊢ Ψ at r to
obtain a proof of Φ r ∧▶(Ψ r)→ Ψ r. The conclusion now follows from our hypotheses
of Φ r and ▶(Ψ r).

Remark 10.4.6. There is a dependent version of ▷̂ with the type ▶Ω∗R → Ω∗R. One can
then define the earlier version of ▷ = ▷̂ ◦ next. ⋄

Remark 10.4.7. The above result is closely related to the construction of Palombi and
Sterling [PS23] showing that presheaves valued in a model of guarded recursion are
themselves a model of guarded recursion. ⋄

Thus far all of the structure of Ω∗R has been inherited more-or-less directly from Ω.
We now finally use some of the specifics of R to formulate several connectives which
deal with ownership. Intuitively, we will construct an alternative version of conjunction
(another symmetric monoidal product) that captures the idea of separating conjunction
Φ ∗ Ψ. Roughly, at r : R the separating conjunction Φ ∗ Ψ should hold if (1) there
exists some decomposition η r = r1r2 such that Φ r1 and Ψ r2. We have discussed the
motivations for such a connective already in Remark 10.0.1.

We can turn the above intuition into a concrete definition as follows:

5This is a somewhat unfortunate terminological clash: these modalities are distinct from anything
we have worked with thus far and are completely disjoint from the mode theory of synthetic Iris.



The type of propositions 237

(∗) : Ω∗R × Ω∗R → Ω∗R
(Φ ∗Ψ) = λr. ∃r1, r2. (r1 · r2 = η r) ∧ Φ r1 ∧Ψ r2

We must show that ∗ satisfies a number of properties, but we will begin with the
basic structural properties of ∗:

Φ ∗Ψ = Ψ ∗ Φ Φ ∗ (Ψ ∗ Ξ) = (Φ ∗Ψ) ∗ Ξ Φ ∗ ⊤ = Φ

(Φ0 ⊢ Φ1) ∧ (Ψ0 ⊢ Ψ1)→ (Φ0 ∗Ψ0 ⊢ Φ1 ∗Ψ1)

Remark 10.4.8. These properties all correspond to recognizable categorical structures:
they essentially organize ∗ into a symmetric monoidal product with ⊤ as the unit.
Indeed, if one scrutinizes the above definition of ∗ it can be immediately recognized as
an instance of Day convolution [Day70]—a highly general instance of it at least relying
on an enriched pro-monoidal structure. The benefit of recasting ∗ as an instance of Day
convolution is that all of the above properties then follow automatically from the corpus
of known results about Day convolution. ⋄

Lemma 10.4.9. The above structural properties of ∗ hold.

Proof. Each of the properties listed above holds by unfolding definitions and computing
(some are nearly immediate e.g., commutativity follows immediately from the commuta-
tivity of ∧). We will focus on associativity as a representative case.

Fix Φ,Ψ,Ξ together with r : R. Suppose that we are given (Φ ∗ (Ψ ∗ Ξ)) r. Unfolding
the definition of ∗, this amounts to a decomposition of r as η r = (r12 ← r1r2; r0r12)
for some r0, r1, r2 : R together with Φ r0, Ψ r1 and Ξ r2. However, by associativity of
we know that η r = (r01 ← r0r1; r01r2) and this decomposition of r suffices to show
((Φ ∗Ψ) ∗ Ξ) r.

Lemma 10.4.10. For any Φ,Ψ : Ω we have ▷Φ ∗▷Ψ ⊢ ▷(Φ ∗Ψ).

Remark 10.4.11. As we have shown that ⊤ is the unit for ∗ and that ∗ is functorial in
both arguments, we have the following:

Φ ∗Ψ ⊢ Φ ∗ ⊤ ⊢ Φ

Notably, however, we do not have Φ ⊢ Φ ∗ Φ in general. This would amount to a
proof that η r = r · r for each r : R. This is fortunate: if Φ ⊢ Φ ∗ Φ held then Φ ∗ Ψ
would degenerate to Ψ ∧ Φ. ⋄

Just as ∧ comes equipped with →, there is a type of implication associated to ∗
denoted −∗ i.e. ∗ is a closed monoidal product. Once again we could choose to construct
Φ−∗Ψ either directly or indirectly and we will again opt for giving a concrete formula:

(−∗) : Ω∗R × Ω∗R → Ω∗R
Φ−∗Ψ = λr0.∀r1r. (η r = r0 · r1 ∧ Φ r1)→ Ψ r

Calculation with the above definition yields the expected result:

Lemma 10.4.12. Φ ∗Ψ ⊢ Ξ if and only if Φ ⊢ Ψ−∗ Ξ.



The type of propositions 238

Remark 10.4.13. Just as ∗ can be seen as an instance of Day convolution, −∗ is a
specialization of Day’s formula for the right-adjoint to the tensor product [Day70]. ⋄

The utility of separating conjunction only becomes apparent when used together
with another connective: Own : R → Ω∗R. In plain English, Own(r) is true at r′ just
when r ⊑ r′. Intuitively then, Own(r) is a sort of “threshold” proposition: true when
the current world contains r and false otherwise.

Own : R→ Ω∗R
Own r = λr′. r ⊑ r′

Remark 10.4.14. Categorically, Own is given by the Yoneda embedding of Rop into Ω∗R.
The crucial properties of Own—its functoriality and interaction with ∗—are consequences
of this observation. ⋄

This connective is what gives Ω∗R its character as a separation logic i.e., if separation
logic is a logic of resources, this is the primitive form resource. We shall eventually see it
as the (highly generalized) form of the classical ℓ 7→ v connective, but for now, we shall
continue to work without assumption on R and explore its properties at this level.

Lemma 10.4.15. If r0 ⊑ r1 then Own r1 ⊢ Own r0

Proof. Unfolding definitions, this follows from the transitivity of ⊑.

What makes ∗ and Own so powerful in conjunction is their ability to internalize
the multiplication operator for R into the logic. More crucially, the partiality of the
multiplication can be used to show that owning two incompatible elements of R yields a
contradiction:

Lemma 10.4.16. Fix r0, r1 : R and write (ϕ, rϕ) = r0r1. Under these assumptions,
Own r0 ∗ Own r1 = ∃z : ϕ.Own(rϕ z)

Proof. Fix r : R and let us compute both sides of the purported equality at r:

(Own r0 ∗ Own r1) r = ∃r′0, r′1. r′0r′1 = η r ∧ r0 ⊑ r′0 ∧ r1 ⊑ r′1
(∃z : ϕ.Own(rϕ z)) r = ∃z : ϕ. rϕ z ⊑ r

Let us first prove that the first implies the second. Assume that we are given r′0
and r′1 satisfying the above properties. In this case, there exist s0 and s1 such that
siri = η r′i and so (s0r0)(s1r1) = η r. Applying associativity and commutativity, we
therefore conclude that r0r1 = η r01 for some r01 : R and that s0s1r01 = η r. Inspecting
our goal, we conclude that ϕ = ⊤ and rϕ = r01 and so the conclusion follows immediately.

For the reverse, suppose that ϕ = ⊤ and that rϕ ⊑ r so that s · rϕ = η r. By
associativity, we can rewrite the left-hand side of this equation as r0(s · r1) = η r and,
in particular, there exists r′ such that η r′ = s · r1. In this case, we choose r′0 = r0 and
r′1 = r′ and the conclusion follows immediately.

Finally, we discuss two modalities □ and |⇛. Both of these manipulate the “ambient
element of R” being threaded through Ω∗R, but in different ways. We begin with □, which
internalizes the coring operation on R. The definition of □Φ intuitively precomposes Φ
with |−|, but of course this is not directly available (|−| maps to R? not R). The slightly
refined definition is given below:



The type of propositions 239

□ : Ω∗R → Ω∗R
□Φ = λr. let (ϕ, rϕ) = |r| in ∃z : ϕ.Φ (rϕ z)

This definition is monotone precisely because we have required |−| to be monotone
with respect to the extension order.6

Remark 10.4.17. The classical definition of Iris given in e.g., Jung et al. [Jun+18]
presupposes that R is unital so this definition is a strict generalization to the context
of a general RA. However, certain properties of □ do not hold generally. Most notably,
□⊤ = ⊤ is not true in general; it is equivalent to the requirement that |−| is total. ⋄

Lemma 10.4.18. □ is an S4 comonad: □Φ ⊢ Φ, □□Φ = □Φ, □Φ ∧□Ψ = □(Φ ∧Ψ),
and (Φ ⊢ Ψ)→ (□Φ ⊢ □Ψ).

The essence of □ is captured by the following two lemmas; they both show how □
collapses the substructural connectives of Ω∗R into structural counterparts.

Lemma 10.4.19. Given Φ,Ψ : Ω∗R, (□Φ) ∧Ψ = (□Φ) ∗Ψ.

Proof. Unfolding both propositions in question, this statement is equivalent to the
following for each r : R: s = |r| is defined with Φ s and Ψ r if and only if there exists
a decomposition r0r1 = η r such that s0 = |r0| is defined, Φ s0, and Ψ r1. The only if
direction is straightforward: we choose r0 = |r| and r1 = r and both properties follow by
assumption. For the reverse direction, we note that since r0 ⊑ r and r0 has a defined
core s0 by the properties of a RA r must also have a core s and s0 ⊑ s. Consequently,
the conclusion follows by assumption and the monotonicity of Φ and Ψ.

Lemma 10.4.20. Given r : R, if (ϕ, rϕ) = |r| then Own r ⊢ ∀z : ϕ.□Own(rϕ z)

Proof. Unfolding, this entailment is equivalent to the following: for all r0 : R, if r ⊑ r0
and ϕ = ⊤ then |r0| is defined and rϕ ⊑ |r0|. This is a rephrasing of the monotonicity of
|−| with respect to the extension order.

Recall that ▷ was defined by post-composition with ▶. As □ is defined essentially
by “precomposition” one might hope that these two modalities commute. This is not
the case in general but does happen in our major case of interest: when R is unital.

Lemma 10.4.21. If R is unital then □▷Φ = ▷□Φ.

Proof. Note that if R is unital then |−| is a total function and therefore can be factored
into η ◦ core. In this situation, □Φ = Φ ◦ core and the desired conclusion follows by
calculation.

Similar considerations yield the following:

Lemma 10.4.22. If R is unital then □∀a : A.Φ a = ∀a : A.□(Φ a) and □∃a : A.Φ a =
∃a : A.□(Φ a)

6Indeed, this is precisely the reason why such a requirement is necessary. A fact worth noting given
the difficulties that this requirement caused in Section 10.3.



The type of propositions 240

The final connective of our logic is the frame-preserving update monad |⇛. Intuitively,
|⇛Φ holds at r when there is some other element r′ for which (1) Φ r holds and (2) if s · r
is defined, s · r′ is also defined. The last point is the frame-preservation condition: we
are allowed to consider a different element of r but only if the new choice is compatible
with all possible frames of the original r. More formally:

|⇛ : Ω∗R → Ω∗R
|⇛Φ = λr. ∀s. (s · r) ↓ → ∃r′. (s · r′) ↓ ∧ Φ r′

This definition is indeed monotone: if s · r1 is defined and r0 ⊑ r1, then s · r0 is also
defined. By choosing r′ = r in the body of the existential, we also see that Φ ⊢ |⇛Φ. In
fact, more is true:

Lemma 10.4.23. |⇛ is a strong monad with respect to separating conjunction.

Proof. The proof that |⇛|⇛Φ ⊢ |⇛Φ follows from unfolding definitions, so we choose to
focus on the strength: Φ ∗ |⇛Ψ ⊢ |⇛(Φ ∗Ψ). Fix r and suppose we are given r0 · r1 = η r
such that Φ r0 and (|⇛Ψ)r1. We wish to show (|⇛(Φ ∗Ψ))r.

Accordingly, fix s such that s · r ↓. We note then that s′ = s · r0 must also be defined
and that s′ · r1 is defined (and equal to s · r). From (|⇛Ψ) r1, we then conclude that
there exists some r′1 such that both s′ · r′1 ↓ and Ψ r′1 hold.

Returning to our goal, we must show that there exists some r′ such that Φ ∗Ψ holds
at r′ and s · r′ ↓. We choose r′ such that η r′ = r0 · r′1—noting that the right-hand side
of this equality is indeed defined as r0 ⊑ s′. Our assumption of Φ r0 and Ψ r′1 then yield
the conclusion.

It remains to characterize how Own behaves with respect to |⇛. Intuitively, Own r
should imply |⇛(Own r′) just when r · s ↓ implies r′ · s ↓ for all s. In order to codify this
situation properly, we introduce the following notion:

Definition 10.4.24. Fix an element r : R along with a subset S : R→ Ω, we say that
r : R updates to S (written r ⇝ S) when the following holds:

r ⇝ S = ∀s. (s · r) ↓ → ∃r′ ∈ S. (s · r′) ↓

We write r ⇝ s as shorthand for r ⇝ (s = −).

Remark 10.4.25. We note here that we have taken advantage of a standard trick in type
theory to encode a subset via an indicator function. Specifically, to describe a subset of
R, we require a function ϕ : R→ Ω and view ϕ as encoding the subset of elements of R
where ϕ holds. For instance, ∅ = λ .⊥ and the maximum subset is encoded by λ .⊤. ⋄

Remark 10.4.26. This definition of frame-preserving update differs slightly from the
one given in Iris. We require the frame to be drawn from R rather than R+ [Jun+18].
In particular, in certain RAs with our definition, one has a ⇝ ∅ while this can never
occur with the standard Iris definition. We have opted for our slightly simpler definition
and simply explicitly note when we must require that B is non-empty. ⋄

Lemma 10.4.27. Given r : R and S : R→ Ω such that r ⇝ S the following holds:

Own r ⊢ |⇛(∃s ∈ S.Own s)

In particular, if r ⇝ s then Own r ⊢ |⇛ Own s



The type of propositions 241

10.4.2 A general RA

We now set about choosing a suitable RA R so that we can define Ω∗ = Ω∗R. This is
one of the more subtle points in the formalization of Iris in Coq: except at the leaves of
development (the closed proofs that some program satisfies some particular specification)
it is impossible to actually fix R. In practice, Iris developments work relative to some R
and place constraints on what sort of operations R supports. When one wishes to obtain
a closed proof of some statement, a particular R is chosen to satisfy all the necessary
constraints. This discipline is essential for modular development: a formalization of a
queue data structure cannot realistically be expected to know all of the requirements on
R that will be necessary to verify any code which uses the queue itself.

In fact, this process is less complex than it might appear. We will choose R = RF =⊕
I×NatF ◦ π1 where F : I → RA is a collection of RAs. Rather than attempting to

specify F all at once, Iris developments in Coq contain constraints like “there is some i
such that F (i) = S” for some specific RA S. At the end of the day, these constraints
can be collected into an actual function F and RF is used to instantiate Ω∗. One
small complication remains: certain RAs, especially those used to model invariants, will
actually depend upon Ω∗ itself. This seeming circularity can be solved using a small
amount of guarded recursion.

Remark 10.4.28. At this point, the reader unfamiliar with Iris may be confused why
have tangled up the natural numbers into the definition of R instead of taking the more
natural R =

⊕
IF . The addition of Nat will later be used to ensure that any i and any

a : F i we are always able to obtain a piece of ghost state Own(ini,n a) for some n. ⋄

In total then, a user (gradually) specifies a function F : U → I → RA and Ω∗ is
taken to be the following:

Ω∗ = loeb(X. let R =
⊕
I×Nat

(F (▶X) ◦ π1) in Ω∗R)

Theorem 10.4.29. Ω∗ is a sound model of guarded higher-order logic with Own, ∗, −∗,
□, and |⇛ together with their expected rules. There is an embedding ⌜−⌝ : Ω→ Ω∗ which
preserves and reflects provability.

Proof. By the unfolding equation for Löb induction, we know that Ω∗ = Ω∗R for some
RA R and so this follows from the results of the prior subsection.

Notation 10.4.30. Hereafter we write R for
⊕

(i, ):I×Nat(F (▶Ω∗, i)) so that, in particular,
Ω∗ = Ω∗R.

Remark 10.4.31. We emphasize that this definition only uses standard Löb induction.
Unlike the Coq formalization of Iris, there is no need to construct a special domain
equation solver; Löb induction on the universe plays the same role. This enables us to
bypass one of the most technical portions of the Iris formalization. ⋄

For this subsection, we will fix F : U → I → RA for some type I with decidable
equality and discuss the special features of Ω∗. Any direct sum is a unital RA; in
particular, there is an element ϵ : R.

Lemma 10.4.32. In Ω∗, Own ϵ = ⊤



The type of propositions 242

Proof. This is easiest to see by direct calculation. Fix r : R, we must show that ϵ ⊑ r
but this follows immediately from the equation η r = r · ϵ.

Remark 10.4.33. For those more categorically minded, this last lemma follows from the
observation that ϵ is initial in any uRA and therefore terminal in Rop in particular. The
above lemma then is a specialization of the well-known fact that the Yoneda embedding
preserves terminal objects. ⋄

There is a good reason to use the direct sum construction over the sum or product
of RAs: only the direct sum enables us to embed the Own connective for each F (i) in
such a way that the rules governing the interactions of ∗ and |⇛ remain unchanged.

Lemma 10.4.34. Given a, b : F i such that (ϕ, c) = a · b the following holds:

Own(ini,n a) ∗ Own(ini,n b) ⊢ ∃z : ϕ.Own(ini,n(c z))

Lemma 10.4.35. Fix a : F i and non-empty subset B : F i → Ω such that a ⇝ B in
F i. Writing ini,n for the inclusion F i→ R, in this situation ini,n a⇝ {ini,n b | b ∈ B}.

Proof. We begin by unfolding the definition of ⇝. Fixing r : R such that ini,n a · r is
defined, we must show that there exists b ∈ B such that ini,n b · r is also defined.

We observe that it suffices to consider two distinct cases: either (i, n) is in the support
of r or it is not. This proposition is seen to be decidable by inspecting the construction
of
⊕

; r contains a function with finite domain whose image contains (i, n) just when
this holds. Let us suppose first that (i, n) is not in the support of r. In this case, any
element of B suffices (and, by assumption, B is non-empty).

Suppose instead that (i, n) is in the support of r. In this case, we may write
r = r0 · ini,n c for some c : F i and r0 : R such that (i, n) is not in the support of r0.
Inspecting the definition of multiplication on

⊕
we conclude that a · c is defined because

ini,n a · ini,n c is defined. Therefore, there exists some b ∈ B such that b · c is defined
whereby ini,n b · ini,n c is also defined. It suffices to show that ini,n b · ini,n c · r0 is also
defined, but this follows from our assumption that (i, n) is not in the support of r0.

Notation 10.4.36. We will write a : F i
n

as shorthand for Own(ini,n a). Often F i will

be apparent from context and we will simply write a
n
.

Corollary 10.4.37. If a⇝ B and B is non-empty, then a
n ⊢ |⇛∃b ∈ B. b n

.

The usual pattern is something like the following: we wish to start using a particular
RA to specify some program and we therefore wish to obtain a0

n
for where a0 represents

the “initial configuration” that the ghost state is meant to model. Ideally, we would use
the above rule to obtain |⇛ a0

n
but this is not valid in general: such an update is only

available if we knew every possible r : R would be compatible with ini,n a and this is
unlikely to be the case.

However, because there is an infinite number of “copies” of F i (one for each natural
number) and each frame r : R has finite support, there always exists some number n
such that (n, i) is not in the support of r. Accordingly, for each frame r there exists
some n such that r · ini,n a is defined. Written more formally, for any a : F i the following
holds:

ϵ⇝ {ini,n a | n : Nat}



The type of propositions 243

Combining this with the frame-preserving update rule and the equality ⊤ = Own ϵ,
we obtain the following:

Lemma 10.4.38. ⊤ ⊢ |⇛∃n. a n
.

Having worked at this level of generality, we now acknowledge that we can actually
be concrete about which F : U→ I → RA is required for our development. Unlike Iris
where one wants to be fully agnostic in the available RAs to enable a user to customize
the logic, this synthetic account is entirely closed. We will require four distinct RAs, so
we will take I = 4 and define F as follows:

F X 0 = Auth(Nat→fin AgX)

F X 1 = P(co)fin(Nat)

F X 2 = Pfin(Nat)

F X 3 = Auth ⟨d | Heap⟩

Here Pfin(Nat) (P(co)fin(Nat)) are the decidable finite (finite or cofinite) subsets of
the natural number endowed with the structure of a RA through disjoint union with a
trivial core.

10.4.3 Commuting ▷ with other connectives

Experts in Iris will have noticed that we have bypassed several widely used rules in Iris
governing the interaction between ▶ and ∃ or ∗:

▷(Φ ∗Ψ) ⊢ ▷Φ ∗▷Ψ ▷∃a : A.Φ a ⊢ ▷⊥ ∨ ∃a : A. ▷Φ a

∀a : A. ▷Φ a ⊢ ▷∀a : A.Φ a

Their absence is not coincidental: neither rule is valid for Ω∗ in synthetic Iris. This
issue stems from an issue well-known Iris practitioners: both of these rules rely on specific
properties of (1) the intended model of Iris and its connection to step-indexing over ω as
opposed to a more general ordinal and (2) additional requirements on CMRAs and types
as COFEs to ensure that the map A→ ▶A is always surjective. Neither of these two
properties are available in synthetic Iris and there are worthwhile models which falsify
them [Spi+21].

Remark 10.4.39. Forgoing the rule ▷(Φ ∗Ψ) ⊢ ▷Φ ∗▷Ψ allows us to omit a certain
condition for RAs:

▶(∃a, b. η c = a · b)→ ∃a, b.▶(η c = a · b)

Adding this rule alone is insufficient to recover the aforementioned principle on Ω∗

but when combined with certain specific facts about PSh(ω) it suffices. ⋄

Accordingly, we have two choices: we can either add principles to Ω manually to
ensure that the corresponding rules for Ω∗ hold or we can proceed with these principles.
We opt for the latter. This affords more generality—transfinite instances Iris remains
a model of synthetic Iris. All the results, including adequacy of the program logic,
go through without these additional principles. What remains unclear, however, is



The program logic 244

whether the verification of particular programs would require them. For instance, the
rule governing the interaction of ▷ and ∃ is frequently used when working with invariants.
It is beyond the scope of this chapter to argue whether or not these rules can be omitted
in practice, though such a question is of growing importance as Iris practitioners attempt
to tackle liveness properties that seem to require transfinite Iris or other variants that
fail to validate these rules.

10.5 The program logic

At this point, we have developed the theory of guarded higher-order separation logic
through Ω∗, but it remains to actually put this logic to work to reason about programs. A
remarkable fact about Iris is that this facet of the logic governing actual verification—the
program logic—is entirely definable in terms of the primitives developed in Section 10.4.
We show that this remains true in our synthetic account of Iris and develop a program
logic for a small programming language with general references and concurrency based
on HeapLang in Iris.

Convention 10.5.1. Within this section, we work internally to t.

The constructions of the program logic rely on various interlocking pieces of ghost
state to coordinate invariants and manage state. In order to ensure that different
components link together properly each definition is parameterized by a set of ghost
names Σ : GhostNames. In the Coq formalization of Iris, type-class magic is used to
allow the user to simulate something akin to dynamic scoping. In this construction,
however, we may simply define GhostNames as follows:

record GhostNames : U where
γheap : Nat
γinv : Nat
γen : Nat
γdis : Nat

Every construction of this section will be parameterized by such a Σ.

10.5.1 Encoding invariants

We now construct a crucial component of the program logic: invariants. This is
particularly notable as it is a case where the dependence of the RA on Ω∗ is necessary:
invariants mention propositions which mention invariants, etc. While this is technically
independent of the language defined above, we have chosen to present it in this place to
localize the scope of certain assumptions we will make in this construction.

In order to build up invariants within Ω∗, we will require several distinct pieces of
ghost state. To force these into existence, we must constrain the F used to construct Ω∗

in Section 10.4.
Intuitively, the construction of invariants will factor into two parts: users will be

provided with pieces of ghost state which—through the authoritative RA—will constrain
the shape of some global registry assigning invariant names (natural numbers) to
propositions. Behind the scenes, we then define a world satisfaction predicate which
states that each proposition in the registry is true. A user can then work with their



The program logic 245

ghost state forcing some proposition to exist to “check it out” of the world satisfaction
predicate and thereby temporarily gain access to the invariant. The entire interface is
managed through a fancier version of |⇛ which is annotated with the list of invariants
currently active.

This encoding is complex and contains multiple interacting components: the world
satisfaction predicate, the fancy |⇛modality, the propositions a user will hold to record
an invariant, etc. All of these components must be connected through a collection of
elements of Nat which annotates the underlying ghost state used to implement various
constructions.

We start, somewhat arbitrarily, with the encoding of the proposition stating a user
will own as a record that some invariant exists.

− − : {GhostNames} → Nat→ ▶Ω∗ → Ω∗

Φ
{Σ};ι

= �{ι 7→ Φ} Σ.γinv

Remark 10.5.2. In what follows, we will consistently surpress Σ when writing − − and

simply write Φ
ι
. This will be the general pattern for all definitions in this section. ⋄

Lemma 10.5.3. Φ
ι
is persistent; Φ

ι ⊢ □ Φ
ι
.

Proof. This follows immediately from the following observation:

|�{ι 7→ nextΦ}| = η (�{ι 7→ nextΦ})

The next crucial definition is the world satisfaction predicate. This is a large proposi-
tion which—though largely invisible to the user of Iris—is threaded through proofs to
keep track of various invariants.

WSat : {GhostNames} → Ω∗

WSat {Σ} = ∃I : Nat→fin Ω∗. �I
Σ.γinv ∗∗i∈dom(I) {i}

Σ.γen ∨ (▷̂I i ∗ {i} Σ.γdis)

A few words of intuition are in order. WSat contains two separate components. First,
it uses the authoritative RA to record the definitive mapping of invariant names to the
actual propositions they are associated with. This does not record whether the invariants
are currently in use etc., only what names and propositions are currently paired. Second,
for each invariant that exists WSat contains either (1) a token stating that it is currently
in use or (2) a token stating that it is currently not in use along with an actual proof of
the relevant proposition. The process of opening and closing an invariant will boil down
to flipping between these two states.

The final ingredient for encoding invariants is a version of |⇛ which passes through
WSat and records which invariants are currently enabled. This fancy update modality is
written |⇛E1;E2

and defined as follows:

|⇛−;− : {GhostNames} → P(co)fin(Nat)→ P(co)fin(Nat)→ Ω∗

|⇛{Σ};E1;E2
Φ = E1

Σ.γen ∗WSat−∗ |⇛( E2
Σ.γen ∗WSat ∗ Φ)



The program logic 246

Remark 10.5.4. This definition is a slight simplification of the actual definition used in
Iris [Jun+18]. The definition there includes the timeless operator − ∨▷⊥ in front of
|⇛. This allows for some conveniences around the eventual rules for opening invariants.
However, we will not be discussing these rules in depth and the presence of the timeless
operator does not substantively impact the points we do discuss. ⋄

We emphasize that the masks Ei govern which invariants are potentially possible to
access. Essentially, one should read |⇛E1;E2

Φ as saying “assuming that any invariants in
E1 which exist are active, Φ holds and any invariants in E2 which exist are then active”.
By varying the mask, certain invariants can be broken or reestablished through the fancy
update modality. The verification of properties of the fancy update modality is largely
routine and closely follows the proofs given in Jung et al. [Jun+18]. Accordingly, we
simply state them here without proof and refer the reader to op. cit. for both further
motivation and proof:

(Φ ⊢ Ψ)→ (|⇛E1;E2
Φ ⊢ |⇛E1;E2

Ψ) |⇛Φ ⊢ |⇛E;E Φ |⇛E0;E1
|⇛E1;E2

Φ ⊢ |⇛E0;E2
Φ

Φ ∗ |⇛E1;E2
Ψ ⊢ |⇛E1∪E;E2∪E Φ ∗Ψ (E ∩ Ei = ∅)

These rules ensure that the fancy update modality behaves more-or-less like a graded
version of |⇛. The following two crucial additional principles form the core interface for
invariants:

▷Φ ⊢ |⇛E;E ∃ι. Φ
ι

Φ
ι ⊢ |⇛E;E\ι▷Φ ∗ (▷Φ−∗ |⇛E\ι;E⊤) (ι ∈ E)

The first rule allows one to create and register an invariant. The second enables
accessing an invariant which is presently active giving both (1) the actual content of the
invariant ▷Φ and (2) a continuation ▷Φ−∗ |⇛E\ι;E⊤ enabling one to re-establish ι by
providing ▷Φ. Notice that in the latter rule in particular, the masks associated to the
fancy update modality tracks which invariants are active.

10.5.2 Connecting physical state and ghost state

At this point, we have two very distinct concepts which we have used the word state to
describe. Firstly, there is the logical ghost state present in Ω∗ and manifested through

Own and − −. There is also the type of heaps Heap used to instrument the operational
semantics for HeapLang and describe the behavior of references. A priori, nothing
connects these two notions but relating the two is a crucial component of the eventual
definition of the weakest precondition predicate.

As is done in standard Iris, we accomplish this via the state-interpretation predicate.
In reality, this is merely some function I : ⟨d | Heap⟩ → Ω∗ which sends an element of
the Heap type to some Ω∗ meant to model it. By defining I with ghost state, we thereby
link the two.

The state interpretation function for HeapLang is then quite straightforward to
define:

I : {GhostNames} → ⟨d | Heap⟩ → Ω∗

I {Σ}σ = �σ
Σ.γheap



The program logic 247

In other words, the interpretation I σ uses the authoritative RA to ensure that
all views on the state are compatible with the actual heap, σ. The other half of the
authoritative RA allows one to therefore constrain what σ must be. In particular, note
that by axiom K there is a map singleton : ⟨d | Nat⟩ → ⟨d | Val⟩ → ⟨d | Heap⟩ constructing
the (discrete) finite map associating one location to one value. Using this map, we define
the following:

( 7→) : {GhostNames} → ⟨d | Nat⟩ → ⟨d | Val⟩ → Ω∗

ℓ 7→{Σ} v = �(singleton ℓ v)
Σ.γheap

The crucial properties of these definitions are recorded in the following lemma:

Lemma 10.5.5.

• ℓ0 7→ v0 ∗ ℓ1 7→ v1 ⊢ ⌜ℓ0 ̸= ℓ1⌝

• ℓ 7→ v0 ∗ I σ ⊢ ⌜σ ℓ = v⌝

• I σ −∗ |⇛∃l. ℓ 7→ v ∗ I (extend† σ ℓ v).

Proof. We note that �(singleton ℓ0 v0) · �(singleton ℓ1 v1) is defined if and only if ℓ0 ̸= ℓ1.
The first point then follows from Lemma 10.4.16: if ℓ0 = ℓ1 then the antecedent implies
⊥ and the conclusion follows immediately and if ℓ0 ≠ ℓ1 the conclusion follows from the
defining property of ⌜−⌝. The second point follows a similar argument, though in this
case scrutinizing the behavior of multiplication between �σ and �singleton ℓ v.

The final point is slightly different. Using Lemma 10.4.27, it suffices to show the
following where ℓ = alloc† σ:

�σ ⇝ �(extend† σ ℓ v) · �(singleton ℓ v)

This follows from routine a routine calculation with the authoritative RA.

10.5.3 Weakest preconditions

We are now (finally) in a position to define the central connective in Iris: weakest
precondition. The weakest precondition proposition wpE e {v.Q v} : Ω∗ informally states
that if the invariants named in E are active then e does not become stuck, and e happens
to run to a value v then Qv holds. This is more expressive than this may appear: Q
is valued in Ω∗ and so (by virtue of the state interpretation function) we may control
the state of the heap after the execution of the program using ℓ 7→ v, ∗, and related
connectives.

The definition of wpE e {v.Q v} is slightly complex, as it must tie together several
disparate constructions: the operational semantics of HeapLang, guarded recursion, the
invariants via |⇛E0;E1

, and the ghost state representing the heap via I. In the literature
this definition is typically given in stages, we choose to opt for presenting the definition
in its entirety first and highlight individual components afterward.

Definition 10.5.6. We write val : ⟨d | Exp⟩ → Ω for ∃v : ⟨d | Val⟩. v = −; informally, is
“e a value”. We additional write red : ⟨d | Exp⟩ → ⟨d | Heap⟩ → Ω for ∃ρ.− 7→† ρ.



The program logic 248

wp− − {−} : {GhostNames} → P(co)fin(Nat)→ ⟨d | Exp⟩ → (⟨d | Val⟩ → Ω∗)→ Ω∗

wp{Σ};E e {Q} =

(∃v. v = e ∧Qv)
∨
[⌜¬val e⌝ ∧
∀σ. I σ−∗
|⇛E;∅(⌜red e σ⌝ ∧▷∀e2, σ2, e⃗f . ⌜(e, σ) 7→† (e2, σ2, e⃗f )⌝−∗
|⇛∅;E(I σ2 ∗ wpE e2 {Q} ∗∗e′∈e⃗f wpE e

′ {⊤}))]

At the coarsest level, wpE e {Q} is a disjunction stating that if e is a value v then
Qv and if not, then e is not stuck and whenever it steps to e′ then ▷wpE e

′ {Q}. The
first case of this disjunction is fairly self-explanatory, so we focus on the second. The
most immediate complication is the heap: we cannot just ask whether e is stuck without
specifying the heap it is being executed with. For this reason, the definition quantifies
over all possible heaps which satisfy the state interpretation I. Moreover, the fancy
update modalities are arranged so that all invariants may be used to establish that e
reduces provided they are re-established before proceeding. Finally, concurrency means
that executing e may produce a collection of threads. To ensure that these threads do
not crash either, we require that each satisfies wpE − {⊤}.

One rarely actually unfolds the definition of wpE e {Q} in practice. Instead, one uses
a series of lemmas which give sufficient conditions to establish the predicate depending
on the form e takes. For instance, if e is about to perform a step that does not interact
with the heap or threads at all e.g. a pure β reduction, it suffices to show that the reduct
satisfies the same predicate:

Lemma 10.5.7. If e = fixlam(e0) v then the following holds:

wpE e0[id.e.v] {Q} −∗ wpE e {Q}

In the above, recall that fixlam(e0) v steps to e0[id.e.v] without altering the heap or
producing additional threads (Section 10.2).

Proof. Let us write Ψ for wpE e0[id.e.v] {Q}. Unfolding definitions, we immediately note
that it suffices to show that e satisfies the second disjunct. Accordingly, we must show
the following:

Ψ ⊢ ∀σ. I σ −∗ |⇛E;∅(⌜red e σ⌝ ∧▷∀e2, σ2, e⃗f . ⌜(e, σ) 7→† (e2, σ2, e⃗f )⌝−∗
|⇛∅;E(I σ2 ∗ wpE e2 {Q} ∗∗e′∈e⃗f wpE e

′ {⊤}))

Accordingly, assume we have σ. We note that red e σ = ⊤ without assumption on
σ, so we can equationally discharge this obligation without further burden. After using
monotonicity and the point for ▷, it remains to show the following:

Ψ ∗ I σ
⊢ |⇛E;∅(∀e2, σ2, e⃗f . ((e, σ) 7→† (e2, σ2, e⃗f ))

−∗ |⇛∅;E(I σ2 ∗ wpE e2 {Q} ∗∗e′∈e⃗f wpE e
′ {⊤}))



The program logic 249

At this point, we note the following equality:

∀e2, σ2, e⃗f . ⌜(e, σ) 7→† (e2, σ2, e⃗f )⌝−∗ Ξ(e2, σ2, e⃗f ) = Ξ(e0[id.e.v], σ, ϵ)

This follows for the inversion principle for 7→ in mode s, which induces the following
equation in Ω:

(e, σ) 7→† (e2, σ2, e⃗f )→ (e0[id.e.v], σ, ϵ) = (e2, σ2, e⃗f )

At this point, it remains to show the following:

Ψ ∗ I σ ⊢ |⇛E;∅ |⇛∅;E(I σ ∗ wpE e0[id.e.v] {Q})

This then follows by assumption and the rule Φ ⊢ |⇛E;∅ |⇛∅;E Φ.

Similar proofs hold for other reductions. We show only one other to illustrate the
point.

Lemma 10.5.8. If e = ! ℓ then the following holds:

(ℓ 7→ v ∗ wpE v {Q})−∗ wpE e {Q}

Proof. As before, we immediately focus on the right-hand disjunct in the definition of
weakest preconditions. Let us write Ψ for ℓ 7→ v ∗ wpE v {Q}.

It suffices to show the following:

Ψ ⊢ ∀σ. I σ −∗ |⇛E;∅(⌜red e σ⌝ ∧▷∀e2, σ2, e⃗f . ⌜(e, σ) 7→† (e2, σ2, e⃗f )⌝−∗
|⇛∅;E(I σ2 ∗ wpE e2 {Q} ∗∗e′∈e⃗f wpE e

′ {⊤}))

Accordingly, we fix σ. Let us note that I σ ∗ ℓ 7→ v implies that ⌜σ ℓ = v⌝. We then
are left with the following sequent:

Ψ ∗ I σ ∗ ⌜σ ℓ = v⌝ ⊢
|⇛E;∅(⌜red e σ⌝ ∧▷∀e2, σ2, e⃗f . ⌜(e, σ) 7→† (e2, σ2, e⃗f )⌝−∗
|⇛∅;E(I σ2 ∗ wpE e2 {Q} ∗∗e′∈e⃗f wpE e

′ {⊤}))

In particular, under this last assumption red e σ = ⊤ so we may discharge this
immediately. Using the rules for fancy updates and the later modality as well as the
same inversion technique as the previous lemma, therefore, we further simplify:

Ψ ∗ I σ ∗ ⌜σ ℓ = v⌝ ⊢ |⇛E;∅ |⇛∅;E(I σ ∗ wpE v {Q})

The conclusion now follows immediately from monotonicity.

While proving a full version of adequacy is the subject of the next section, we are
already to prove one fragment of desired conclusion: if wpE e {Q} holds then e is either a
value or reduces.

Lemma 10.5.9. The following entailment holds

wpE e {Q} ∗ I σ ⊢ |⇛E;∅((∃v. v = e ∗Qv) ∨ ⌜red(e, σ)⌝)

Proof. This is an immediate consequence of weakening after unfolding wpE e {Q}.



Adequacy 250

10.6 Adequacy

The final stage of our development of synthetic Iris is the crucial adequacy theorem.
Recall that when wpE e {Q} was defined, the rough intention was that it ought to signify
that (1) e was not stuck and (2) if e terminated, the result satisfied Q. However, the
definition of wpE e {Q} is far from simple and it is non-obvious that this is actually the
case. The role of the adequacy theorem is to turn the imprecise intuition above into a
fully precise theorem.

A crucial caveat to the adequacy theorem, however, is the fact that it cannot be
stated without something akin to ⟨g | −⟩. In particular, the presence of ▶ (in the guise
of ▷) ensures that adequacy cannot be detected except on global elements. Accordingly,
this is the place where truly working with two distinct modes is necessary: wpE e {Q}
must be defined at mode t and adequacy must be stated and proven at mode s.

We decompose the adequacy proof into two stages. First, working within Ω∗ and
mode t, we show that (1) if a program satisfies wpE e {Q} it is not stuck and (2) given an
execution trace for a program e executing to e′ in k steps, one can “advance” wpE e {Q}
to obtain wpE e

′ {Q} under some combination of modalities. After this, we switch to
working with Ω in mode s where we show that the aforementioned results are sufficient
to derive a full soundness result.

10.6.1 Stepping weakest preconditions

Convention 10.6.1. Within this subsection, we continue to work in mode t and assume
that we are given Σ : GhostNames.

Notation 10.6.2. When writing large entailments of the form Φ0 ∗Φ1 · · · ⊢ Ψ1 ∗Ψ1 . . . we
will use occasionally use inference notation for clarity and write the following instead:

Φ0 Φ1 . . .

Ψ0 Ψ1 . . .

Our first step towards adequacy will be a result showing that given the necessary
hypotheses, we can “advance” a weakest precondition. In particular, we will show the
following entailment is valid:

I σ wpE e1 {Q} ∗i>1 wpE ei {⊤} ⌜((e1, e⃗i), σ)⇝† ((e′1, e⃗
′
j), σ

′)⌝

|⇛E;∅▷ |⇛∅;E(I σ′ ∗ wpE e′1 {Q} ∗∗j>1 wpE e
′
j {⊤})

(10.1)

Lemma 10.6.3. Eq. (10.1) holds.

Proof. Using the rules for ⌜−⌝, it suffices to assume ((e1, e⃗i), σ)⇝† ((e′1, e⃗
′
j), σ

′) : Ω holds
and show that the remainder of premises of Eq. (10.1) imply the conclusion. Having
assumed this step, we note that ⇝† is the image of the inductively-defined proposition
⇝ under ⟨d | −⟩. Using the standard inversion lemma for ⇝ as well as the fact that
⟨d | −⟩ preserves quotients, products, and equality, we conclude that there are two cases
to consider:

1. either (e1, σ) 7→ (e′1, e⃗f , σ
′) and ((e′1, e⃗j , e⃗f ), σ′) = ((e′1, e⃗

′
j), σ

′),



Adequacy 251

2. or there exists some i > 1 and (ei, σ) 7→ (e′i, e⃗f , σ
′) and ((e1, e⃗j<i, e

′
ie⃗j>i, e⃗f ), σ′) =

((e′1, e⃗
′
j), σ

′).

We prove the entailment assuming the first case holds as the proof under the
assumption of the second is essentially the same. We begin by unfolding wpE e1 {Q}.
Inspecting the disjunction, we note that we can immediately discard the first disjunct
where e1 is a value since e1 is known to take a step. Accordingly, and using the additional
premise I σ, we are able to reduce to the following entailment:

|⇛E;∅(▷∀e2, σ2, e⃗f . ⌜(e, σ) 7→† (e2, σ2, e⃗f )⌝−∗ |⇛∅;E(I σ2 ∗ wpE e2 {Q} ∗∗e′∈e⃗f wpE e
′ {⊤}))

∗i>1 wpE ei {⊤}
|⇛E;∅▷ |⇛∅;E(I σ′ ∗ wpE e′1 {Q} ∗∗j>1 wpE e

′
j {⊤})

Using monotonicity along with our assumption (e1, σ) 7→† (e′1, e⃗f , σ
′), we may further

reduce to the following:

|⇛E;∅(▷ |⇛∅;E(I σ′ ∗ wpE e′1 {Q} ∗∗e′∈e⃗f wpE e
′ {⊤})) ∗i>1 wpE ei {⊤}

|⇛E;∅▷ |⇛∅;E(I σ′ ∗ wpE e′1 {Q} ∗∗j>1 wpE e
′
j {⊤})

Capitalizing on the framing rules for |⇛E1;E2
and ▷, we conclude that it suffices to

show that the following tautological inference holds::

|⇛E;∅▷ |⇛∅;E(I σ′ ∗ wpE e′1 {Q} ∗∗j>1 wpE e
′
j {⊤})

|⇛E;∅▷ |⇛∅;E(I σ′ ∗ wpE e′1 {Q} ∗∗j>1 wpE e
′
j {⊤})

The next step is to generalize this result to generalize from advancing the thread
pool by once to step advancing it k steps. To state this precisely, some care is required:
should k be drawn from ⟨d | Nat⟩ or Nat? Fortunately, these two types are isomorphic,
so the difference is only one of convenience. We will opt for ⟨d | Nat⟩ as it will simplify
later results slightly.

Given k :d Nat, our goal is to prove the following:

I σ wpE e1 {Q} ∗i>1 wpE ei {⊤} ⌜((e1, e⃗i), σ)⇝†k ((e′1, e⃗
′
j), σ

′)⌝

(|⇛E;∅▷ |⇛∅;E)k(I σ′ ∗ wpE e′1 {Q} ∗∗j>1 wpE e
′
j {⊤})

(10.2)

Lemma 10.6.4. Eq. (10.2) holds.

Proof. The crisp induction principle for Nat enables us to proceed by induction, whereby
this reduces to repeated application of Eq. (10.1).

10.6.2 Removing fancy update modalities

The inference Eq. (10.2) is a good step towards the final adequacy theorem, but the
continued presence of |⇛E1;E2

is an issue. Indeed, eventually, we will have to unfold
the definitions of various connectives in Ω∗ as given in Section 10.4 and use ⟨g | −⟩ to
obtain a concrete proof out of wpE e {Q}. Doing this with the fancy update modality
is not appealing: it is built out of several complex components and involves numerous
pieces of ghost state. We therefore set out to unfold the definition of |⇛E1;E2

and simplify
Eq. (10.2).



Adequacy 252

Convention 10.6.5. We continue to work in mode t, but we do not assume Σ : GhostNames.
Accordingly, we will explicitly subscript connectives like wpΣ;E e {Q} with some variable
Σ to avoid confusion.

Lemma 10.6.6. Given σ : ⟨d | Heap⟩ and E, the following implication holds in Ω∗:

⊤ ⊢ ∃Σ : GhostNames. IΣ(σ) ∗WSatΣ ∗ E
Σ.γen

Proof. This essentially follows from repeated application of Lemma 10.4.38. In particular,
this lemma yields the following entailments:

⊤ ⊢ ∃γen. E
γen

⊤ ⊢ ∃γheap. �σ
γheap

⊤ ⊢ ∃γdis. ∅
γdis

⊤ ⊢ ∃γinv. �∅
γinv

Repackaging this using the fact that ⊤ ∗ ⊤ = ⊤, we obtain the following:

⊤ ⊢ ∃Σ. E Σ.γen ∗ �σ Σ.γheap ∗ ∅ Σ.γdis ∗ �∅ Σ.γinv

The conclusion then follows immediately by unfolding the definitions of IΣ and WSatΣ.

Lemma 10.6.7. Given Σ : GhostNames, the following entailment holds:

WSatΣ ∗ E1
Σ.γen ∗ |⇛E1;E2

Φ ⊢ |⇛(WSatΣ ∗ E2
Σ.γen ∗ Φ)

Proof. This follows immediately after unfolding the definition of |⇛E1;E2
.

Lemma 10.6.8. Given k :d Nat, the following entailment holds:

(∀Σ : GhostNames.wpΣ;E e1 {Q}) ∗ ⌜(e, σ)⇝†k ((e1, e⃗j), σ
′)⌝

⊢ ∃Σ. (|⇛▷ |⇛)k(WSatΣ ∗ E
Σ.γen ∗ IΣ σ′ ∗ wpΣ;E e1 {Q} ∗∗j>1 wpΣ;E ej {⊤})

Proof. This follows by combining Eq. (10.2) with Lemmas 10.6.6 and 10.6.7.

Let us introduce the following notation to signify that a program either reduces or
satisfies its post-condition:

sat : ⟨d | Exp⟩ → ⟨d | Heap⟩ → (⟨d | Val⟩ → Ω∗)→ Ω∗

sat e σ Q = (∃v. v = e ∗Qv) ∨ ⌜red(e, σ)⌝

Theorem 10.6.9. Given k :d Nat, the following proposition is equal to ⊤ in Ω∗:

(∀Σ : GhostNames.wpΣ;E e1 {Q}) ∗ ⌜(e, σ)⇝†k ((e1, e⃗j), σ
′)⌝

−∗∃Σ : GhostNames. (|⇛▷ |⇛)ksat(el, σ, Pl)

In the above formula, 1 ≤ l ≤ j and Pl = Q if l = 1 and ⊤ otherwise.

Proof. This follows from Lemmas 10.5.9 and 10.6.8.



Adequacy 253

10.6.3 The adequacy theorem

Theorem 10.6.9 is nearly the desired adequacy theorem: it states that any execution
of a thread pool either continues to execute or satisfies the necessary post-condition.
Unfortunately, this is still a statement within the logic of Ω∗ and when applied to a
k-step trace yields a result under 3k modalities. In this section, we take advantage of
the equivalence ⟨g | ▶A⟩ ≃ ⟨g | A⟩ to address this last point. In particular, we show in
the situation where the post-conditions are defined using propositions from Ω in mode s,
one may conclude that after k steps of execution, the resulting thread pool either can
continue to run or satisfies the expected post-conditions in mode s.

Convention 10.6.10. Within this subsection, we work in mode s.

Definition 10.6.11. Define psat (pronounced pure satisfies) as follows:

psat : Exp→ Heap→ (Val→ Ω)→ Ω
psat e σ Q = (∃v. v = e ∧Qv) ∨ ((e, σ) 7→ )

Lemma 10.6.12. Given Q : Val→ Ω, the following identification holds:

⟨g | ⌜⟨d | psat(e, σ,Q)⟩⌝ = sat(modd(e),modd(σ), λv. let modd(−)← v in v0⟨d | Qv0⟩)⟩

Proof. By propositional univalence of Ω∗, it suffices to show that these two propositions
imply each other. Unfolding psat and sat, this amounts to the fact that ⟨d | −⟩ and ⌜−⌝
commute with disjunction, conjunction, and existential quantification.

We now set out to remove the |⇛ and ▷ modalities annotating the conclusion of
Theorem 10.6.9. We begin with the following observation:

Lemma 10.6.13. The following identifications hold for any ϕ : Ω:

• ⟨g | ⊤ ⊢ ▷⌜ϕ⌝⟩ = ⟨g | ⊤ ⊢ ⌜▶⟨d | ϕ⟩⌝⟩

• ⟨g | ⊤ ⊢ ⌜ϕ⌝⟩ = ⟨g | ⟨d | ϕ⟩⟩ = ϕ

• ⟨g | ⊤ ⊢ |⇛⌜ϕ⌝⟩ = ⟨g | ⊤ ⊢ ⌜⟨d | ϕ⟩⌝⟩

Proof. All three points hold by computation. In particular, because ⌜⟨d | ϕ⟩⌝ is a constant
function it is unaffected by |⇛.

Theorem 10.6.14. Fix e : Exp along with a proposition Q : Val→ Ω. Suppose that we
are given a proof of the following proposition W :

Q′ :g ⟨d | Val⟩ → Ω∗

Q′ v = let modd(v0)← v in ⌜⟨d | Qv0⟩⌝

W = ⟨g | ⊤ ⊢ ∀Σ : GhostNames.wpΣ;⊤modd(e) {Q′}⟩

Let us further suppose that we are given some k : Nat along with a proof of the
following (e, ∅)⇝k (e1, e⃗f , σ). In this case, the following holds:

psat(e1, σ,Q) ∧
∧

j>1 psat(ej , σ,⊤)



Conclusions 254

Proof. It suffices to show that psat(el, σ, Pl) holds for all j, where Pl = Q if j = 1 and ⊤
otherwise. We will show only the case for l = 1, as the other cases are similar. Using
axiom K on Theorem 10.6.9 together with our assumptions of W and (e, ∅)⇝k (e1, e⃗f , σ),
we conclude that the following proposition holds:

⟨g | ⊤ ⊢ (|⇛▷ |⇛)k(sat(modd(e1),modd(σ),modd(σ), Q′))⟩

Note that, in particular, we are able to discard the ∃Σ : GhostNames as none of the
sat predicates mention this connective. Using Lemma 10.6.12, we are able to replace all
occurrences of sat with psat to obtain the following:

⟨g | ⊤ ⊢ (|⇛▷ |⇛)k(⌜⟨d | psat(e1, σ,Q)⟩⌝)⟩

Next, we use Lemma 10.6.13 3k + 1 times to remove all mention of Ω∗ and obtain
the following:

⟨g | ▶k⟨d | psat(e1, σ,Q)⟩⟩

Finally, using the identity ⟨g | ▶A⟩ ≃ ⟨g | A⟩, we obtain the adequacy theorem.

10.7 Conclusions

This chapter has introduced a reconstruction of the Iris program logic internal to MTT
tuned for guarded recursion. While the definitions in this section closely follow those
presented in Iris, our synthetic approach automatically yields new models of Iris. For
instance, while Spies et al. [Spi+21] showed that one can interpret Iris in (essentially)
sheaves over ordinals other than ω, synthetic Iris can be interpreted into sheaves over any
well-founded Heyting algebra. While these additional models may prove to be important
in the future, presently they are mostly a tangential benefit.

The main motivation and pay-off of synthetic Iris is pedagogical: working synthetically
allows us to crisply and systematically avoid technical details. For instance, Section 10.4
defines the highly recursive type of propositions in Iris but without recourse to domain
equations or reasoning about steps or anything similar. Every construction and definition
is carried out as it would be in ordinary mathematics, and Löb induction is used once
to tie things together. The presence of propositional univalence allows us to simplify
various arguments without attempting to reconstruct the complex machinery of type
classes and setoids used in Iris to mimic this principle.

Working at this level also highlights and clarifies the odd behavior of cameras in Iris.
The category of resource algebras introduced in this chapter is new, as is the recognition
of the universal properties of the agreement and exclusive resource algebras. We are
also able to crystallize the deficiencies of the present definition of resource algebra: for
instance, the lack of unital completions and the failure of

⊕
to even be functorial.

Further exploration within synthetic Iris offers a path to finding a more uniform and
well-behaved definition of resource algebras, which we believe will be of substantial
benefit to both synthetic and classical Iris.

Presently, the lack of a good implementation of modal type theory precludes this
approach from replacing the Coq development of Iris. If a comparable implementation
of MTT existed, we also believe that these simpler definitions would lend themselves to
a more tractable formalization.



Part IV

Conclusions and outlook

255



11 Conclusions

This is very interesting, but not
every functor is a right adjoint.

Paige Randall North
2019

We have introduced MTT the first fully general modal dependent type theory capable
of encapsulating arbitrary interacting modalities. In so doing, we have laid out a
systematic and general approach to modal type theory centered around weak dependent
right adjoints. We have also presented evidence for the usability and flexibility of MTT
and weak dependent right adjoints; both by proving important metatheorems (canonicity,
normalization) and providing numerous in-depth case studies applying MTT to adjoint
modalities, guarded recursion, and a synthetic account of Iris.

11.1 Related Work

While we have discussed related work in each chapter, we now provide a more thorough
discussion of the related work most closely connected to MTT.

11.1.1 Multimodal adjoint type theory

By far the most closely related type theory to MTT is multimodal adjoint type theory or
MATT [Shu23]. This is no accident: MATT was designed to be a refinement of MTT
which provides systematic control over the addition of strict dependent right adjoints
as described in Section 6.3 while also allowing the user to exclude certain crisp modal
induction principles. Thus, while in this thesis we have adopted an ad-hoc attitude
towards these extensions, in MATT they are described alongside the mode theory when
instantiating the type theory.

These considerations are reverse-engineered from the remarkable strictification theo-
rem proven in the same paper introducing MATT. As was shown in Section 7.2.4, one
can build a model of MTT with the adjoint mode theory from just a pair of lex adjoint
functors by first gluing along the left adjoint—provided one is willing to sacrifice the
elimination for the left adjoint modality when framed by the right adjoint. Shulman
[Shu23] introduces codextrification a vast generalization of this construction that applies
not just to a single adjoint, but to an arbitrary 2-functor F : M Cat provided that
F (µ) is suitably continuous.

256



Related Work 257

Theorem 11.1.1 (Section 4 [Shu23]). Fix a κ-small 2-category M for some regular
cardinal κ and denote the 2-category of κ-complete categories and κ-continuous functors
by Lexκ. Given a 2-functor F : M Lexκ, there exists a 2-functor G : M Lexκ and
a 2-natural transformation π : G F satisfying the following properties:

1. For each m : M, the functor π(m) is κ-continuous and has a fully-faithful right
adjoint.

2. For each morphism µ, the functor G(µ) is a right adjoint.

Remark 11.1.2. More than this is true: if each F (m) is locally Cartesian closed,
presentable, an elementary topos etc. then the same will be true of each G(m). Moreover,
G can be given a universal property but it is not required for what follows. ⋄

Remark 11.1.3. The precise details of the construction are not relevant for the following
discussion, but it may be helpful to know that codextrification is realized by a collection
of op-lax limits analogous to how Gl(F ) may be realized as an op-lax limit. ⋄

In Section 7.2.3, we described a special case of an extension of the local universes
coherence theorem for MTT from Shulman [Shu23]. The general case is precisely designed
to work with codextrification.

Theorem 11.1.4 (Section 5 [Shu23]). Under the same assumptions as Theorem 11.1.1,
if F : M Lexκ satisfies the assumptions of Theorem 7.2.21, then the codextrification
G extends to a model of MTT.

We note, crucially, that unlike in Theorem 7.2.21 we do not require F (µ) to have
a left adjoint. Instead, we use codextrification to (co)freely add a right adjoint and
interpret MTT in the resulting 2-functor.

All of the results discussed thus far apply to MTT (and therefore to a special case of
MATT). The motivation for the generality afforded by MATT comes from the requirement
that the functors involved must be κ-continuous for some cardinal κ such that M is
κ-small. If M is finite, this requirement is quite reasonable but it does fail if M is infinite.
Unfortunately, most mode theories of interest (e.g., the adjoint mode theory and its
sub-mode theories) are at least countably infinite.

Shulman observed that in many circumstances one did not need to apply codextrifi-
cation to the entirety of M if one was willing to eschew certain crisp modal induction
principles. In particular, if a modality µ ∈M was right adjoint to some ν one could omit
µ when codextrifying.

Definition 11.1.5. Given a 2-category C and a subset S of 1-cells, we denote by C[S∗]
the 2-category which freely adds right adjoints to each of the 1-cells in S. We write s∗
for the freely added right adjoint to s ∈ S.

Shulman [Shu23] then shows that one may take a functor F : C[S∗] Lexκ and
then consider the codextrification G of the restriction of F to C. Remarkably, the model
of MTT on G provided by Theorem 11.1.4 automatically inherits strict dependent right
adjoints for each of the morphisms with S and so G interprets a version of MTT with
mode theory C[S∗] but without e.g. crisp induction principles using s∗ as a framing
modality. Importantly, many infinite mode theories can be presented as C[S∗] for some



Related Work 258

finite C (e.g., Madj), thereby alleviating much of the burden imposed by κ-continuity. For
instance, this allows MATT to capture the multiplicity of cohesive structures considered
by Myers and Riley [MR23].

The extra features of MATT are precisely designed to capture these additional right
adjoints which exist prior to codextrification. As Shulman [Shu23] introduced MATT
during the preparation of this thesis, we have studied where some of the extensions
and features provided by MATT can be included into MTT without undue alteration.
For instance, in Section 8.7, we have shown that normalization algorithm for MTT can
be extended to support the strict dependent right adjoints present in MATT without
additional effort. Similarly, in Section 6.4, we analyzed some of the behavior of internal
right adjoints without assuming certain crisp modal induction principles; showing that
up to definitional equality, the stricter rules provided by MATT can be derived from the
weaker ones available in MTT.

Thus, it appears that much of MATT can be recovered by either considering an
extension of MTT with a smaller mode theory as was done by Shulman [Shu23] or by
considering a restriction of MTT with a larger mode theory (in the style of Section 7.2.4).
Further study is needed to more precisely characterize the relationship between MTT and
MATT. We expect, however, that “MTT 2.0” will include at least some of the additional
flexibility afforded by MATT to fully capitalize on codextrification and the new models
such it offers [MR23].

11.1.2 The Licata-Shulman-Riley framework

While MTT was the first general framework for modal dependent type theory with
multiple modalities, prior work by Licata et al. [LSR17] introduced another framework
(referred to simply as LSR) for a simply-typed system that allowed for arbitrary collections
of modalities along with arbitrary variation of the structural principles at each mode.
While each mode in MTT behaves like ordinary Martin-Löf type theory, each mode in
LSR can behave like the simply-typed lambda calculus, an intuitionistic linear calculus,
or some more exotic substructural theory. More than the remarkable flexibility in each
mode theory, LSR also internalizes more modalities than MTT. Roughly, while the
semantics of MTT are easiest to set up using adjunctions and interpreting modalities
using the right adjoints, LSR captures both the left and the right adjoints as modalities.

To accommodate this generality, the syntax for LSR is far more cumbersome than
that of MTT. Much of the effort in MTT was to ensure that modalities did not require
cumbersome annotations or delayed substitutions, but LSR must use more extensive
notations both for variable access and modal rules. In fact, Licata et al. [LSR17]
explained that one might use LSR to produce a reference calculus for which one then
proves equivalent to a more convenient hand-crafted syntax. This goal is quite different
from MTT, which aims to be usable out-of-the-box.

It therefore seems that LSR and MTT occupy incomparable points in the design
space (even setting aside the question of dependence): the former is more general while
the latter is more usable.



Related Work 259

11.1.3 Fitch/Kripke-style modal type theories & uniform modal transformations

In Chapter 5, we spent a great deal of time analyzing the poor behavior of the näıve
elimination rule in Fitch/Kripke-style type theories. Given our focus on constructing a
general modal type theory, we did not focus on any of the specific workarounds used
for particular modalities. Given the convenience of the elimination rule however, such
explorations may well be worth it when analyzing modal type theories that are likely to
be used again and again [Bir+20; GSB19a; HP23; VRT22].

This process is often arduous and syntactic. The essential goal is to prove that the
adjoint action on the syntactic category of contexts is a parametric right adjoint and
this necessitates careful analysis of the modality’s adjoint action and the structure of
the syntactic category of contexts. However, this process has been streamlined since the
work of Birkedal et al. [Bir+20] and Gratzer et al. [GSB19a] which proved these results
for modal type theories with a plain dependent right adjoint or an idempotent comonad,
respectively. In particular, Valliappan et al. [VRT22] and Hu and Pientka [HP23] both
gave parameterized Fitch-style type theories allowing the □ modality included in their
type theories to be tuned to satisfy additional properties.

Hu and Pientka [HP23], in particular, showed that substitutions could be placed in a
certain normal form—a uniform modal transformation (UMoT)—which ensured that
each substitution was organized into a list of terms for each modal zone. This normal
form enables a vastly more streamlined construction of the elimination rule and the
proof of its substitution lemma since the relevant PRA structure is then easy to define.
Hu and Pientka [HP23] and Valliappan et al. [VRT22] consider only calculi with a single
modality which makes them unsuitable for the same goals as MTT. That said, the notion
of UMoT described by Hu and Pientka [HP23] is worth careful investigation in its own
right.

In particular, op. cit. has shown that these UMoTs can be used to adapt classical
untyped normalization-by-evaluation [Abe13] to work with a modal calculus with a non-
idempotent comonad. This approach seems useful for circumventing the complications
encountered by Stassen et al. [SGB23a] which forced op. cit. to limit their implementation
of modalities to poset-enriched mode theories.

11.1.4 Clocked Type Theory

In a separate strand of work, Bahr et al. [BGM17] and Kristensen et al. [KMV22] have
introduced and refined clocked type theory CloTT, a Fitch-style calculus for guarded
recursion. Once again, their calculus is limited to one modality and therefore oriented in
a different direction than MTT but again several features of CloTT bear further study.

It remains an open and interesting question where the convenient tick syntax of CloTT
could be adapted to MTT. This could alleviate some of the pain of writing programs in
MTT which use complex 2-cell manipulations, such as those in Section 6.4. Preliminary
steps in this direction have been undertaken by Nuyts [Nuy23]. In addition, clocked
type theory features indexed modalities—each ▶ modality is indexed by a clock which
may be abstracted over and instantiated. There is no corresponding feature in MTT
where modalities are fixed in the mode theory and do not change throughout a proof.
Many natural situations in programming languages are best explained by first-class
or indexed modalities and a proper theory of these phenomena remains elusive. The



Open questions and future work 260

semantics of CloTT [MMV20] suggest that a necessary criterion for indexed modalities is
“independence” between the indexing type and the modalities; concretely, the semantics
dependent crucially on the commutation of the left adjoint to ▶ and the type of clocks.

11.2 Open questions and future work

Having made it this far in the thesis, the reader may be forgiven for having had their
fill of modal type theory. If however, they have the stomach for it, many interesting
questions and conjectures remain. In this final section, we detail a few open questions
and conjectures regarding MTT, weak dependent right adjoints, and applications thereof.

11.2.1 Open questions on weak dependent right adjoints

Despite the results established in this thesis and those covered by Shulman [Shu23],
questions about weak dependent right adjoints remain.

Conjecture 11.2.1. (Extensional) DRA (Section 5.5) is a conservative extension of
(extensional) MTT with a single endomodality when restricted to closed terms. In other
words, given a closed type A in MTT with one endomodality, A inhabited just when JAK
is inhabited in DRA.

This conjecture is essentially answered in the affirmative for the simply-typed case
by Davies and Pfenning [DP01]. However, adapting their translation procedure to
accommodate dependent types is far from trivial. It seems almost certain that additional
commuting conversions must be added to MTT, so an intermediate step would be to
study the extensional case. We note that it seems likely that the conjecture is false in
the presence of infinitary products (see Lemma 6.4.9).

Conjecture 11.2.2. Consider MTT instantiated with Madj and extended with univa-
lence [Uni13] at each mode. The internal right adjoint satisfies crisp identity induction.

Recall that (1) the left adjoint satisfies crisp identity induction (Lemma 6.4.13)
and (2) any modality satisfies this property in the presence of extensional equality
(Lemma 6.3.4). In other work, Aagaard et al. [Aag+22] shows that every modality in
cubical MTT satisfies crisp identity induction. However, it is non-obvious if this will
continue to hold in MTT extended with univalence. Note that while Lemma 7.3.2 appears
to refute this conjecture, only one of the two modes in this model satisfies univalence.

Conjecture 11.2.3. There exists an infinite mode theory M and a strict 2-functor
F : M Lexω such that there does not exist any G : M Lexω and π : G F
satisfying the conclusion of Theorem 11.1.1.

This conjecture is meant to express that Shulman [Shu23] is tight in a certain sense;
one cannot relax the continuity hypotheses in general. This question is purely categorical,
but it has an impact on the construction of models of MTT in light of Theorem 11.1.4.

Conjecture 11.2.4. Given a closed (pre)type C and a modality µ, MTT extended with
the definitional equality Γ.{µ} = Γ.C satisfies canonicity and normalization.



Open questions and future work 261

Surprisingly, it turns out that applications of MTT have models which satisfy such
equalities [Cav21; ND21] and these examples would be improved if such equalities could
be conveniently internalized. More generally, a theory of MTT extended with computa-
tional left adjoints appears to have many different uses. For instance, Kolomatskaia and
Shulman and Gratzer, Sterling, and Birkedal are making use of use of other “computa-
tional modalities” to better reason about augmented semisimplicial spaces and guarded
recursion, respectively.

Finally, while it is vaguer than previous conjectures, we note that there appear to be
interesting applications of some form of modal extension types. These extension types
ought to generalize ordinary extension types [RS17] from the modality I→ − to apply
to arbitrary modalities.

Conjecture 11.2.5. There exists a generalization of extension types to arbitrary modal-
ities and the corresponding extension of MTT satisfies canonicity and normalization.

Presently no general proposal of such types exist, but important special cases are
described by Cavallo [Cav21] and Nuyts and Devriese [ND21].

11.2.2 Substructural modal type theories

By design, we have chosen to focus only on modalities but in so doing we have ignored
the rich and fruitful interaction between modalities and substructural type theories. The
reason for the omission is entirely pragmatic: substructural dependent type theory is a
complex topic even without modalities with applications both within computer science
and mathematics [CP02; KPB15; Ril22].1 However, many approaches to substructural
type theory naturally lead to modalities. For instance, quantitative type theory, one
promising approach to substructural dependent type theory crucially uses modalities to
handle the linearity [Atk18]. Just as MTT annotates each variable with a modality to
control its usage, quantitative type theory annotates each variable with a quantity for
the same purpose.

A variety of calculi exploring similar ideas in the form of graded modalities have
been proposed [AB20; ADE23; MEO21]. These theories focus on using modalities to
control the use of variables within a program; whether they can be erased, are used
parametrically, linearly, etc. In particular, a fully-featured dependent type theory based
on these ideas is presented in detail by Moon et al. [MEO21].

Presently the scope of these graded modalities is almost disjoint from the modal-
ities studied in this thesis. Given that both have numerous interesting applications,
however, it is natural to wonder whether it is possible to present a single theory that
includes both. We note that substructural modalities have numerous applications within
mathematics [LSR17; Ril22] and a “substructural MTT” may be quite useful.

11.2.3 Applications to synthetic mathematics

As continuously mentioned, modal types theories are best judged through their applica-
tions. While we have focused primarily on guarded recursion in Part III, we highlight
two other promising potential applications of MTT to synthetic mathematics.

1In particular, we refer the reader to Section 1.7 of Riley [Ril22] for a discussion of linear dependent
type theory with an eye towards mathematical applications.



Open questions and future work 262

Synthetic algebraic geometry Cherubini et al. [CCH23] have proposed a new foundation
for synthetic algebraic geometry. This work extends that of Blechschmidt [Ble17] by
generalizing an internal logic to an internal (univalent) type theory. Given that Cherubini
et al. [CCH23] strive to axiomatize the little Zariski topos over a commutative ring k,
there appear to be many natural modalities one might consider:

• One might consider a version of cubical MTT [Aag+22] where one mode plays the
role of the little Zariski ∞-topos and the other models ∞-groupoids. Modalities
representing e.g. the global sections functor and the discrete functor should then be
useful in relating the internal construction of cohomology proposed by Blechschmidt
et al. [BCW] to a more classical external definition.

• Given two commutative rings linked by a homomorphism k0 k1, there is an
induced geometric morphism between Zariski ∞-topoi. Capturing some of these
adjoints offers the possibility of axiomatizing or even proving some of the descent
properties commonly used within algebraic geometry.

Synthetic ∞-category theory Given the complexity of various models of ∞-categories, a
synthetic account of ∞-category theory is an appealing prospect. We will single out one
strand of research in this direction: simplicial type theory [RS17; Wei22] and its cubical
variant [WL20]. Both of these extend normal homotopy type theory a directed interval
∆1. This interval mirrors the interval I crucially featured in cubical type theory [Coh+17]
but, while I is meant to axiomatize the topological interval [0, 1], simplicial type theory
uses ∆1 to axiomatize the category generated by a single arrow

{
• •

}
. Just as was

done in cubical type theory, one may use ∆1 to carve out ∞-categories from types as
those which are suitably fibrant.

A central contribution of Cohen et al. [Coh+17] is to construct a fibrant universe
that classifies small fibrant types. Constructing a similar type in the context of simplicial
type theory remains an important and interesting question. In plain terms, such a type
U would be an ∞-category of small ∞-categories such the space of morphisms2 from
A to B in U corresponds to the ∞-groupoid of functors A B. This last property is
often termed directed univalence.

A promising first step towards constructing U is given by Weaver and Licata [WL20]
for the cubical version of simplicial type theory. They adapt the methodology of Licata
et al. [Lic+18] to construct an ∞-category of small ∞-groupoids satisfying directed
univalence. There is ongoing work to adapt this construction to account for all small
∞-categories. There is still reason to hope for such construction for ordinary simplicial
type theory rather than the cubical variant: the former is known to have models in which
synthetic ∞-categories precisely correspond to classical ∞-categories but this remains
an open question for the latter.

Unfortunately, adapting Licata et al. [Lic+18] in the context of ordinary simplicial
type theory faces substantial technical obstacles. In the standard models of simplicial
type theory, ∆1 is not tiny and the tininess of I was essential for Licata et al. [Lic+18].
Weinberger, Buchholtz, Riehl, and collaborators have proposed to circumvent this by
working not only with simplicial spaces—the standard model of simplicial type theory—
but simultaneously with the category of cubical spaces into which simplicial spaces embed.

2Recall that we are speaking of ∞-categories so there is a proper space of morphisms



Open questions and future work 263

The interval is tiny in cubical spaces (this was used by Weaver and Licata [WL20]) and
one could use the essential geometric morphism relating these two categories to carry
out pieces of the construction in cubical spaces where necessary.

It seems likely that MTT would be useful in this situation: a version of MTT extended
with univalence could internalize this adjunction along with the global sections functor
and the amazing right adjoint to ∆1 in bicubical sets. Taken all together, this structure
should permit one to carry out the construction of U for simplicial type theory purely
internally; generalizing what was done by Licata et al. [Lic+18].

Moreover, a central complication of synthetic category theory is that categories—
unlike sets or ∞-groupoids—have a non-trivial automorphism in the form of C 7→ Cop.
In simplicial type theory, it seems useful to have this available not only on fibrant types
(proper ∞-categories) but on all types. This is straightforward to accomplish with MTT,
as in the standard models −op is realized by a morphism which is immediately seen to
be a dependent right adjoint.

Taken together, this suggests that a fusion of MTT with simplicial type theory may
be well-adapted both to construct the ∞-category of ∞-categories and carrying out
arguments in synthetic category theory.

11.2.4 A logical framework for modal type theories

At several points throughout this thesis, we have had to apologize for the technicalities
introduced by the lack of a good logical framework for modal type theory. It has led to
technical excursions in our proofs of normalization and guarded canonicity as well as a
great deal of hand-wringing about the admissibility of substitution in Chapter 6. In an
ideal world, these issues would have been cleanly solved by our logical framework, but
LFs that provide such guarantees [HB21; Uem21] do not incorporate modal type theory.

Part of the reason for this oversight is the comparative lack of experience with modal
type theories. When different modal type theories used such disparate assumptions,
it was difficult to settle on a particular logical framework (which would then almost
certainly exclude some examples). If—as this thesis argues—wDRAs suffice, it becomes
possible to propose logical frameworks for modal type theory.

Recently, Uemura [Uem23] has proposed such an LF based on fibered representable
map categories. Prior work by Uemura has argued for realizing type theories as lex
categories with a class of representable maps and his proposal extends this philosophy to
multimodal type theories by considering fibrations over the mode theory E M. The
reindexing maps between fibers Em En are the manifestation of modalities at the level
of the logical framework—in much the same way that dependent products in Em realize
the hypothetical judgment.

This approach appears promising, but much remains to be done. For instance, it
is unclear what structure (if any) the reindexing maps ought to preserve. Absent the
requirement that reindexing functors preserve any structure, it is also open whether one
can syntactically present such fibrations. Some concrete syntax appears necessary, if
only for adequacy. Finally, it is unknown what structure one may reasonably postulate
on E M while automatically maintaining the admissiblity of substitution. More
provocatively, it remains unclear how one distinguishes between DRA and MTT in this
setup, in spite of the fact that the former has a rather poor substitution lemma. We
hope to see this topic explored further in the future.



Bibliography

[Aag+22] Frederik Lerbjerg Aagaard, Magnus Baunsgaard Kristensen, Daniel Gratzer,
and Lars Birkedal. Unifying cubical and multimodal type theory. 2022. arXiv:
2203.13000 [cs.LO].

[Abe13] Andreas Abel. “Normalization by Evaluation: Dependent Types and Impred-
icativity”. Habilitation. Ludwig-Maximilians-Universität München, 2013.

[AB20] Andreas Abel and Jean-Philippe Bernardy. “A Unified View of Modalities
in Type Systems”. In: Proc. ACM Program. Lang. 4.ICFP (Aug. 2020). doi:
10.1145/3408972.

[ADE23] Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. A Graded
Modal Dependent Type Theory with a Universe and Erasure, Formalized.
To appear in the proceedings of the International Conference on Functional
Programming 2023 (ICFP23). 2023. url: https://www.cse.chalmers.
se/~nad/publications/abel- danielsson- eriksson- graded- type-

theory.pdf.

[AR94] Jǐŕı Adámek and Jǐŕı Rosický. Locally Presentable and Accessible Categories.
London Mathematical Society Lecture Note Series. Cambridge University
Press, 1994. doi: 10.1017/CBO9780511600579.

[Ahm04] Amal Jamil Ahmed. “Semantics of Types for Mutable State”. AAI3136691.
PhD thesis. USA: Princeton University, 2004.

[All87] Stuart Frazier Allen. “A non-type-theoretic semantics for type-theoretic
language”. PhD thesis. Ithaca, NY, USA: Cornell University, 1987.

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. “Categorical
reconstruction of a reduction free normalization proof”. In: Category Theory
and Computer Science. Ed. by David Pitt, David E. Rydeheard, and Peter
Johnstone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 182–
199. isbn: 978-3-540-44661-3.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. “Normalisation by Evaluation for
Dependent Types”. In: 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016). Ed. by Delia Kesner and
Brigitte Pientka. Vol. 52. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2016, 6:1–6:16. isbn: 978-3-95977-010-1. doi: 10.4230/LIPIcs.FSCD.
2016.6. url: http://drops.dagstuhl.de/opus/volltexte/2016/5972.

264

https://arxiv.org/abs/2203.13000
https://doi.org/10.1145/3408972
https://www.cse.chalmers.se/~nad/publications/abel-danielsson-eriksson-graded-type-theory.pdf
https://www.cse.chalmers.se/~nad/publications/abel-danielsson-eriksson-graded-type-theory.pdf
https://www.cse.chalmers.se/~nad/publications/abel-danielsson-eriksson-graded-type-theory.pdf
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
http://drops.dagstuhl.de/opus/volltexte/2016/5972


Bibliography 265

[AR89] Pierre America and Jan Rutten. “Solving reflexive domain equations in a
category of complete metric spaces”. In: Journal of Computer and System
Sciences 39.3 (1989), pp. 343–375. issn: 0022-0000. doi: 10.1016/0022-
0000(89)90027-5.

[AM01] Andrew W. Appel and David McAllester. “An indexed model of recursive
types for foundational proof-carrying code”. In: ACM Transactions on
Programming Languages and Systems 23.5 (2001), pp. 657–683. doi: 10.
1145/504709.504712.

[AGV72] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie des
topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique
du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck,
et J.-L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B.
Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270, 305. Berlin:
Springer-Verlag, 1972.

[Atk18] Robert Atkey. “Syntax and Semantics of Quantitative Type Theory”. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science. LICS ’18. Oxford, United Kingdom: Association for Com-
puting Machinery, 2018, pp. 56–65. isbn: 9781450355834. doi: 10.1145/
3209108.3209189.

[AM13] Robert Atkey and Conor McBride. “Productive Coprogramming with
Guarded Recursion”. In: Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional Programming. ICFP ’13. Association for
Computing Machinery, 2013, pp. 197–208. doi: 10.1145/2500365.2500597.
url: https://doi.org/10.1145/2500365.2500597.

[Awo10] S. Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010.
isbn: 9780199587360.

[Awo18] Steve Awodey. “Natural models of homotopy type theory”. In: Mathematical
Structures in Computer Science 28.2 (2018), pp. 241–286. issn: 09601295.
doi: 10.1017/S0960129516000268. eprint: 1406.3219.

[Awo22] Steve Awodey. On Hofmann–Streicher universes. 2022. arXiv: 2205.10917
[math.CT].

[BGM17] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. “The
clocks are ticking: No more delays!” In: 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). IEEE, 2017. doi: 10.
1109/LICS.2017.8005097. url: http://www.itu.dk/people/mogel/
papers/lics2017.pdf.

[BGM19] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg.
“Simply RaTT: A Fitch-style Modal Calculus for Reactive Programming
Without Space Leaks”. In: Proc. ACM Program. Lang. 3 (ICFP 2019),
109:1–109:27. issn: 2475-1421. doi: 10.1145/3341713.

[BGM21] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg.
“Diamonds Are Not Forever: Liveness in Reactive Programming with Guarded
Recursion”. In: Proc. ACM Program. Lang. 5.POPL (Jan. 2021). doi:
10.1145/3434283. url: https://doi.org/10.1145/3434283.

https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1017/S0960129516000268
1406.3219
https://arxiv.org/abs/2205.10917
https://arxiv.org/abs/2205.10917
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
http://www.itu.dk/people/mogel/papers/lics2017.pdf
http://www.itu.dk/people/mogel/papers/lics2017.pdf
https://doi.org/10.1145/3341713
https://doi.org/10.1145/3434283
https://doi.org/10.1145/3434283


Bibliography 266

[BL13] Andrej Bauer and Peter LeFanu Lumsdaine. “On the Bourbaki–Witt princi-
ple in toposes”. In: Mathematical Proceedings of the Cambridge Philosophical
Society 155.1 (2013), pp. 87–99. doi: 10.1017/S0305004113000108.

[BS18] Ulrich Berger and Anton Setzer. “Undecidability of Equality for Codata
Types”. In: Coalgebraic Methods in Computer Science. Ed. by Corina Ĉırstea.
Cham: Springer International Publishing, 2018, pp. 34–55. isbn: 978-3-030-
00389-0.

[Bd00] G. M. Bierman and V. C. V. de Paiva. “On an Intuitionistic Modal Logic”.
In: Studia Logica 65.3 (2000). doi: 10.1023/A:1005291931660.

[Bir00] Lars Birkedal. “Developing Theories of Types and Computability via Real-
izability”. In: Electronic Notes in Theoretical Computer Science 34 (2000).

[Bir+19] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas
Spitters, and Andrea Vezzosi. “Guarded Cubical Type Theory”. In: Journal
of Automated Reasoning 63 (2019), pp. 211–253.

[Bir+20] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg,
Andrew M. Pitts, and Bas Spitters. “Modal dependent type theory and
dependent right adjoints”. In: Mathematical Structures in Computer Science
30.2 (2020), pp. 118–138. doi: 10.1017/S0960129519000197. eprint: 1804.
05236.

[Bir+12] Lars Birkedal, Rasmus Møgelberg, Jan Schwinghammer, and Kristian
Støvring. “First steps in synthetic guarded domain theory: step-indexing
in the topos of trees”. In: Logical Methods in Computer Science 8.4 (2012).
Ed. by Patrick Baillot. doi: 10.2168/LMCS-8(4:1)2012.

[BM13] Lars Birkedal and Rasmus Ejlers Møgelberg. “Intensional Type Theory with
Guarded Recursive Types qua Fixed Points on Universes”. In: Proceedings
of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’13. USA: IEEE Computer Society, 2013, pp. 213–222. isbn:
9780769550206. doi: 10.1109/LICS.2013.27.

[BBM14] Ales Bizjak, Lars Birkedal, and Marino Miculan. “A Model of Countable
Nondeterminism in Guarded Type Theory”. In: Rewriting and Typed Lambda
Calculi – Joint International Conference, RTA-TLCA 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-
17, 2014. Proceedings. Ed. by Gilles Dowek. Vol. 8560. Lecture Notes in
Computer Science. Springer, 2014, pp. 108–123. isbn: 978-3-319-08917-1.
doi: 10.1007/978-3-319-08918-8_8.

[BB22] Aleš Bizjak and Lars Birkedal. Lecture Notes on Iris: Higher-Order Con-
current Separation Logic. Online. https://iris-project.org/tutorial-
pdfs/iris-lecture-notes.pdf. 2022.

[Biz+16] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg,
and Lars Birkedal. “Guarded Dependent Type Theory with Coinductive
Types”. In: Foundations of Software Science and Computation Structures.
Ed. by Bart Jacobs and Christof Löding. Springer Berlin Heidelberg, 2016,
pp. 20–35.

https://doi.org/10.1017/S0305004113000108
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.1017/S0960129519000197
1804.05236
1804.05236
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1007/978-3-319-08918-8_8
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf


Bibliography 267

[Biz+19] Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. “Iron:
Managing Obligations in Higher-order Concurrent Separation Logic”. In:
Proc. ACM Program. Lang. 3.POPL (Jan. 2019), 65:1–65:30. issn: 2475-1421.
doi: 10.1145/3290378. url: http://doi.acm.org/10.1145/3290378.

[BM15] Aleš Bizjak and Rasmus Ejlers Møgelberg. “A Model of Guarded Recursion
With Clock Synchronisation”. In: Electronic Notes in Theoretical Computer
Science 319 (2015). The 31st Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXXI)., pp. 83–101. doi: https://doi.
org/10.1016/j.entcs.2015.12.007. url: http://www.sciencedirect.
com/science/article/pii/S1571066115000742.

[BM20] Aleš Bizjak and Rasmus Ejlers Møgelberg. “Denotational semantics for
guarded dependent type theory”. In: Mathematical Structures in Computer
Science 30.4 (2020), pp. 342–378. doi: 10.1017/S0960129520000080.

[Ble17] Ingo Blechschmidt. “Using the internal language of toposes in algebraic
geometry”. PhD thesis. Universität Augsburg, 2017.

[BCW] Ingo Blechschmidt, Felix Cherubini, and David Wärn. Čech Cohomology in
Homotopy Type Theory. To appear.

[BKS21] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. Relative induction
principles for type theories. 2021. doi: 10.48550/ARXIV.2102.11649.

[BKS23] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the Metatheory
of Type Theory, Internal Sconing Is Enough. 2023. arXiv: 2302.05190

[cs.LO].

[Bor94] Francis Borceux. Handbook of Categorical Algebra. Vol. 1. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1994. doi:
10.1017/CBO9780511525858.

[BH01] Sylvain Boulmé and Grégoire Hamon. “Certifying Synchrony for Free”.
In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by
Robert Nieuwenhuis and Andrei Voronkov. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 495–506. isbn: 978-3-540-45653-7.

[CJ95] Aurelio Carboni and Peter Johnstone. “Connected limits, familial repre-
sentability and Artin glueing”. In: Mathematical Structures in Computer
Science 5.4 (1995), pp. 441–459. doi: 10.1017/S0960129500001183.

[Car78] John Cartmell. “Generalised Algebraic Theories and Contextual Categories”.
PhD thesis. University of Oxford, 1978.

[CCD20] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with
Families: Unityped, Simply Typed, and Dependently Typed. 2020. arXiv:
1904.00827 [cs.LO].

[Cav21] Evan Cavallo. “Higher inductive types and internal parametricity for cubical
type theory”. PhD thesis. Carnegie Mellon Univesity, 2021.

[CP02] Iliano Cervesato and Frank Pfenning. “A Linear Logical Framework”. In:
Information and Computation 179.1 (2002), pp. 19–75. issn: 0890-5401. doi:
10.1006/inco.2001.2951.

https://doi.org/10.1145/3290378
http://doi.acm.org/10.1145/3290378
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.007
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.007
http://www.sciencedirect.com/science/article/pii/S1571066115000742
http://www.sciencedirect.com/science/article/pii/S1571066115000742
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.48550/ARXIV.2102.11649
https://arxiv.org/abs/2302.05190
https://arxiv.org/abs/2302.05190
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/S0960129500001183
https://arxiv.org/abs/1904.00827
https://doi.org/10.1006/inco.2001.2951


Bibliography 268

[CCH23] Felix Cherubini, Thierry Coquand, and Matthias Hutzler. A Foundation
for Synthetic Algebraic Geometry. 2023. arXiv: 2307.00073 [math.AG].

[Cis19] Denis-Charles Cisinski. Higher Categories and Homotopical Algebra. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
2019. doi: 10.1017/9781108588737. url: http://www.mathematik.uni-
regensburg.de/cisinski/CatLR.pdf.

[CD14] Pierre Clairambault and Peter Dybjer. “The biequivalence of locally carte-
sian closed categories and Martin-Löf type theories”. In: Mathematical Struc-
tures in Computer Science 24.6 (2014). doi: 10.1017/S0960129513000881.

[Clo18] Ranald Clouston. “Fitch-Style Modal Lambda Calculi”. In: Foundations of
Software Science and Computation Structures. Ed. by Christel Baier and
Ugo Dal Lago. Springer International Publishing, 2018, pp. 258–275.

[Clo+15] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal.
“Programming and Reasoning with Guarded Recursion for Coinductive
Types”. In: Foundations of Software Science and Computation Structures.
Ed. by Andrew Pitts. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 407–421. isbn: 978-3-662-46678-0.

[Coh+17] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. “Cubi-
cal Type Theory: a constructive interpretation of the univalence axiom”. In:
IfCoLog Journal of Logics and their Applications 4.10 (2017), pp. 3127–3169.
arXiv: 1611.02108 [cs.LO].

[Coq19] Thierry Coquand. “Canonicity and normalization for dependent type the-
ory”. In: Theoretical Computer Science 777 (2019), pp. 184–191. doi: 10.
1016/j.tcs.2019.01.015.

[CMR17] Thierry Coquand, Bassel Mannaa, and Fabien Ruch. “Stack semantics of
type theory”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). June 2017, pp. 1–11. doi: 10.1109/LICS.2017.
8005130.

[DP01] Rowan Davies and Frank Pfenning. “A Modal Analysis of Staged Computa-
tion”. In: Journal of the ACM 48.3 (May 2001), pp. 555–604.

[Day70] Brian Day. “On closed categories of functors”. In: Reports of the Midwest
Category Seminar IV. Ed. by S. MacLane, H. Applegate, M. Barr, B. Day, E.
Dubuc, Phreilambud, A. Pultr, R. Street, M. Tierney, and S. Swierczkowski.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1970, pp. 1–38. isbn: 978-3-
540-36292-0.

[dR15] Valeria de Paiva and Eike Ritter. “Fibrational Modal Type Theory”. In:
Proceedings of the Tenth Workshop on Logical and Semantic Frameworks,
with Applications (LSFA 2015). 2015. doi: 10.1016/j.entcs.2016.06.010.

[DAB11] Derek Dreyer, Amal Ahmed, and Lars Birkedal. “Logical Step-Indexed
Logical Relations”. In: Logical Methods in Computer Science Volume 7,
Issue 2 (June 2011). doi: 10.2168/lmcs-7(2:16)2011.

https://arxiv.org/abs/2307.00073
https://doi.org/10.1017/9781108588737
http://www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf
http://www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf
https://doi.org/10.1017/S0960129513000881
https://arxiv.org/abs/1611.02108
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1109/LICS.2017.8005130
https://doi.org/10.1109/LICS.2017.8005130
https://doi.org/10.1016/j.entcs.2016.06.010
https://doi.org/10.2168/lmcs-7(2:16)2011


Bibliography 269

[DNB12] Derek Dreyer, Georg Neis, and Lars Birkedal. “The impact of higher-
order state and control effects on local relational reasoning”. In: Journal
of Functional Programming 22.4-5 (2012), pp. 477–528. doi: 10.1017/

S095679681200024X.

[Dyb96] Peter Dybjer. “Internal type theory”. In: Types for Proofs and Programs.
Ed. by Stefano Berardi and Mario Coppo. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 120–134. doi: 10.1007/3-540-61780-9_66.

[Fio02] Marcelo Fiore. “Semantic Analysis of Normalisation by Evaluation for Typed
Lambda Calculus”. In: Proceedings of the 4th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming. PPDP
’02. Pittsburgh, PA, USA: ACM, 2002, pp. 26–37. isbn: 1-58113-528-9. doi:
10.1145/571157.571161.

[Fio12] Marcelo Fiore. Discrete generalised polynomial functors. Slides from talk
given at ICALP 2012. 2012. url: https://www.cl.cam.ac.uk/~mpf23/
talks/ICALP2012.pdf.

[Fre78] Peter Freyd. “On proving that 1 is an indecomposable projective in various
free categories”. 1978.

[GK13] Nicola Gambino and Joachim Kock. “Polynomial functors and polynomial
monads”. In: Mathematical Proceedings of the Cambridge Philosophical
Society 154.1 (2013), pp. 153–192. doi: 10.1017/S0305004112000394.

[Gir11] Jean-Yves Girard. The Blind Spot: Lectures on Logic. European Mathemat-
ical Society, 2011.

[Goo+21] Sam van Gool, Adrien Guatto, George Metcalfe, and Simon Santschi. “Time
Warps, from Algebra to Algorithms”. In: Relational and Algebraic Methods in
Computer Science: 19th International Conference, RAMiCS 2021, Marseille,
France, November 2–5, 2021, Proceedings. Marseille, France: Springer-Verlag,
2021, pp. 309–324. isbn: 978-3-030-88700-1. doi: 10.1007/978-3-030-
88701-8_19.

[Gra22] Daniel Gratzer. “Normalization for Multimodal Type Theory”. In: Pro-
ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’22. Haifa, Israel: Association for Computing Machinery,
2022. isbn: 9781450393515. doi: 10.1145/3531130.3532398. url: https:
//doi.org/10.1145/3531130.3532398.

[Gra23] Daniel Gratzer. Normalization for multimodal type theory. 2023. arXiv:
2301.11842 [cs.LO].

[GB22] Daniel Gratzer and Lars Birkedal. “A Stratified Approach to Löb Induction”.
In: 7th International Conference on Formal Structures for Computation
and Deduction (FSCD 2022). Ed. by Amy Felty. Vol. 228. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Saarbrücken, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2022. doi: 10.4230/LIPIcs.
FSCD.2022.3. url: https://jozefg.github.io/papers/a-stratified-
approach-to-lob-induction.pdf.

https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1145/571157.571161
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1007/978-3-030-88701-8_19
https://doi.org/10.1007/978-3-030-88701-8_19
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398
https://arxiv.org/abs/2301.11842
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://jozefg.github.io/papers/a-stratified-approach-to-lob-induction.pdf
https://jozefg.github.io/papers/a-stratified-approach-to-lob-induction.pdf


Bibliography 270

[Gra+22] Daniel Gratzer, Evan Cavallo, G. A. Kavvos, Adrien Guatto, and Lars
Birkedal. “Modalities and Parametric Adjoints”. In: ACM Trans. Comput.
Logic 23.3 (Apr. 2022). issn: 1529-3785. doi: 10.1145/3514241. url:
https://doi.org/10.1145/3514241.

[Gra+21] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Multi-
modal Dependent Type Theory”. In: Logical Methods in Computer Science
Volume 17, Issue 3 (July 2021). doi: 10.46298/lmcs-17(3:11)2021. url:
https://lmcs.episciences.org/7713.

[Gra+20a] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Mul-
timodal Dependent Type Theory”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’20. ACM,
2020. doi: 10.1145/3373718.3394736.

[Gra+20b] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. Type
Theory à la Mode. Technical Report for the LICS paper ”Multimodal
Dependent Type Theory”. 2020. url: https : / / jozefg . github . io /

papers/type-theory-a-la-mode.pdf.

[GSS22] Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes
for Grothendieck topoi. 2022. arXiv: 2202.12012 [math.CT].

[GS20] Daniel Gratzer and Jonathan Sterling. Syntactic categories for dependent
type theory: sketching and adequacy. 2020. arXiv: 2012.10783 [cs.LO].

[Gra+23] Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand, and
Lars Birkedal. Controlling unfolding in type theory. 2023.

[GSB19a] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. “Implementing a
Modal Dependent Type Theory”. In: Proc. ACM Program. Lang. 3 (ICFP
2019). doi: 10.1145/3341711.

[GSB19b] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Normalization-by-
Evaluation for Modal Dependent Type Theory. Technical Report for the
ICFP paper by the same name. 2019. url: https://jozefg.github.

io/papers/2019-implementing-modal-dependent-type-theory-tech-

report.pdf.

[Gro+17] Jacob A Gross, Daniel R Licata, Max S New, Jennifer Paykin, Mitchell
Riley, Michael Shulman, and Felix Wellen. “Differential Cohesive Type
Theory (Extended Abstract)”. In: Extended abstracts for the Workshop
”Homotopy Type Theory and Univalent Foundations”. 2017. url: https:
//hott-uf.github.io/2017/abstracts/cohesivett.pdf.

[Gua18] Adrien Guatto. “A Generalized Modality for Recursion”. In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS ’18. ACM, 2018. doi: 10.1145/3209108.3209148.

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The synchronous
data flow programming language LUSTRE”. In: Proceedings of the IEEE
79.9 (1991), pp. 1305–1320. doi: 10.1109/5.97300.

[HB21] Philipp G. Haselwarter and Andrej Bauer. Finitary type theories with and
without contexts. 2021. arXiv: 2112.00539 [math.LO].

https://doi.org/10.1145/3514241
https://doi.org/10.1145/3514241
https://doi.org/10.46298/lmcs-17(3:11)2021
https://lmcs.episciences.org/7713
https://doi.org/10.1145/3373718.3394736
https://jozefg.github.io/papers/type-theory-a-la-mode.pdf
https://jozefg.github.io/papers/type-theory-a-la-mode.pdf
https://arxiv.org/abs/2202.12012
https://arxiv.org/abs/2012.10783
https://doi.org/10.1145/3341711
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://hott-uf.github.io/2017/abstracts/cohesivett.pdf
https://hott-uf.github.io/2017/abstracts/cohesivett.pdf
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1109/5.97300
https://arxiv.org/abs/2112.00539


Bibliography 271

[Hof99] Martin Hofmann. “Semantical Analysis of Higher-Order Abstract Syntax”.
In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer
Science. LICS ’99. Washington, DC, USA: IEEE Computer Society, 1999,
pp. 204–. isbn: 0-7695-0158-3. url: http://dl.acm.org/citation.cfm?
id=788021.788940.

[HS97] Martin Hofmann and Thomas Streicher. “Lifting Grothendieck Universes”.
Unpublished note. 1997. url: https://www2.mathematik.tu-darmstadt.
de/~streicher/NOTES/lift.pdf.

[HP23] Jason Z. S. Hu and Brigitte Pientka. “A Categorical Normalization Proof
for the Modal Lambda-Calculus”. In: Electronic Notes in Theoretical Infor-
matics and Computer Science Volume 1 - Proceedings of MFPS XXXVIII
(Feb. 2023). doi: 10.46298/entics.10360.

[HPS22] Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schöpp. “A Category Theoretic
View of Contextual Types: From Simple Types to Dependent Types”.
In: ACM Trans. Comput. Logic 23.4 (Oct. 2022). issn: 1529-3785. doi:
10.1145/3545115. url: https://doi.org/10.1145/3545115.

[Hyl82] J.M.E. Hyland. “The Effective Topos”. In: The L. E. J. Brouwer Centenary
Symposium. Ed. by A.S. Troelstra and D. van Dalen. Vol. 110. Studies in
Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 165–216.
doi: 10.1016/S0049-237X(09)70129-6.

[Jan+22] Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka.
“Mundefinedbius: Metaprogramming Using Contextual Types: The Stage
Where System f Can Pattern Match on Itself”. In: Proc. ACM Program.
Lang. 6.POPL (Jan. 2022). doi: 10.1145/3498700.

[Jef12] Alan Jeffrey. “LTL Types FRP: Linear-Time Temporal Logic Propositions as
Types, Proofs as Functional Reactive Programs”. In: Proceedings of the Sixth
Workshop on Programming Languages Meets Program Verification. PLPV
’12. Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
2012, pp. 49–60. isbn: 9781450311250. doi: 10.1145/2103776.2103783.

[Jef14] Alan Jeffrey. “Functional Reactive Types”. In: Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). CSL-LICS ’14. Vienna, Austria:
Association for Computing Machinery, 2014. isbn: 9781450328869. doi:
10.1145/2603088.2603106. url: https://doi.org/10.1145/2603088.
2603106.

[Jel13] Wolfgang Jeltsch. “Temporal Logic with ”Until”, Functional Reactive Pro-
gramming with Processes, and Concrete Process Categories”. In: Proceedings
of the 7th Workshop on Programming Languages Meets Program Verifica-
tion. PLPV ’13. Rome, Italy: Association for Computing Machinery, 2013,
pp. 69–78. isbn: 9781450318600. doi: 10.1145/2428116.2428128.

[Joh02] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Oxford Logic Guides. Clarendon Press, 2002. isbn: 9780198515982.

http://dl.acm.org/citation.cfm?id=788021.788940
http://dl.acm.org/citation.cfm?id=788021.788940
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://doi.org/10.46298/entics.10360
https://doi.org/10.1145/3545115
https://doi.org/10.1145/3545115
https://doi.org/10.1016/S0049-237X(09)70129-6
https://doi.org/10.1145/3498700
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2603088.2603106
https://doi.org/10.1145/2603088.2603106
https://doi.org/10.1145/2603088.2603106
https://doi.org/10.1145/2428116.2428128


Bibliography 272

[Jun+16] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-
Order Ghost State”. In: SIGPLAN Not. 51.9 (Sept. 2016), pp. 256–269.
issn: 0362-1340. doi: 10.1145/3022670.2951943.

[Jun+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. “Iris from the ground up: A modular foundation
for higher-order concurrent separation logic”. In: Journal of Functional
Programming 28 (2018). doi: 10.1017/S0956796818000151.

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning”. In: SIGPLAN Not. 50.1 (Jan.
2015), pp. 637–650. issn: 0362-1340. doi: 10.1145/2775051.2676980.

[KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for type
theory”. In: Proceedings of the 4th International Conference on Formal
Structures for Computation and Deduction (FSCD 2019). Ed. by Herman
Geuvers. Vol. 131. 2019.

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. “Construct-
ing Quotient Inductive-inductive Types”. In: Proc. ACM Program. Lang.
3.POPL (Jan. 2019), 2:1–2:24. issn: 2475-1421. doi: 10.1145/3290315.

[KL21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model
of Univalent Foundations (after Voevodsky)”. In: Journal of the European
Mathematical Society 6 (2021), pp. 2071–2126. doi: 10.4171/JEMS/1050.

[Kav17] G. A. Kavvos. “Dual-context calculi for modal logic”. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). 2017, pp. 1–
12. doi: 10.1109/LICS.2017.8005089. arXiv: 1602.04860.

[Kav19] G. A. Kavvos. “Modalities, Cohesion, and Information Flow”. In: Proceedings
of the ACM on Programming Languages 3 (POPL 2019), 20:1–20:29. doi:
10.1145/3290333.

[KG23] G. A. Kavvos and Daniel Gratzer. “Under Lock and Key: A Proof System
for a Multimodal Logic”. In: Bulletin of Symbolic Logic (2023), pp. 1–30.
doi: 10.1017/bsl.2023.14.

[KI19] Akira Kawata and Atsushi Igarashi. “A Dependently Typed Multi-stage
Calculus”. In: Programming Languages and Systems. Ed. by Anthony Wid-
jaja Lin. Cham: Springer International Publishing, 2019, pp. 53–72. isbn:
978-3-030-34175-6.

[KPT99] Yoshiki Kinoshita, John Power, and Makoto Takeyama. “Sketches”. In:
Journal of Pure and Applied Algebra 143.1 (1999), pp. 275–291. issn: 0022-
4049. doi: 10.1016/S0022-4049(98)00114-5.

[Kle50] S. C. Kleene. “A symmetric form of Gödel’s theorem”. In: Ind. Math (1950),
12:244–246. doi: 10.2307/2266709.

[Kov22] András Kovács. “Staged Compilation with Two-Level Type Theory”. In:
Proc. ACM Program. Lang. 6.ICFP (Aug. 2022). doi: 10.1145/3547641.

https://doi.org/10.1145/3022670.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1145/3290315
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1109/LICS.2017.8005089
https://arxiv.org/abs/1602.04860
https://doi.org/10.1145/3290333
https://doi.org/10.1017/bsl.2023.14
https://doi.org/10.1016/S0022-4049(98)00114-5
https://doi.org/10.2307/2266709
https://doi.org/10.1145/3547641


Bibliography 273

[KB11] Neelakantan Krishnaswami and Nick Benton. “Ultrametric Semantics of
Reactive Programs”. In: Proceedings of the 26th Annual IEEE Symposium
on Logic in Computer Science. IEEE Computer Society, June 2011.

[Kri13] Neelakantan R. Krishnaswami. “Higher-Order Functional Reactive Pro-
gramming without Spacetime Leaks”. In: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming. ICFP ’13.
Boston, Massachusetts, USA: Association for Computing Machinery, 2013,
pp. 221–232. isbn: 9781450323260. doi: 10.1145/2500365.2500588. url:
https://doi.org/10.1145/2500365.2500588.

[KBH12] Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann. “Higher-
Order Functional Reactive Programming in Bounded Space”. In: Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’12. Philadelphia, PA, USA: Association
for Computing Machinery, 2012, pp. 45–58. isbn: 9781450310833. doi:
10.1145/2103656.2103665.

[KPB15] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. “Integrating
Linear and Dependent Types”. In: SIGPLAN Not. 50.1 (Jan. 2015), pp. 17–
30. issn: 0362-1340. doi: 10.1145/2775051.2676969.

[KMV22] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea
Vezzosi. “Greatest HITs: Higher inductive types in coinductive definitions
via induction under clocks”. In: Proceedings of the 37th Annual ACM/IEEE
Symposium on Logic in Computer Science. New York, NY, USA: Association
for Computing Machinery, 2022. doi: 10.1145/3531130.3533359.

[Lac09] Stephen Lack. “A 2-Categories Companion”. In: The IMA Volumes in
Mathematics and its Applications (Sept. 2009), pp. 105–191. issn: 0940-
6573. doi: 10.1007/978-1-4419-1524-5_4.

[LS88] Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Cat-
egorical Logic. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1988. isbn: 9780521356534.

[Law07] F. William Lawvere. “Axiomatic cohesion”. In: Theory and Applications
of Categories 19.3 (2007), pp. 41–49. url: http://www.tac.mta.ca/tac/
volumes/19/3/19-03.pdf.

[Lic+18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. “Internal
Universes in Models of Homotopy Type Theory”. In: 3rd International
Conference on Formal Structures for Computation and Deduction (FSCD
2018). Ed. by H. Kirchner. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 22:1–
22:17. doi: 10.4230/LIPIcs.FSCD.2018.22. eprint: 1801.07664.

[LS16] Daniel R. Licata and Michael Shulman. “Adjoint Logic with a 2-Category
of Modes”. In: Logical Foundations of Computer Science. Ed. by Sergei
Artemov and Anil Nerode. Springer International Publishing, 2016, pp. 219–
235. doi: 10.1007/978-3-319-27683-0_16.

https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/2103656.2103665
https://doi.org/10.1145/2775051.2676969
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1007/978-1-4419-1524-5_4
http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf
http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
1801.07664
https://doi.org/10.1007/978-3-319-27683-0_16


Bibliography 274

[LSR17] Daniel R. Licata, Michael Shulman, and Mitchell Riley. “A Fibrational
Framework for Substructural and Modal Logics”. In: 2nd International
Conference on Formal Structures for Computation and Deduction (FSCD
2017). Ed. by Dale Miller. Vol. 84. Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017, 25:1–25:22. doi: 10.4230/LIPIcs.FSCD.2017.25.

[LW15] Peter Lefanu Lumsdaine and Michael A. Warren. “The local universes model,
an overlooked coherence construction for dependent type theories”. In: ACM
Transactions on Computational Logic 16.3 (2015). doi: 10.1145/2754931.

[Lur09] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009. isbn:
9780691140490.

[Lur22] Jacob Lurie. Kerodon. https://kerodon.net. 2022.

[MM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic : a
first introduction to topos theory. Universitext. New York: Springer, 1992.
isbn: 0-387-97710-4.

[MMV20] Bassel Mannaa, Rasmus Ejlers Møgelberg, and Niccolò Veltri. “Ticking
clocks as dependent right adjoints: Denotational semantics for clocked type
theory”. In: Logical Methods in Computer Science Volume 16, Issue 4 (Dec.
2020). doi: 10.23638/LMCS-16(4:17)2020.

[Mar82] Per Martin-Löf. “Constructive Mathematics and Computer Programming”.
In: Logic, Methodology and Philosophy of Science VI. Ed. by L. Jonathan Co-
hen, Jerzy  Loś, Helmut Pfeiffer, and Klaus-Peter Podewski. Vol. 104. Studies
in Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 153–175.
doi: 10.1016/S0049-237X(09)70189-2.

[Mar92] Per Martin-Löf. Substitution calculus. Notes from a lecture given in Göteborg.
1992.

[May01] J.P. May. “Picard Groups, Grothendieck Rings, and Burnside Rings of
Categories”. In: Advances in Mathematics 163.1 (2001), pp. 1–16. issn:
0001-8708. doi: 10.1006/aima.2001.1996.

[MP08] Conor McBride and Ross Paterson. “Applicative programming with ef-
fects”. In: Journal of Functional Programming 18.1 (2008). doi: 10.1017/
S0956796807006326. url: http : / / www . staff . city . ac . uk / ~ross /

papers/Applicative.pdf.

[MS93] John C. Mitchell and Andre Scedrov. “Notes on sconing and relators”. In:
Computer Science Logic. Ed. by E. Börger, G. Jäger, H. Kleine Büning, S.
Martini, and M. M. Richter. Springer Berlin Heidelberg, 1993, pp. 352–378.
doi: 10.1007/3-540-56992-8_21.

[Møg14] Rasmus Ejlers Møgelberg. “A Type Theory for Productive Coprogramming
via Guarded Recursion”. In: Proceedings of the Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). CSL-LICS ’14. 2014. doi: 10.1145/2603088.2603132.

https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1145/2754931
https://kerodon.net
https://doi.org/10.23638/LMCS-16(4:17)2020
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1006/aima.2001.1996
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf
http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf
https://doi.org/10.1007/3-540-56992-8_21
https://doi.org/10.1145/2603088.2603132


Bibliography 275

[MP16] Rasmus Ejlers Møgelberg and Marco Paviotti. “Denotational semantics of
recursive types in synthetic guarded domain theory”. English. In: LICS ’16
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science. United States: Association for Computing Machinery, 2016,
pp. 317–326. isbn: 978-1-4503-4391-6. doi: 10.1145/2933575.2934516.

[MV19] Rasmus Ejlers Møgelberg and Niccolò Veltri. “Bisimulation as Path Type
for Guarded Recursive Types”. In: Proceedings of the ACM on Programming
Languages 3.POPL (Dec. 2019). doi: 10.1145/3290317.

[MV21] Rasmus Ejlers Møgelberg and Andrea Vezzosi. “Two Guarded Recursive
Powerdomains for Applicative Simulation”. In: Proceedings 37th Conference
on Mathematical Foundations of Programming Semantics. Vol. 351. Elec-
tronic Proceedings in Theoretical Computer Science, Dec. 2021, pp. 200–217.
doi: 10.4204/EPTCS.351.13.

[MEO21] Benjamin Moon, Harley Eades III, and Dominic Orchard. “Graded Modal
Dependent Type Theory”. In: Programming Languages and Systems. Ed. by
Nobuko Yoshida. Cham: Springer International Publishing, 2021, pp. 462–
490. isbn: 978-3-030-72019-3.

[Mur08] Tom Murphy VII. “Modal Types for Mobile Code”. Available as technical
report CMU-CS-08-126. PhD thesis. Carnegie Mellon, Jan. 2008. url:
http://tom7.org/papers/.

[MCH05] Tom Murphy VII, Karl Crary, and Robert Harper. “Distributed Control
Flow with Classical Modal Logic”. In: Computer Science Logic, 19th In-
ternational Workshop (CSL 2005). Ed. by Luke Ong. Lecture Notes in
Computer Science. Oxford, UK: Springer, Aug. 2005.

[MCH07] Tom Murphy VII, Karl Crary, and Robert Harper. “Type-safe Distributed
Programming with ML5”. In: Trustworthy Global Computing 2007. Sophia-
Antipolis, France, Nov. 2007.

[Mur+04] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. “A
Symmetric Modal Lambda Calculus for Distributed Computing”. In: Pro-
ceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS
2004). Turku, Finland: IEEE Press, July 2004.

[MR23] David Jaz Myers and Mitchell Riley. Commuting Cohesions. 2023. arXiv:
2301.13780 [math.CT].

[Nak00] H. Nakano. “A modality for recursion”. In: Proceedings Fifteenth Annual
IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
IEEE Computer Society, 2000, pp. 255–266.

[NP05] Aleksandar Nanevski and Frank Pfenning. “Staged computation with names
and necessity”. In: Journal of Functional Programming 15.6 (2005), pp. 893–
939. doi: 10.1017/S095679680500568X.

[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. “Contextual
Modal Type Theory”. In: ACM Trans. Comput. Logic 9.3 (June 2008). issn:
1529-3785. doi: 10.1145/1352582.1352591.

https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1145/3290317
https://doi.org/10.4204/EPTCS.351.13
http://tom7.org/papers/
https://arxiv.org/abs/2301.13780
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1145/1352582.1352591


Bibliography 276

[NU22] Hoang Kim Nguyen and Taichi Uemura. ∞-type theories. 2022. arXiv:
2205.00798 [math.CT].

[Niu+22] Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. “A Cost-
Aware Logical Framework”. In: Proceedings of the ACM on Programming
Languages 6.POPL (Jan. 2022). doi: 10.1145/3498670. arXiv: 2107.04663
[cs.PL].

[NPS90] Bengt Nordström, Kent Peterson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory. Vol. 7. International Series of Monographs on
Computer Science. NY: Oxford University Press, 1990.

[Nuy20] Andreas Nuyts. “Contributions to Multimode and Presheaf Type Theory”.
PhD thesis. KU Leuven, 2020.

[Nuy23] Andreas Nuyts. “A Lock Calculus for Multimode Type Theory”. In: 28th
International Conference on Types for Proofs and Programs (TYPES 2023).
2023.

[ND18] Andreas Nuyts and Dominique Devriese. “Degrees of Relatedness: A Unified
Framework for Parametricity, Irrelevance, Ad-Hoc Polymorphism, Intersec-
tions, Unions and Algebra in Dependent Type Theory”. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS ’18. ACM, 2018. doi: 10.1145/3209108.3209119.

[ND21] Andreas Nuyts and Dominique Devriese. Transpension: The Right Adjoint
to the Pi-type. 2021. url: https://arxiv.org/abs/2008.08533.

[OP18] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type
Theory in a Topos”. In: Logical Methods in Computer Science 14.4 (2018).
doi: 10.23638/LMCS-14(4:23)2018. arXiv: 1712.04864.

[PS23] Daniele Palombi and Jonathan Sterling. “Classifying topoi in synthetic
guarded domain theory”. In: Proceedings 38th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2022. Feb. 2023. doi: 10.
46298/entics.10323.

[Pal93] Jens Palsberg. “Correctness of binding-time analysis”. In: Journal of Func-
tional Programming 3.3 (1993), pp. 347–363. doi: 10.1017/S0956796800000770.

[PMB15] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. “A Model
of PCF in Guarded Type Theory”. In: Electronic Notes in Theoretical
Computer Science 319.Supplement C (2015). The 31st Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXI),
pp. 333–349. issn: 1571-0661. doi: 10.1016/j.entcs.2015.12.020.

[PD01] Frank Pfenning and Rowan Davies. “A Judgmental Reconstruction of
Modal Logic”. In: Mathematical Structures in Computer Science 11.4 (2001),
pp. 511–540. doi: 10.1017/S0960129501003322. url: http://www.cs.
cmu.edu/~fp/papers/mscs00.pdf.

[Rie16] Emily Riehl. Category Theory in Context. Aurora: Dover Modern Math
Originals. Dover Publications, 2016. isbn: 9780486809038.

[RS17] Emily Riehl and Michael Shulman. “A type theory for synthetic∞-categories”.
In: Higher Structures 1 (1 2017), pp. 147–224. doi: 10.21136/HS.2017.06.

https://arxiv.org/abs/2205.00798
https://doi.org/10.1145/3498670
https://arxiv.org/abs/2107.04663
https://arxiv.org/abs/2107.04663
https://doi.org/10.1145/3209108.3209119
https://arxiv.org/abs/2008.08533
https://doi.org/10.23638/LMCS-14(4:23)2018
https://arxiv.org/abs/1712.04864
https://doi.org/10.46298/entics.10323
https://doi.org/10.46298/entics.10323
https://doi.org/10.1017/S0956796800000770
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1017/S0960129501003322
http://www.cs.cmu.edu/~fp/papers/mscs00.pdf
http://www.cs.cmu.edu/~fp/papers/mscs00.pdf
https://doi.org/10.21136/HS.2017.06


Bibliography 277

[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. “Modalities in homotopy
type theory”. In: Logical Methods in Computer Science 16.1 (2020). eprint:
1706.07526.

[Ril22] Mitchell Riley. “A Bunched Homotopy Type Theory for Synthetic Stable
Homotopy Theory”. PhD thesis. Wesleyan University, 2022. doi: 10.14418/
wes01.3.139.

[Ros36] Barkley Rosser. “Extensions of Some Theorems of Gödel and Church”. In:
The Journal of Symbolic Logic 1.3 (1936), pp. 87–91. issn: 00224812. url:
http://www.jstor.org/stable/2269028 (visited on 08/08/2022).

[SS20] Hisham Sati and Urs Schreiber. Proper Orbifold Cohomology. 2020. arXiv:
2008.01101 [math.AT].

[SS86] Stephen Schanuel and Ross Street. “The free adjunction”. en. In: Cahiers de
Topologie et Géométrie Différentielle Catégoriques 27.1 (1986), pp. 81–83.
url: http://www.numdam.org/item/CTGDC_1986__27_1_81_0.

[Sch13] Urs Schreiber. Differential cohomology in a cohesive infinity-topos. 2013.
arXiv: 1310.7930 [math-ph].

[SS12] Urs Schreiber and Michael Shulman. “Quantum Gauge Field Theory in
Cohesive Homotopy Type Theory”. In: Proceedings 9th Workshop on Quan-
tum Physics and Logic, QPL 2012, Brussels, Belgium, 10-12 October 2012.
Ed. by Ross Duncan and Prakash Panangaden. Vol. 158. EPTCS. 2012,
pp. 109–126. doi: 10.4204/EPTCS.158.8. url: https://doi.org/10.
4204/EPTCS.158.8.

[Sco70] Dana Scott. “Advice on Modal Logic”. In: Philosophical Problems in Logic:
Some Recent Developments. Ed. by Karel Lambert. Dordrecht: Springer
Netherlands, 1970, pp. 143–173. isbn: 978-94-010-3272-8. doi: 10.1007/978-
94-010-3272-8_7.

[Shu15a] Michael Shulman. “The Univalence Axiom for Elegant Reedy Presheaves”.
In: Homology, Homotopy and Applications 17 (2 2015), pp. 81–106.

[Shu15b] Michael Shulman. “Univalence for inverse diagrams and homotopy canonic-
ity”. In: Mathematical Structures in Computer Science 25.5 (2015), pp. 1203–
1277. doi: 10.1017/S0960129514000565. eprint: 1203.3253.

[Shu18] Michael Shulman. “Brouwer’s fixed-point theorem in real-cohesive homotopy
type theory”. In: Mathematical Structures in Computer Science 28.6 (2018),
pp. 856–941. doi: 10.1017/S0960129517000147. url: https://doi.org/
10.1017/S0960129517000147.

[Shu19] Michael Shulman. All (∞, 1)-toposes have strict univalent universes. 2019.
arXiv: 1904.07004 [math.AT].

[Shu23] Michael Shulman. Semantics of multimodal adjoint type theory. 2023. url:
https://arxiv.org/abs/2303.02572.

[SP82] M. B. Smyth and G. D. Plotkin. “The Category-Theoretic Solution of
Recursive Domain Equations”. In: SIAM Journal on Computing 11.4 (1982),
pp. 761–783. doi: 10.1137/0211062.

1706.07526
https://doi.org/10.14418/wes01.3.139
https://doi.org/10.14418/wes01.3.139
http://www.jstor.org/stable/2269028
https://arxiv.org/abs/2008.01101
http://www.numdam.org/item/CTGDC_1986__27_1_81_0
https://arxiv.org/abs/1310.7930
https://doi.org/10.4204/EPTCS.158.8
https://doi.org/10.4204/EPTCS.158.8
https://doi.org/10.4204/EPTCS.158.8
https://doi.org/10.1007/978-94-010-3272-8_7
https://doi.org/10.1007/978-94-010-3272-8_7
https://doi.org/10.1017/S0960129514000565
1203.3253
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1017/S0960129517000147
https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/2303.02572
https://doi.org/10.1137/0211062


Bibliography 278

[Spi+21] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert
Krebbers, Derek Dreyer, and Lars Birkedal. “Transfinite Iris: Resolving an
Existential Dilemma of Step-Indexed Separation Logic”. In: Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 80–95. isbn: 9781450383912. url:
https://doi.org/10.1145/3453483.3454031.

[SGB23a] Philipp Stassen, Daniel Gratzer, and Lars Birkedal. “{mitten}: A Flexible
Multimodal Proof Assistant”. In: 28th International Conference on Types for
Proofs and Programs (TYPES 2022). Ed. by Delia Kesner and Pierre-Marie
Pédrot. Vol. 269. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023, 6:1–6:23. isbn: 978-3-95977-285-3. doi: 10.4230/LIPIcs.TYPES.

2022.6.

[Ste21] Jonathan Sterling. “First Steps in Synthetic Tait Computability: The Ob-
jective Metatheory of Cubical Type Theory”. CMU technical report CMU-
CS-21-142. PhD thesis. Carnegie Mellon University, 2021. doi: 10.5281/
zenodo.5709838.

[Ste22] Jonathan Sterling. “Näıve logical relations in synthetic Tait computability”.
Unpublished manuscript. June 2022.

[SA21] Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type
Theory”. In: Proceedings of the 36th Annual ACM/IEEE Symposium on
Logic in Computer Science. LICS ’21. New York, NY, USA: ACM, 2021.

[SAG19] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “Cubical Syntax for
Reflection-Free Extensional Equality”. In: 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019). Ed. by
Herman Geuvers. Vol. 131. Leibniz International Proceedings in Informatics
(LIPIcs). 2019, 31:1–31:25. isbn: 978-3-95977-107-8. doi: 10.4230/LIPIcs.
FSCD.2019.31. url: http://drops.dagstuhl.de/opus/volltexte/

2019/10538.

[SAG22] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “A Cubical Language
for Bishop Sets”. In: Logical Methods in Computer Science Volume 18,
Issue 1 (Mar. 2022). doi: 10.46298/lmcs-18(1:43)2022. url: https:
//lmcs.episciences.org/9264.

[SGB23b] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Denotational seman-
tics of general store and polymorphism. 2023. arXiv: 2210.02169 [cs.PL].

[SGB23c] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. “Free theorems
from univalent reference types: the impact of univalence on denotational
semantics”. 2023.

[SH21] Jonathan Sterling and Robert Harper. “Logical Relations as Types: Proof-
Relevant Parametricity for Program Modules”. In: Journal of the ACM
68.6 (2021). issn: 0004-5411. doi: 10.1145/3474834. arXiv: 2010.08599
[cs.PL].

https://doi.org/10.1145/3453483.3454031
https://doi.org/10.4230/LIPIcs.TYPES.2022.6
https://doi.org/10.4230/LIPIcs.TYPES.2022.6
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
http://drops.dagstuhl.de/opus/volltexte/2019/10538
http://drops.dagstuhl.de/opus/volltexte/2019/10538
https://doi.org/10.46298/lmcs-18(1:43)2022
https://lmcs.episciences.org/9264
https://lmcs.episciences.org/9264
https://arxiv.org/abs/2210.02169
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599
https://arxiv.org/abs/2010.08599


Bibliography 279

[SH22] Jonathan Sterling and Robert Harper. “Sheaf semantics of termination-
insensitive noninterference”. In: 7th International Conference on Formal
Structures for Computation and Deduction (FSCD 2022). Ed. by Amy P.
Felty. Vol. 228. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Aug. 2022, 5:1–5:19. isbn: 978-3-95977-233-4. doi: 10.4230/LIPIcs.FSCD.
2022.5. arXiv: 2204.09421 [cs.PL].

[Str98] Thomas Streicher. “Categorical intuitions underlying semantic normalisa-
tion proofs”. In: Preliminary Proceedings of the APPSEM Workshop on
Normalisation by Evaluation. Ed. by O. Danvy and P. Dybjer. Department
of Computer Science, Aarhus University, 1998.

[Str05] Thomas Streicher. “Universes in toposes”. In: From Sets and Types to
Topology and Analysis: Towards practical foundations for constructive math-
ematics. Ed. by Laura Crosilla and Peter Schuster. Vol. 48. Oxford Logical
Guides. Oxford: Oxford University Press, 2005, pp. 78–90. isbn: 978-0-19-
856651-9. doi: 10.1093/acprof:oso/9780198566519.001.0001.

[Tai67] W. W. Tait. “Intensional Interpretations of Functionals of Finite Type I”. In:
Journal of Symbolic Logic 32.2 (1967), pp. 198–212. doi: 10.2307/2271658.

[Tra53] B. A. Trahtenbrot. “On Recursive Separability”. In: Dokl. Acad. Nauk 88
(1953), pp. 953–956.

[TDB13] Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying Refinement
and Hoare-Style Reasoning in a Logic for Higher-Order Concurrency”. In:
Proceedings of the 18th ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’13. Boston, Massachusetts, USA: Association
for Computing Machinery, 2013, pp. 377–390. isbn: 9781450323260. doi:
10.1145/2500365.2500600.

[Tur+13] Aaron J. Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek
Dreyer. “Logical Relations for Fine-Grained Concurrency”. In: SIGPLAN
Not. 48.1 (Jan. 2013), pp. 343–356. issn: 0362-1340. doi: 10.1145/2480359.
2429111.

[Uem19] Taichi Uemura. “A General Framework for the Semantics of Type Theory”.
In: (Apr. 2019). eprint: 1904.04097 (math.CT). url: https://arxiv.org/
abs/1904.04097.

[Uem21] Taichi Uemura. “Abstract and Concrete Type Theories”. PhD thesis. In-
stitute for Logic, Language and Computation, University of Amsterdam,
2021.

[Uem23] Taichi Uemura. Towards modular proof of normalization for type theories.
Talk at the WG6 meeting in Vienna. 2023.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study, 2013. url:
https://homotopytypetheory.org/book.

[VRT22] Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas. “Nor-
malization for Fitch-Style Modal Calculi”. In: Proc. ACM Program. Lang.
6.ICFP (Aug. 2022). doi: 10.1145/3547649.

https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://arxiv.org/abs/2204.09421
https://doi.org/10.1093/acprof:oso/9780198566519.001.0001
https://doi.org/10.2307/2271658
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2480359.2429111
https://doi.org/10.1145/2480359.2429111
1904.04097
https://arxiv.org/abs/1904.04097
https://arxiv.org/abs/1904.04097
https://homotopytypetheory.org/book
https://doi.org/10.1145/3547649


Bibliography 280

[VV20] Niccolò Veltri and Andrea Vezzosi. “Formalizing π-calculus in guarded
cubical Agda”. In: Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs. 2020, pp. 270–283.

[Vez18] Andrea Vezzosi. agda-flat. 2018. url: https://github.com/agda/agda/
tree/flat.

[Voe14] Vladimir Voevodsky. “A C-system defined by a universe category”. In:
Theory and Applications of Categories 30 (Sept. 2014).

[Wat+04] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. “A
Concurrent Logical Framework: The Propositional Fragment”. In: Types for
Proofs and Programs. Ed. by Stefano Berardi, Mario Coppo, and Ferruccio
Damiani. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 355–377.
doi: 10.1007/978-3-540-24849-1_23.

[WL20] Matthew Z. Weaver and Daniel R. Licata. “A Constructive Model of
Directed Univalence in Bicubical Sets”. In: Proceedings of the 35th An-
nual ACM/IEEE Symposium on Logic in Computer Science. LICS ’20.
Saarbrücken, Germany: Association for Computing Machinery, 2020, pp. 915–
928. isbn: 9781450371049. doi: 10.1145/3373718.3394794.

[Wei22] Jonathan Weinberger. “A Synthetic Perspective on (∞, 1)-Category Theory:
Fibrational and Semantic Aspects”. PhD thesis. TU Darmstadt, 2022. doi:
10.26083/tuprints-00020716.

[XE16] Chuangjie Xu and Mart́ın Escardó. Universes in sheaf models. Unpublished
note. 2016. url: https://cj-xu.github.io/notes/sheaf_universe.
pdf.

[Zwa19] Colin Zwanziger. “Natural Model Semantics for Comonadic and Adjoint
Type Theory: Extended Abstract”. In: Preproceedings of Applied Category
Theory Conference 2019. 2019.

[Zwa22] Colin Zwanziger. “The Natural Display Topos of Coalgebras”. PhD thesis.
Carnegie Mellon University, 2022.

https://github.com/agda/agda/tree/flat
https://github.com/agda/agda/tree/flat
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1145/3373718.3394794
https://doi.org/10.26083/tuprints-00020716
https://cj-xu.github.io/notes/sheaf_universe.pdf
https://cj-xu.github.io/notes/sheaf_universe.pdf

	Abstract
	Resumé
	Publications
	Acknowledgments
	Contents
	Introduction
	Modalities in computer science
	Modalities within mathematics
	Modal type theory
	Contributions
	Structure of this thesis

	Preliminaries
	Type theory
	Logical frameworks and syntax, formal and informal
	The judgments and basic inferences of type theory
	A tour of various connectives of Martin-Löf type theory
	Metatheorems and their motivation

	Category theory and categorical semantics
	Basic notions in category theory
	Universes in categories
	Examples of categories with universes
	Models of dependent type theory
	Promoting a universe to a model

	Synthetic Tait computability
	Gluing and synthetic Tait computability
	Preliminary constructions
	The canonicity model
	The canonicity theorem


	Modalities in type theory
	Towards multimodal type theory
	A motivating example
	Fibered modalities
	One non-fibered modality
	Dual-context type theories
	Fitch-style/Kripke-style type theories
	Parametric adjoints
	Conclusions

	MTT: multimodal type theory
	MTT, informally
	MTT, formally
	Possible extensions to MTT
	Adjoint modalities

	Semantics of MTT
	Natural models of MTT
	(Weak) dependent right adjoints and models of MTT
	Independence of various extensions of MTT
	Relating modal type theories to MTT

	Normalization for MTT
	Introduction
	Normal and neutral forms in MTT
	Models and cosmoi
	Multimodal Synthetic Tait computability
	The normalization cosmos
	The normalization algorithm
	Normalization in the presence of extensions


	Applications of multimodal type theory
	Guarded recursion
	Introduction
	Presheaf models of guarded recursion
	Mode theories for guarded recursion
	Extensional guarded MTT
	Decidable conversion and Löb induction
	Stratified guarded MTT
	Conclusions

	A synthetic version of Iris
	A type theory for synthetic Iris
	A language for concurrency and references
	Cored resource algebras
	The type of propositions
	The program logic
	Adequacy
	Conclusions


	Conclusions and outlook
	Conclusions
	Related Work
	Open questions and future work

	Bibliography


