
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A modal deconstruction of Löb induction
Anonymous Author(s)

ABSTRACT
We present a novel analysis of the fundamental Löb induction prin-

ciple from guarded recursion. Taking advantage of recent work

in modal type theory and univalent foundations, we derive Löb

induction from a simpler and more conceptual set of primitives. We

then capitalize on these insights to presentGatsby, the first guarded
type theory capturing the rich modal structure of the topos of trees

alongside Löb induction without immediately precluding canonic-

ity or normalization. We show that Gatsby can recover many prior

approaches to guarded recursion and use its additional power to im-

prove on prior examples. We crucially rely on homotopical insights

and Gatsby constitutes a new application of univalent foundations

to the theory of programming languages.

ACM Reference Format:
Anonymous Author(s). 2024. A modal deconstruction of Löb induction. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recursive definitions have long been both a hallmark of the theory

of programming languages and a sore point for type theory. Top-

ics as varied as the denotational semantics of _-calculus or logical

relations for higher-order mutable references all prominently fea-

ture complex recursive definitions at their heart. Those techniques

which construct solutions for such recursive equations (domain

theory, step-indexing, etc.) are among the most commonly used

within programming language theory.

On the other hand, recursive definitions in type theory intro-

duce two serious complications. First, and most notably, they are

simply unsound in general. A type theory that includes an un-

restricted fixed-point operator is easily seen to be unsound with

fix(𝑥 .𝑥) : ⊥. This problem is usually addressed by restricting the

fixed-point operator to apply only to types and operations where

we can guarantee the existence of a fixed-point. A typical such

example is present in proof assistants like Coq or Agda, where

only structural recursion is permitted. This discipline is sufficient

to accommodate inductive arguments and similar, but insufficient

for the equations arising in programming languages which often

fail to even induce a monotone operator. A successful line of work

(guarded domain theory) has focused on replacing recursive equa-

tions with guarded recursive equations and applying the results to

programming languages [2, 7, 8, 30].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1.1 Guarded type theory
Guarded domain theory extends type theory with a new connective

▶ (pronounced later) where intuitively ▶𝐴 classifies computations

which will eventually produce an element of 𝐴 but only after work

has been done. Crucially, while there is a natural map next : 𝐴→
▶𝐴 there is no natural map in the reverse direction. It is therefore

sound to add a restricted version of fix, Löb induction:

loeb : (▶𝐴→ 𝐴) → 𝐴

Even after making such a restriction, however, a second problem

emerges: decidability. Modern type theories strive to maintain a

decidable type-checking in order to facilitate an implementation

and even adding the more restrictive operator loeb with the com-

putation rule loeb(𝑓 ) = 𝑓 (next(loeb(𝑓 ))) is sufficient to render

type-checking undecidable. This problem, along with other compli-

cations with integrating ▶ into dependent type theory, has moti-

vated over a decade of proposals for guarded type theory.

Thesis 1. We can summarize the aspirations for an ideal guarded
type theory as the following four goals:

(1) Include ▶ along with e.g., the always comonad.
(2) Include loeb with a propositional equality stating it unfolds.
(3) Ensure that closed elements of Nat compute to numerals.
(4) Ensure that type-checking is decidable.1

Example 1.1. We illustrate how these requirements may be used

simultaneously.We use 1 and 2 to define the type of guarded streams

alongside a propositional equality GStr = Nat × ▶GStr. Using 2

again, we then construct e.g., fibs the guarded stream of Fibonacci

numbers. With the always comonad from 1, we can pass under 𝑛

copies of ▶ to extract the 𝑛th element of fibs. Finally, 3 ensures

that this natural number computes to a genuine numeral while 4

implies that the entire program could be implemented in a proof

assistant.

Historically, even the first of these goals was a serious challenge

since the integration of multiple interacting modalities proved to

be difficult. For instance, much of the work on guarded recursion

uses the global sections or always comonad 2, which cannot be

included as an operation U→ U in type theory [34]. Early attempts

to incorporate both ▶ and 2 simultaneously precluded the final

two desiderata without even considering Löb induction [11, 13].

Recently, Gratzer et al. [18] proposedMTT as a convenient frame-

work for dependent type theories supporting arbitrarily many

modalities, including all those necessary for guarded recursion.

Later work [15] has further shown thatMTT enjoys both decidable

type-checking and canonicity, ensuring that this general framework

can be instantiated to automatically yield a type theory satisfying

Goals 1, 3 and 4. Unfortunately, balancing these requirements with

Goal 2 has proven to be another substantial challenge.

Two flavors of MTT have been proposed which include Löb

induction [17, 18]. Both involve adding loeb as an axiom but there-

after diverge: either adding an axiom ensuring that it unfolds up to

1
This requirement is tantamount to requiring a normalization algorithm.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

propositional equality or simply adding a definitional equality to

this effect. Adding only propositional unfolding will preclude vali-

dating Goal 3 in the resulting type theory. Gratzer and Birkedal [17]

showed, however, that adding definitional unfolding will address

Goal 3 at the cost of refuting Goal 4. Indeed, the “no-go” theorem

of op. cit. caused type theorists to weaken the second aspiration of

guarded type theory from “include loeb with a definitional unfold-

ing equation” to the 2 we listed above.

In this work, we propose a novel alternative approach. We do

not start by axiomatizing Löb induction and attempting to balance

its computation rule with decidability. Instead, we enrich our modal

framework to obtain our new type theory Gatsby and derive Löb
induction from these more basic principles.

1.2 Guarded accessible type theory: Gatsby
Following prior work, we also build Gatsby atopMTT. To do so, we
must choose a mode theory—a 2-category—specifying the collec-

tion of modalities we wish to use. Roughly, each object𝑚 represents

a different type theory which are connected by a modality ⟨` | −⟩
for each morphism ` inM. Finally, the 2-cells in a mode theory

introduce transformations between modalities. However, instanti-

ating MTT on its own is insufficient. We prove that it is impossible

to derive Löb induction just from modalities:

Theorem 2.7 (No-go). For anyM and ` ∈ M, there is no term
(⟨` | Void⟩ → Void) → Void in cubical MTT instantiated withM.

This is because nothing in MTT prevents modalities from being

trivial: there is always a model of the system which realizes each

modality by the identity. To rule out such degenerate models, we

then isolate a simple reasoning principle, similar to existing rules

in cubical type theory, which enriches the entire system enough to

rule out trivial models and thereby derive Löb induction.

1.2.1 From modalities to Löb induction. While no mode theory

is sufficient on its own, we must first choose a particular mode

theory with which to instantiate MTT. In our case, we have two

modes 𝑡 and 𝑠 . The first 𝑡 represents the guarded type theory and

will intuitively model the topos of trees PSh (𝜔). The second 𝑠 is
meant to represent ordinary non-guarded type theory and will

attempt to model sets. These modes are then linked by a collection

of modalities, and the modalities are equipped with a partial order.

We give the entire mode theory in Fig. 1. Many aspects of this mode

theory were already explored by Gratzer et al. [18]. For instance, ℓ

and 𝑒 correspond to ▶ and its left adjoint ◀. The composites 𝛿 ◦ 𝜖0

and 𝛿 ◦ 𝛾 correspond to the possibly and always modalities 3 and

2, though we have chosen to break them into adjunctions.

The crucial novelty to our system is in the final modality:⊤. Iron-
ically, this modality represents the simplest possible modality, the

one which sends every type to Unit. However, while Theorem 2.7

shows that it is impossible to realize loeb just from modalities, if

we force ⟨⊤ | 𝐴⟩ ≃ Unit, this impacts the behavior of the other

modalities enough to make loeb induction derivable.

Concretely, we isolate a particular proposition acc at mode 𝑡

and show that under the assumption of acc both Löb induction

and its unfolding principle are derivable. While this proposition is

true in our intended model, it is not derivable in Gatsby. Indeed,
the no-go theorem above Gratzer and Birkedal [17] shows that it

𝑡 𝑠

𝛾

𝛿

𝜖0

ℓ, 𝑒 ⊤

id ≤ ℓ id ≤ ℓ ◦ 𝑒 𝑒 ◦ ℓ = id 𝛾 ◦ 𝛿 = id

𝛾 ◦ ℓ = 𝛾 ◦ 𝑒 = 𝛾 𝛿 ◦ 𝛾 ≤ id 𝜖0 ◦ 𝛿 = id id ≤ 𝛿 ◦ 𝜖0

b ≤ a ◦ ⊤ ◦ ` ⊤ ◦ 𝜖0 = 𝜖0 ◦ ℓ

Figure 1:MGatsby: the mode theory for Gatsby

must not be. However, this is where the more sophisticated modal

framework and special behavior of ⊤ comes into play. While acc is
not provable, ⟨` | acc⟩ holds for a large class of modalities `.

One can then write a program which assumes acc and thereby

has access to Löb induction and guarded reasoning. Once the pro-

gram is completed, a user can apply ⟨` | −⟩ to the entire closed

term and discharge the acc assumption to actually compute a result.

In this manner, the choice of ` plays the role of type-based “fuel”, al-

lowing a user to extract arbitrary but finite prefixes from a guarded

type without requiring the type-checker to compare infinite types.

1.2.2 Working with accessible types. While theoretically sufficient,

the prospect of carrying acc through every computation is un-

pleasant. Moreover, in a theory like Gatsby with modalities, real

problems could possibly emerge. For instance, we may pass under

2 and lose access to the acc assumption we desired. Both problems

can be resolved simultaneously by restricting to types which are

accessible, i.e., where 𝐴 is equivalent to acc→ 𝐴. Intuitively, these

are types for which there is a canonical and best way to discharge

an acc assumption and so it can be done automatically.

When working with an accessible type, there is no need to carry

around a proof of acc as it can always be obtained from the goal it-

self. We show that that the subuniverse of accessible types supports

a model of guarded type theory closed under all the connectives

of type theory, including all modal operators and the universe. Re-

markably, even types like booleans, natural numbers, and 2𝐴 are

automatically accessible. The result is that essentially any standard

guarded recursive algorithm will need to mention only accessible

types, freeing the user from any obligation to think about accwhen
programming. Formally, we have the following result:

Theorem 3.13 (Completeness). Any program written inMLTT with
▶,2, and loeb with propositional unfolding can be encoded in Gatsby.

More informally, our strategy is complete with respect to a more

standard formulation of guarded recursion.

1.3 Closely related approaches
While comparison to related work is carried out in Section 6, two ap-

proaches are sufficiently close to warrant earlier mention: stratified

guarded type theory [17] and clocked cubical type theory [3, 21].

Stratified guarded type theory (GuTT) [17] balances the tensions
of Thesis 1 by proposing two separate but related type theories: one

satisfying Goals 1, 2 and 4 and one satisfying Goals 1 to 3. Gatsby
2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A modal deconstruction of Löb induction Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

sharpens this idea by careful unifying these theories through a

more sophisticated modal analysis of Löb induction. In particular,

by discarding GuTT’s Löb induction axioms, we are able to recover

GuTT’s type-based notion of fuel through the class of modalities for

which ⟨` | acc⟩. We then use this to derive Löb induction. Gatsby
also offers a richer class of modalities than GuTT and seamlessly

includes 2.

Clocked cubical type theory (CloTT□) [21] also attempts to sat-

isfy Thesis 1 but through very different means. Firstly, rather than

including multiple interacting modalities, CloTT□ includes only ▶
but then indexes it by a clock ^ which can be quantified over. The

presence of clocks allows CloTT□ to add Löb induction as an axiom

which unfolds only in specific circumstances; roughly after the par-

ticular clock ^ has been bound to prevent any further occurrences

of ▶^ . Like Gatsby, CloTT□ conjecturally satisfies canonicity and

decidable type-checking and, like Gatsby, it therefore provisionally
satisfies Goals 1 to 4.

2
However, the approach is very different.

CloTT□’s indexed ▶ modality offers a richer framework for

guarded programming. However, clock quantification does not repli-

cate all uses of 2 and forces a more complex semantics [24]. More-

over, clock quantification necessitates considering clock-irrelevant
types, complicating the theory of universes. On the other hand,

while Gatsby enjoys a simpler semantics, richer modalities, and

better-behaved universes, programming with modalities can be

less intuitive than with clocks and clocks are required for nested

guarded types. The biggest difference is in the approachGatsby and
CloTT□ take for Löb induction. WhileCloTT□ adds in Löb induction
as an axiom and restricts its computation to decide type-checking,

Gatsby derives Löb induction from modalities. In addition to the in-

trinsic interest of this decomposition, this approach arguably makes

it easier to extend Gatsby with additional reasoning principles.

Despite these differences, Gatsby has crucially benefited from

the work behind CloTT□. The CloTT□ approach to clock-irrelevant

types motivates our exploration of accessible types which sub-

stantially improves the usability of Gatsby. Moreover, the cubical

variant of MTT [1] which Gatsby extends is inspired by CloTT□.

1.4 Contributions
We present guarded accessible type theory or Gatsby: a modal type

theory built on MTT extended with a new primitive computational

modality⊤. From this purely modal extension, we derive Löb induc-

tion and offer a complete solution to the problems of the original

guarded dependent type theory proposed by Birkedal et al. [7].

• We show thatGatsby satisfies Goals 1 and 2 above and offer
evidence for Goals 3 and 4.

• We show that more standard presentations of guarded re-

cursion can be compiled faithfully into Gatsby.
• We demonstrate that Gatsby is usable by providing a case-

study extending an example given by Birkedal et al. [7].

Gatsby is the first guarded type theory to support computa-

tional Löb induction alongside the rich modal structure of PSh (𝜔)
(▶,◀,2,3) without immediately precluding decidable type-checking.

2
The non-cubical variant of CloTT□ [3] is known to enjoy normalization and satisfies

Goals 1, 3 and 4. However, it does not include any means of proving loeb(𝑓 ) =

𝑓 (next(loeb𝑓 ) ) and therefore does not satisfy Goal 2.

Moreover, the good behavior of universes and propositions in univa-

lent foundations is critical to Gatsby, making it a novel application

of homotopy type theory to programming languages.

Organization. In Section 2 we introduce cubicalMTT, the founda-
tion of Gatsby. Section 3 introducesGatsby itself and tours through
its most essential features. Section 4 uses Gatsby to improve upon a

logical-relations argument from Birkedal et al. [7]. Finally, Section 5

discusses the semantics of Gatsby and proves its soundness.

2 CUBICALMTT AND GUARDED RECURSION
Gatsby depends on a computational account of univalence and a

well-behaved theory of modalities. In this section we recall some

of the details of a system which contains both: Cubical MTT [1].

CubicalMTT is a variant on ordinaryMTT in which every mode

contains a copy of cubical type theory, as opposed to the ordinary

copy of intensional Martin-Löf type theory. Fortunately, the details

of cubical type theory are not essential to understanding Gatsby.
The same cannot be said of the theory of modalities used by Gatsby
where details do matter.

Accordingly, we will give a brief overview of MTT only, as the

reader will be able to follow all the constructions of Sections 3

and 4 simply by assuming that Gatsby is built atop ordinary MTT
extended with univalence; the only import of the cubical implemen-

tation of univalence is that it is computational.
3

For a comprehensive review of MTT we refer the reader to

Gratzer [16, Chapter 6] or Gratzer et al. [19]. For cubical type theory

and computational univalence, we suggest Cohen et al. [14].

A glossary for homotopy type theory. We will take advantage of a

variety of standard notations and definitions from homotopy type

theory. The standard reference for these is the HoTT Book [40].

For convenience, we recall that if 𝑝 : 𝑥 = 𝑦 then transport𝐵 𝑝 :

𝐵 𝑥 → 𝐵𝑦. In the special case where 𝐵 = id, then we write 𝑝∗ for
the induced map. If 𝑓 : 𝐴→ 𝐵 and 𝑝 : 𝑎0 = 𝑎1, we write ap𝑓 𝑝 for

the induced path 𝑓 𝑎0 = 𝑓 𝑎1. We shall have frequent occasion to

use the univalent version of propositions: homotopy proposition or

hprop. An hprop is a type 𝐴 equipped with a (necessarily unique)

function (𝑎0, 𝑎1 : 𝐴) → 𝑎0 = 𝑎1. We write hProp𝑖 for the subtype
of the universe U𝑖 spanned by hprops. We write ∥𝐴∥ for the unique
homotopy proposition equipped with a map [ : 𝐴→ ∥𝐴∥ such that

[∗ : 𝑃 ∥𝐴∥ → 𝑃𝐴 is an equivalence for all propositions 𝑃 .

Finally, for convenience, we shall generally omit subscripts around

universes and avoid discussing size issues. So we shall write U : U
and leave it to the reader to insert the subscripts U𝑖 : U𝑖+1. This
also applies to hProp𝑖 for which we will simply write hProp.

2.1 A summary of multimodal type theory
To a first approximation, MTT is a machine which accepts as input

an abstract specification of modalities (a mode theory [23]) and

produces a modal type theory as output satisfying canonicity and

normalization [15]. While generally, a mode theory is allowed to

be a strict 2-category, for our purposes it suffices to consider a

1-category enriched in partial orders. That is, a mode theory is a

3
We conjecture that an alternative account of computational univalence—e.g., the work

by Shulman, Altenkirch, and Kaposi [35]—could be adapted for a similar purpose.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

categoryM where every hom-set homM (𝑥,𝑦) is a partial order
such that composition is monotone.

Suppose MTT is instantiated with some mode theoryM. The

objects of M are called modes (ranged over by 𝑚,𝑛, 𝑜) and the

morphisms are modalities (ranged over by `, a, b). In MTT, each
mode𝑚 yields a separate copy of type theory with its attendant set

of judgments (⊢ Γ cx @ 𝑚, Γ ⊢ 𝐴 type @ 𝑚, etc.). Each type theory

is then extended with several operations to reflect the modalities

which link the modes:

(Cx) Γ,Δ F . . . | Γ.(` | 𝐴) | Γ.{`}
(Ty) 𝐴, 𝐵 F . . . | ⟨` | 𝐴⟩
(Tm) 𝑀, 𝑁 F . . . | mod` (𝑀) | leta mod` (−) ← 𝑀 in 𝑁

The idea behindMTT is that eachmodality ` : 𝑛 𝑚 induces (1)

a type former ⟨` | −⟩ sending mode 𝑛 types to mode𝑚 types along

with (2) a context former −.{`} sending𝑚 contexts to 𝑛 contexts.

We add equations ensuring that Γ.{id} = Γ and Γ.{a}.{`} = Γ.{a`}.
Roughly, −.{`} is the left adjoint to ⟨` | −⟩; modalities inMTT

are (weak) dependent right adjoints [5]. Hence, an element Γ ⊢
𝑀 : ⟨` | 𝐴⟩ is roughly equivalent to an element Γ.{`} ⊢ 𝑁 : 𝐴.

Converting 𝑁 to𝑀 is the role of the introduction rule:

Γ.{`} ⊢ 𝐴 type @ 𝑛

Γ ⊢ ⟨` | 𝐴⟩ type @ 𝑚

Γ.{`} ⊢ 𝑀 : 𝐴 @ 𝑛

Γ ⊢ mod` (𝑀) : ⟨` | 𝐴⟩ @ 𝑚

The passage from𝑀 to𝑁 is more fraught. The elimination princi-

ple ought to give such an inverse. Directly adding such an operation,

however, disrupts the substitution property of the type theory. We

instead add a “pattern-matching” elimination rule similar to the

elimination principle used for booleans or natural numbers.

It is here that the modified form of context Γ.(` | 𝐴) is used, so
we postpone the elimination rule and first explain how this novel

form of context extension works. Roughly, Γ.(` | 𝐴) is a context
with a variable of type 𝐴 annotated with `. While morally the same

as an element of ⟨` | 𝐴⟩, the force of the annotation is that it can

be used in the variable rule to pull a variable out from behind {`}:

Γ.{`} ⊢ 𝐴 type @ 𝑛 ` ≤ a : 𝑛 𝑚

Γ.(` | 𝐴) .{a} ⊢ v : 𝐴[p.{a}] @ 𝑚

The variable rule is where the partial order on modalities enters

the type theory. The most basic form of the variable rule states that

a `-annotated variable can be used behind {`}. We enhance this

rule slightly by not requiring the annotation ` to precisely match

the restriction {a}. Instead, we require only that the annotation

implies the restriction: ` ≤ a .

Notation 2.1. We have written this rule using de Bruijn indices and

explicit substitutions. This is convenient when specifying modal

type theories, as substitution is often subtle and non-standard. In

future examples we shall opt for more readable named variables.

Notation 2.2. When writing MTT terms “informally”, we will write

𝑥 :` 𝐴 to indicate the variable 𝑥 exists in the context with annota-

tion ` and type𝐴. If ` = id, we suppress it to recover the traditional
notation. See Gratzer [16, Section 6.1] for a detailed discussion.

We now return to the original question of the elimination rule

for ⟨` | 𝐴⟩. Intuitively, this rule ensures that it suffices to assume

every element of ⟨` | 𝐴⟩ is of the form mod` (−):
a : 𝑚 𝑜

Γ.{a} ⊢ 𝑀 : ⟨` | 𝐴⟩ @ 𝑚 Γ.(a | ⟨` | 𝐴⟩) ⊢ 𝐵 type @ 𝑜

Γ.(a ◦ ` | 𝐴) ⊢ 𝑁 : 𝐵 [id .mod` (v)] @ 𝑜

Γ ⊢ leta mod` (−) ← 𝑀 in 𝑁 : 𝐵 [id .𝑀] @ 𝑜

leta mod` (−) ← mod` (𝑀) in 𝑁 = 𝑁 [id .𝑀]
We will take occasional advantage of a convenience feature of

MTT. It is common to accept 𝑥 : ⟨` | 𝐴⟩ as an argument and imme-

diately pattern-match on it. This is simplified by modal functions:

Γ.{`} ⊢ 𝐴 type @ 𝑛 Γ.(` | 𝐴) ⊢ 𝑀 : 𝐵 @ 𝑚

Γ ⊢ _𝑀 : (` | 𝐴) → 𝐵 @ 𝑚

Γ.{`} ⊢ 𝑁 : 𝐴 @ 𝑛 Γ ⊢ 𝑀 : (` | 𝐴) → 𝐵 @ 𝑚

Γ ⊢ 𝑀 (𝑁 ) : 𝐵 [id .𝑁 ] @ 𝑚

We use (𝑥 :` 𝐴) → 𝐵(𝑥) for the informal version of (` | 𝐴) → 𝐵.

2.2 InstantiatingMTT withMGatsby
We now turn from MTT in general to its instantiation with the

specific mode theory required for Gatsby as detailed in Fig. 1. The

mode theory is a combination of mode theories previously used to

adapt MTT to study guarded recursion [16–18].

Unlike many presentations of guarded recursion, it contains

multiple modes. The types at mode 𝑡 are intended to behave like

objects from PSh (𝜔) and can exhibit guarded behavior, while 𝑠 is

intended to capture Set. Each modality ` is intended to capture a

particular right adjoint 𝐹` on or between these categories:

𝐹ℓ (𝑋 ) = ▶𝑋 𝐹𝑒 (𝑋 ) = ◀𝑋 𝐹𝛿 (𝑆) = _𝑛. 𝑆

𝐹𝛾 (𝑋 ) = lim
𝜔

𝑋 𝐹𝜖0
(𝑋 ) = 𝑋 (0) 𝐹⊤ (𝑋 ) = {★}

See Birkedal et al. [7] for the definitions of ◀ and ▶ on PSh (𝜔).
Inspired by the above, we will write ▶𝐴 ≜ ⟨ℓ | 𝐴⟩, ◀𝐴 ≜ ⟨𝑒 | 𝐴⟩,
2𝐴 ≜ ⟨𝛿 ◦ 𝛾 | 𝐴⟩, and 3𝐴 ≜ ⟨𝛿 ◦ 𝜖0 | 𝐴⟩.

Remark 2.3. For the sake of simplicity, we have chosen to ignore

the complications imposed by modeling cubical MTT and inter-

preting univalence above. In Section 5 we shall return to this point

and show that the preceding sketch can be turned into a valid con-

struction by replacing sets with cubical sets and presheaves with

cubical presheaves. For the next two sections we shall ignore uni-

valence when providing semantic intuitions and simply note that

all arguments can be adapted to cubical sets with minimal changes.

Several modal combinators are definable for any modality in

MTT and, when appropriately instantiated, these yield familiar

operations in guarded recursion. In particular, we shall have use

for the following generalMTT combinators:

⊛ : ⟨` | 𝐴→ 𝐵⟩ → ⟨` | 𝐴⟩ → ⟨` | 𝐵⟩ triv : ⟨id | 𝐴⟩ ≃ 𝐴

comp : ⟨a | ⟨` | 𝐴⟩⟩ ≃ ⟨a ◦ ` | 𝐴⟩ coe`≤a : ⟨` | 𝐴⟩ → ⟨a | 𝐴⟩
For instance, the standard map next : 𝐴 → ▶𝐴 is defined as

coeid≤ℓ ◦ triv−1
and the equivalence now : 2▶𝐴 ≃ 2𝐴 is realized

by comp. We record these and more in an omni-bus theorem:

Theorem 2.4.
4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A modal deconstruction of Löb induction Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(1) ▶ is a well-pointed applicative functor,
(2) 2 is an idempotent comonad and 2▶ ≃ 2 ≃ 2◀,
(3) the following pairs of modalities are adjoint: ◀ ⊣ ▶, 3 ⊣ 2,
⟨𝛿 | −⟩ ⊣ ⟨𝛾 | −⟩, and ⟨𝜖0 | −⟩ ⊣ ⟨𝛿 | −⟩.

We emphasize that certain modalities, ◀ and ⟨𝛿 | −⟩, are left ad-
joint modalities. These modalities enjoy particularly good behavior

inMTT in the form of a variety of crisp induction principles [16, 34].
For instance, ⟨𝛿 | Nat⟩ is equivalent to Nat and we may therefore

perform induction on an element of the former as if it were the

latter. This is not the case for every modality ⟨` | −⟩. In general,

inductive types are preserved by left adjoint modalities, and we

shall capitalize on this fact several times.

Finally, we note two specific consequences of working with

cubicalMTT rather than ordinaryMTT. First, as already mentioned,

each mode supports the univalence axiom. Second, each modality

preserves identity types:

Theorem 2.5. The map mod` (𝑎) = mod` (𝑏) → ⟨` | 𝑎 = 𝑏⟩ send-
ing refl to mod` (refl) is an equivalence. We denote the inverse map
] : ⟨` | 𝑎 = 𝑏⟩ → mod` (𝑎) = mod` (𝑏).

Corollary 2.6. The map ⟨` | 𝐴→ 𝐵⟩ → (⟨` | 𝐴⟩ → ⟨` | 𝐵⟩) re-
stricts to a map ⟨` | 𝐴 ≃ 𝐵⟩ → (⟨` | 𝐴⟩ ≃ ⟨` | 𝐵⟩).

2.3 A no-go theorem for Löb induction
Thus far we have avoided any mention of Löb induction. Indeed, as

an instantiation of cubicalMTT, our theory thus far cannot possibly
validate Löb induction without additional axioms. We now give a

proof of this no-go theorem which implies that no choice of mode

theory makes Löb induction derivable in an instantiation of MTT
without additional axioms.

Theorem 2.7 (No-go). For anyM and ` ∈ M, there is no term
(⟨` | Void⟩ → Void) → Void in cubical MTT instantiated withM.

Proof. MTT with mode theory M has a model where each

mode is interpreted by ordinary (cubical) type theory and each

modality is realized by the identity. If (⟨` | Void⟩ → Void) → Void
was derivable in (cubical)MTT, then interpreting this term into this

model would yield an element of (JVoidK→ JVoidK) → JVoidK
in (cubical) type theory for each 𝐴 in MTT. Since JVoidK = Void
(the empty type), we would have𝑀 : (Void→ Void) → Void and

so 𝑀 (id) : Void; this contradicts the soundness of cubical type

theory. □

3 INTRODUCING Gatsby
In Section 2 we introduced (cubical)MTT and discussed its instanti-

ation toMGatsby. As it stands, this instantiation must be extended

with a new rule in order to validate Löb induction (Theorem 2.7).

We now present this new rule (Rule 1) and show that it forces

⟨⊤ | 𝐴⟩ = Unit. We term the system extended with it Gatsby.
A priori, constraining ⊤ in this manner is entirely unrelated to

Löb induction. We prove, however, that the interactions between ⊤
and other modalities in the system give us the ability to define Löb
induction on a large class of types. We carry out this derivation

in stages; we define a homotopy proposition which entails Löb

induction (Theorem 3.5) and then show that this homotopy propo-

sition holds in certain circumstances (Theorem 3.7). In Sections 3.3

and 3.4, we then show how to parlay this new reasoning principle

into a workable guarded type theory.

3.1 The new rule
As shown in Theorem 2.7, the key obstruction to deriving Löb

induction is that we cannot guarantee that ▶ (or indeed any of our

modalities) is not actually the identity. In order to rule this out, we

shall add a new rule forcing one modality, ⊤, to be not the identity.

To do this, note that ⟨⊤ | 𝐴⟩ is intended to encode Unit and so its

left adjoint action Γ.{⊤} corresponds to extending Γ by the empty

type. In particular, Γ.{⊤} will be interpreted by the empty set. With

this in mind, we add the following rule:

Γ ⊢ 𝑟 : 1 .{⊤} @ 𝑠

Γ ⊢ J
(1)

In the above, J ranges over any judgment. Intuitively, if there exist

a substitution from Γ to 1 .{⊤}, then Γ will be interpreted by the

empty set as well and so the principle of explosion ought to let us

conclude any judgment we wish in this context.

Remark 3.1. This rule is similar to the rule in cubical type theory

stating that Γ ⊢ J holds if Γ proves the false cofibration [14].

While we phrased this rule in an algebraic way by asking for

a substitution from the context to 1 .{⊤}, we can prove that it is

decidable whether such a substitution exists (see Proposition 7.1).

Such a metatheorem is crucial for showing that Gatsby admits a

normalization algorithm. Indeed, similar rules yield undecidable

type theories because of the absence of such a result.

Lemma 3.2. Rule 1 implies ⟨⊤ | 𝐴⟩ = Unit.

Proof. First, we note that ⟨⊤ | 𝐴⟩ is inhabited. Indeed, to con-

struct an element of ⟨⊤ | 𝐴⟩, it suffices to construct an element

of 𝐴 in a context restricted by {⊤} but Rule 1 ensures this is true
regardless of 𝐴. By univalence, it then suffices to argue that all

elements in ⟨⊤ | 𝐴⟩ are equal. While one can argue directly, this is

an immediate consequence of Theorem 2.5 and the argument above

after replacing 𝐴 by 𝑎0 =𝐴 𝑎1. □

In light of this result, we say that ⟨⊤ | −⟩ is a computational
modality [20]. On its own, constraining ⟨⊤ | 𝐴⟩ to be Unit is not
a useful change. After all, if we only cared about constraining

⟨⊤ | 𝐴⟩ we could simply discard the modal apparatus and take this

equivalence to be an equality. The force of this extension comes

through the interactions between ⊤ and other modalities. In partic-

ular, 𝜖0 ◦ ℓ = ⊤ ◦ 𝜖0 together with Lemma 3.2 implies the following:

⟨𝜖0 | ▶𝐴⟩ = Unit

While this is obviously true in the model (the first stage of ▶𝑋
is {★} by definition), it is only after forcing ⟨⊤ | 𝐴⟩ = Unit that
we can derive this result purely within the theory. Having some

circumstances under which ▶𝐴 trivializes opens up a new avenue

to encoding Löb induction.

3.2 The accessible proposition
Contrary to prior guarded type theories, we will not endeavor to

make Löb induction directly available on each type at mode 𝑡 . We

will instead split things up into two steps:

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(1) Define an (h-)proposition acc which implies Löb induction.

(2) Prove that ⟨` | acc⟩ holds for a large class of modalities `.

This two-step approach offers a way to include Löb induction

in Gatsby without directly postulating it. Instead, when working

with guarded recursion we will assume acc holds, such that the

type of the end result will be acc → 𝐴. In order to actually run

such a program, we then choose an appropriate modality ` and

switch to considering ⟨` | acc→ 𝐴⟩. The general principles of MTT
modalities together with our proof of ⟨` | acc⟩ then enables us to

conclude ⟨` | 𝐴⟩. By choosing ` appropriately, we are then able to

extract arbitrary finite approximations of 𝐴 and compute with Löb

induction without ever directly postulating it. While the first step

can be carried out in ordinary MTT, showing that ⟨` | acc⟩ is true
for any modality requires Gatsby’s computational ⊤ modality.

The proposition acc is defined using the truncation modality

∥−∥ from homotopy type theory:

Definition 3.3. We define acc =
∑

𝑛:Nat ▶
𝑛Void


at mode 𝑡 .

Remark 3.4. Note that acc is globally true when 𝑡 is interpreted into
PSh (𝜔) where it is realized by ∃𝑛. ▶𝑛⊥. In this model, ▶𝑛⊥ has a

more recognizable form as the representable presheaf y(𝑛). From
this viewpoint, acc is equivalent to the join of all y(𝑛) which is 1 by

construction. However, while it holds in the intended model, it is

not derivable withinGatsby. For instance, one could interpret mode

𝑡 using Sh(𝜔2) where acc is not globally true; it circumscribes the

open embedding of PSh (𝜔) into Sh(𝜔2).

We now set out to prove that assuming acc is sufficient to derive

Löb induction. Intuitively, as acc states that there exists some 𝑛

such that ▶𝑛Void holds, we ought to be able to define loeb(𝑓 ) : 𝐴

where 𝑓 : ▶𝐴→ 𝐴 by induction on 𝑛; if 𝑛 = 0 then we use the now

modality-free assumption of Void and otherwise we apply 𝑓 to an

element of ▶𝐴 which we obtain by induction. Unfortunately, this

naïve proof strategy does not work: the propositional truncation

used to define acc means that we cannot directly scrutinize 𝑛 when

constructing an element of 𝐴. However, we may strengthen our

goal slightly to work around this issue.

Instead of constructing loeb(𝑓 ) : 𝐴, we could instead construct

an element loeb(𝑓 ) : 𝐴 together with a proof that loeb(𝑓 ) is a
guarded fixed-point i.e., 𝑓 (next(loeb 𝑓 )) = loeb 𝑓 . Indeed, while
there are potentially many distinct elements of 𝐴, we prove that 𝑓

has at most one guarded fixed-point. We will therefore prove that

the type of guarded fixed-points of 𝑓 is contractible (inhabited and

all inhabitants are equal). This type is a hprop and so it is valid

to scrutinize an element of acc when proving it. We emphasize

that this strategy relies heavily on the good behavior of homotopy

propositions in univalent foundations.

Theorem 3.5. In mode 𝑡 , for any𝐴 : U and 𝑓 : ▶𝐴→ 𝐴 there exists
a term gfix : acc→ isContr(GFix𝐴 𝑓 ) where GFix𝐴 𝑓 is the type of
guarded fixed-points

∑
𝑎:𝐴 𝑓 (next𝑎) = 𝑎.

Proof. We take advantage of the fact that isContr is a propo-
sition to ignore the truncation on acc and actually scrutinize the

underlying natural number. We define gfix as follows:
gfix ∥(0, 𝑝)∥ = absurd𝑝
gfix ∥(1 + 𝑛,modℓ (𝑝))∥ 𝑓 = ?0 : isContr(GFix 𝑓 )

where

𝐶 :ℓ isContr(GFix 𝑓 )
𝐶 = gfix ∥(𝑛, 𝑝)∥ 𝑓

To fill this hole, we start with a preliminary observation: given

any element of ▶GFix 𝑓 , we may promote it to an element ofGFix 𝑓 .

promote : (𝑟ℓ :ℓ GFix 𝑓 ) →
∑
𝑟 :GFix 𝑓 ▶(𝑟 = 𝑟ℓ )

promote (𝑎, 𝑝) = let 𝑟 = (𝑓 (modℓ (𝑎)), ap𝑓 (] (modℓ (𝑝)))) in
(𝑟,modℓ ( {ℓ} ⊢ ?1 : 𝑟 = (𝑎, 𝑝) ))

To fill ?1 , it suffices to fill the following:

{ℓ} ⊢ ?2 : 𝑓 (next(𝑎)) = 𝑎

{ℓ} ⊢ ?3 : ap𝑓 (] (next𝑝)) = ?2 • 𝑝 • ap𝑓 ◦next (?2
−1)

The choice for ?2 is clear enough: 𝑝−1
. Plugging this in, it

suffices to construct a term of the following type:

{ℓ} ⊢ ap𝑓 (] (next 𝑝)) = ap𝑓 ◦next (𝑝)
This follows immediately from the definition of ].

Next, we note that 𝜋1 (promote 𝑟 ) = 𝑟 . We again have two holes

to fill if we let 𝑟 = (𝑎, 𝑝):
?4 : 𝑓 (next(𝑎)) = 𝑎

?5 : ap𝑓 (] (next 𝑝)) = ?2 • 𝑝 • ap𝑓 ◦next (?2
−1)

A similar argument fills these two holes with ?4 = 𝑝−1
.

We now return to ?1 . It suffices to implement the following:

?6 : GFix 𝑓 ?7 : (𝑟 : GFix 𝑓 ) → ?6 = 𝑟

We fill ?6 = promote(𝜋1𝐶). For the second hole, we use our re-

mark that 𝑟 = promote 𝑟 together with 𝜋2𝐶 , transitivity, and ]. □

We can derive Löb induction from gfix:

loeb : (𝐴 : U) → (▶𝐴→ 𝐴) → acc→ 𝐴

loeb𝐴 𝑓 𝑧 = 𝜋1 (𝜋1 (gfix𝐴 𝑓 𝑧))

unfold : (𝐴 : U) (𝑓 : ▶𝐴→ 𝐴) → acc→
𝑓 (next(loeb 𝑓 )) = loeb 𝑓

unfold𝐴 𝑓 𝑧 = 𝜋2 (𝜋1 (gfix𝐴 𝑓 𝑧))

Notation 3.6. We shall often work with loeb : ((ℓ | 𝐴) → 𝐴) → 𝐴

(where the argument type is a modal function type) rather than

(▶𝐴→ 𝐴) → 𝐴 as the two types are equivalent.

While this is certainly interesting, if we can never discharge the

acc assumption from gfix, this brings us no closer to ever being

able to actually use these combinators. While we cannot prove acc
holds on its own, we can show that ⟨𝜖0 ◦ 𝑒𝑛 | acc⟩ holds. We break

this statement apart into two results:

Theorem 3.7. The following hold in modes 𝑡 and 𝑠 respectively:
• ◀acc = acc
• ⟨𝜖0 | acc⟩ = Unit

Proof. For the first point, we note that ◀ is a left adjoint and

therefore commutes with both propositional truncation and natural

numbers [16, Lemmas 6.4.16 and 6.4.15]. By propositional univa-

lence, it therefore suffices to show that acc implies the following:∑
𝑚:Nat ◀▶

𝑚Void


6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A modal deconstruction of Löb induction Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Scrutinizing our assumption of acc, we know that there exists some

𝑘 such that ▶𝑘Void; we then choose𝑚 = 𝑘 + 1 to obtain the goal.

For the second claim, we switch to working in mode 𝑠 . As all

modalities in Gatsby preserve identity types and the unit, they

preserve homotopy levels and, in particular, h-props. It therefore

suffices to show that ⟨𝜖0 | acc⟩ holds at all and we shall accom-

plish this by arguing that

〈
𝜖0 |

∑
𝑛:Nat ▶

𝑛Void
〉
holds. Commuting

this modality with the dependent sum, it suffices to argue that

⟨𝜖0 | ▶Void⟩ holds. However, we have shown in the prior subsec-

tion that ⟨𝜖0 | ▶Void⟩ = ⟨⊤ | ⟨𝜖0 | Void⟩⟩ = Unit. □

Corollary 3.8. For 𝑛 : Nat we have ⟨𝜖0 | ◀𝑛acc⟩ = Unit.

In particular, if we confine ourselves to just working in mode

𝑡 , we will not be able to (dis)prove acc and so loeb cannot be run.
However, if we write a closed program e.g.𝑀 : acc→ ▶𝑛Nat, we
can place the entire program under ⟨𝜖0 | ◀𝑛−⟩ and discharge the

acc assumption to obtain a program of type ⟨𝜖0 | ◀𝑛▶𝑛Nat⟩ ≃ Nat.
Intuitively, the choice of 𝑛 allows us to internally recover a type-

based “fuel” discipline for running guarded programs. We explore

this process in the next two sections.

3.3 The universe of accessible types
The previous subsection outlined an approach for guarded recur-

sion in Gatsby: hypothesize acc when constructing a program and

discharge it for closed terms using modalities. However, this simple

strategy has two major drawbacks. First, it is hardly convenient to

manually thread the acc assumption through every program we

write. Second, it may not even be possible to do so! Working in a

modal type theory, some connectives restrict access to the context

and so wemay write a programwhich assumes acc in the beginning
and yet find ourselves unable to rely on this assumption midway

through the program having descended beneath 2 or ▶.
The solution to both of these problems is the same: rather than

manually passing around acc, we should consistently work with

the acc-null types. That is, types 𝐴 such that the canonical map

𝐴→ (acc→ 𝐴) is an equivalence. Informally, these are the types

that “do not care” if a finite number of steps remain. By restricting

attention to these types, we free ourselves of the requirement to pass

acc around manually; whenever we require a witness for acc we
can simply “pull it out” of the goal 𝐴 by replacing it with acc→ 𝐴.

This has another startling consequence: if we limit ourselves

to working with accessible types, we never need to mention or

explicitly discharge acc. Each accessible type knows how to remove

the acc and we shall see that this allows the process to fade into

the background.

Definition 3.9. We say a type is accessible if it is acc-null. The
universe of accessible types Uacc is therefore written as follows:

Uacc =
∑
𝐴:U isEquiv(const : 𝐴→ (acc→ 𝐴))

This is a subuniverse of U; the map Uacc → U is an embedding.

If we restrict gfix, loeb, and unfold to applications where 𝐴 be-

longs to Uacc rather than U, we may dispense with the acc hypoth-
esis e.g., loeb : (𝐴 : Uacc) → (▶𝐴→ 𝐴) → 𝐴. This leads us to ask

what structure Uacc possess and which types are accessible.

The universe of accessible types is a reflective subuniverse [33].
We therefore conclude a number of results about Uacc from op. cit.

Proposition 3.10 (Rijke et al. [33]).
(1) Uacc is spanned by �-modal types where �𝐴 = acc→ 𝐴.
(2) Uacc is closed under dependent products and sums, the unit

type, and identity types.
(3) Uacc and hPropacc are accessible types.
(4) � is a lex idempotent monad (in fact, an open modality

4).
Moreover, Uacc is a model of HoTT and � a morphism of models.

We will not reproduce the entire proof for reasons of space, but

we will show the argument for why Uacc is accessible. We highlight

this because it relies crucially upon univalence and is one place

where working with cubicalMTT over ordinaryMTT is vital.

Proof. We claim that [ : Uacc → �Uacc is an equivalence. By

another result of Rijke et al. [33, Lemma 1.20], it is sufficient to

construct a left inverse to [. That is, we must define 𝑟 : �Uacc →
Uacc such that for all 𝐴 : Uacc, 𝑟 ([ 𝐴) = 𝐴. We define 𝑟 as follows:

𝑟 �̃� = (𝑧 : acc) → �̃� 𝑧

To show that this is a left inverse, we must show that if 𝐴 : Uacc
then 𝐴 = acc→ 𝐴. By univalence, it suffices to show that there is

an equivalence 𝐴 ≃ acc→ 𝐴. We conclude by noting that const is
such an equivalence because 𝐴 : Uacc. □

The universe of accessible types Uacc enjoys a number of addi-

tional closure properties, specifically due to the behavior of acc.
In particular, acc is closed under both 2 and ▶, and we can prove

these facts purely within Gatsby without additional assumptions.

Theorem 3.11.
(1) If 𝐴 :ℓ Uacc then ▶𝐴 is accessible.
(2) If 𝐴 :𝛿 U then ⟨𝛿 | 𝐴⟩ is accessible.

The last statement implies that, in particular, 2𝐴 : Uacc.

Proof. We begin with the first statement. Suppose that 𝐴 :ℓ

Uacc. We note that ▶ is a right adjoint modality and employ the

transposition equivalence proven by Gratzer [16, Lemma 6.4.2]:

acc→ ▶𝐴 ≃ ▶(◀acc→ 𝐴)
By Theorem 3.7, ◀acc = acc and we therefore continue:

▶(◀acc→ 𝐴) ≃ ▶(acc→ 𝐴) ≃ ▶𝐴
The last step follows from Corollary 2.6 applied to modℓ (𝜋2𝐴) :

▶(𝐴 ≃ (acc→ 𝐴)). This proves that ▶𝐴 ≃ (acc→ ▶𝐴) and com-

putation shows that the induced equivalence is the constant map.

The second statement is similar, since ⟨𝛿 | −⟩ is right adjoint to 𝜖0

and we have already shown that ⟨𝜖0 | acc⟩ = Unit (Corollary 3.8):

acc→ ⟨𝛿 | 𝐴⟩ ≃ ⟨𝛿 | ⟨𝜖0 | acc⟩ → 𝐴⟩ ≃ ⟨𝛿 | 𝐴⟩
Again, computation shows that the inverse map induced by this

chain of equivalences is the constant map. □

Corollary 3.12. Both Nat and Bool are accessible and if 𝐴, 𝐵 : Uacc
then 𝐴 + 𝐵 is also accessible.

Proof. As 𝛿 is a left adjoint, ⟨𝛿 | Nat⟩ = Nat and ⟨𝛿 | Bool⟩ =
Bool. The second statement follows by noting that dependent sums

and Bool suffices to define + and Uacc is closed under both. □

4
There is an unfortunate terminological clash here; Rijke et al. [33] use the term

modality to refer to lex idempotent monads while Gratzer et al. [18] use it to refer to

⟨` | −⟩. For us, modality is meant in the latter sense.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

This corollary, which is a direct consequence of Lemma 3.2, is

essential for ensuring that Uacc is usable. Absent this result, Uacc
would still be closed under a large collection of operations but

contain no non-trivial base types. However, since essentially all

connectives and base types do land in Uacc, we are able to perform

all standard operations in mode 𝑡 and stay within Uacc, without

ever mentioning non-accessible types.

For instance, we may construct the type of guarded streams fea-

tured in the introduction without explicitly threading acc through
the construction. We simply replace U with Uacc to ensure that we

are applying Löb induction to an accessible type:

GStr = loeb(_𝑆.Nat × ▶𝑆)
Here we have taken advantage of the fact that Uacc is closed under

both Nat and ×. We have also used loeb : ((ℓ | 𝐴) → 𝐴) → 𝐴 to

avoid immediately having to pattern-match upon 𝑆 in the above

example. The propositional unfolding associatedwith Löb induction

also ensures that GStr = Nat × ▶GStr.
In fact, we can codify this procedure more generally:

Theorem 3.13 (Completeness). Any program written inMLTT with
▶,2, and loeb with propositional unfolding can be encoded in Gatsby.

Proof. We must construct a model of such a type theory in

Gatsby. We do so by interpreting types as accessible types—thereby

interpreting Löb induction. We then use Proposition 3.10, Theo-

rem 3.11, and Corollary 3.12 to interpret all connectives. □

3.3.1 Inaccessible types. Care is required when working with types
such as propositional truncation ∥−∥ which do not preserve accessi-
bility. Indeed, acc itself is not accessible in all models; if it were, then

acc would simply be true. However, acc is the propositional trun-
cation of the type

∑
𝑛:Nat ▶

𝑛Void which is accessible in all models.

Phrased differently, ∥−∥ does not restrict to a map Uacc to Uacc.

Consequently, if we were to use ∥𝐴∥ in a guarded program, it

would be necessary to explicitly replace it by the accessible type

∥𝐴∥′ = acc→ ∥𝐴∥. This cannot cause issues within the program

itself: mapping out of ∥𝐴∥′ to an accessible type is the same as

mapping out of ∥𝐴∥. However, after the construction is completed

and one wishes to inspect the results as an ordinary type, it is

necessary to record that the replacement has taken place. In such

situations we must use Corollary 3.8 ourselves. After obtaining a

closed term𝑀 : acc→ ∥𝐴∥, we must choose some natural number

𝑛 and considermod𝜖0◦𝑒𝑛 (𝑀) ⊛★ : ⟨𝜖0 ◦ 𝑒𝑛 | ∥𝐴∥⟩. Choosing differ-
ent numbers 𝑛 enables us to extract different finite approximations

of ∥𝐴∥. This may be important if e.g., 𝐴 = ▶𝑘𝐴0 so that the first

stages of ∥𝐴∥ are trivial. This corresponds to the idea of type-based
fuel introduced by Gratzer and Birkedal [17].

Thus, it is possible, if more complex, to apply guarded reasoning

handle types which are not accessible. Fortunately, the standard

operations of type theory and guarded recursion (2, ▶) do land in

Uacc so this occurs infrequently.

3.4 First examples in Gatsby
We begin by working through some elementary constructions in

guarded type theory in order to give a flavor of working within the

system. We begin by filling in the example sketched in Example 1.1:

GStr : Uacc → Uacc

GStr𝐴 = loeb(𝑆.𝐴 × ▶𝑆)

GStrEq : (𝐴 : Uacc) → GStr𝐴 = 𝐴 × ▶GStr𝐴
GStrEq𝐴 = unfold(𝑆.𝐴 × ▶𝑆)

We demonstrate how one might carry out small but complete

guarded program which first (1) calculates an infinite stream of

Fibonacci numbers and then (2) extracts the third number. We begin

by defining the stream of numbers using Löb induction:

fibs : GStrNat
fibs = go 0 1

where
go : Nat→ Nat→ GStr
go =

loeb(𝑓 . _𝑚,𝑛. (GStrEqNat)−1

∗ (𝑚,modℓ (𝑓 𝑛 (𝑚 + 𝑛))))

Notice that in this example, (GStrEq𝐴)−1

∗ —coercing backwards

along the equation GStr𝐴 = 𝐴 × ▶GStr𝐴—plays the role of cons.
We record this: cons𝐴 = (GStrEq𝐴)−1

∗ : 𝐴 × ▶GStr𝐴 → GStr𝐴.
Deconstructing a stream uses the inverse coercion i.e., hd = 𝜋1 ◦
(GStrEq𝐴)∗ and tl = 𝜋2 ◦ (GStrEq𝐴)∗ : GStr𝐴→ ▶GStr𝐴.

To extract the third element, we must bring 2 into play. In

particular, in order to obtain an element of type Nat rather than
▶2Nat, we will use the equivalence 2▶𝐴 ≃ 2𝐴. We note that both

GStrNat and fibs are closed terms and we may form the following:

fibs′ : 2(GStrNat)
fibs′ = mod𝛿◦𝛾 (fibs)

We then use now : 2▶𝐴 ≃ 2𝐴 and extract : 2𝐴 → 𝐴 to pull

out the third element:

third : Nat
third = let mod𝛿◦𝛾 (𝑠) ← fibs′ in extract(now(now(go 𝑠)))

where
go : (𝛿 ◦ 𝛾 | GStrNat) → 2▶▶Nat
go 𝑠 = mod𝛿◦𝛾 (next(next hd) ⊛ (next tl ⊛ tl 𝑠))

We note that under the assumption of canonicity for Gatsby
(Section 7.1), we can compute third and obtain a closed natural

number. Thus, in particular, purely through careful use of modali-

ties, we are able to derive Löb induction and use it to compute a

closed result. Even without the assumption of canonicity, we are

able to use unfold to prove that third = 1.

To cultivate intuition, let us consider a pair of counterfactuals.

Suppose that we had worked within a theory without Rule 1,

what would have changed in the above example? The main differ-

ence would be in the behavior of Nat: without Rule 1, Nat would
not land in Uacc. We could replace it with acc→ Nat and the rest

of the calculation would proceed along the same lines. However,

the final result would have type acc→ Nat. Without Theorem 3.7,

there would be no way to discharge that hypothesis.

Suppose instead that we considered a type theory without uni-

valence but with a good theory of propositions, such as extensional

type theory. In this case, we would not be able to show Uacc to

be accessible. More ad-hoc replacements are possible, for instance

acc→ U, but these alternatives will (1) not form a cumulative hier-

archy and (2) not admit an embedding into U without additional

axioms. This hinders the construction of elements of GStr.
8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A modal deconstruction of Löb induction Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

4 CASE STUDYWITH LOGICAL RELATIONS
In this section, we present a case-study of Gatsby by using it to

construct a (synthetically) step-indexed logical relation for an ML-

like language _ref,∀ with general references (pointers to complex

structures) and parametric polymorphism. We then use it to deduce

semantic type-safety. This _ref,∀ language and the logical relation

is based on the account given by Birkedal et al. [7, Section 3] but

our more advanced guarded type theory allows us to improve upon

their results in two respects:

(1) We do not need to worry about local contractibility of do-

main equations because we have access to a universe and

solve the domain equation as an ordinary fixed point [6].

(2) We have no need to carry out a challenging external argu-

ment after constructing the logical relation because Gatsby
is multimodal. Accordingly, we work internally to Gatsby
throughout the entire proof.

We have chosen this example to “complete the story” started

by Birkedal et al. [7], but many other applications of guarded type

theory to denotational semantics and logical relations exist [10, 11,

26, 27, 29, 32, 38, 39, 41]. Many of these applications can also be

simplified in light of Gatsby’s richer modal apparatus.

For reasons of space, we have included only selected details of

this case study. In particular, where there is little difference from

working in Gatsby versus the framework of Birkedal et al. [7], we

have avoided duplicating their work.

Convention 4.1. In order to construct a logical relation for para-

metric polymorphism, we require an impredicative universe of

propositions. Accordingly, in this section we assume propositional

resizing i.e., that the maps hProp𝑖 → hProp𝑖+1 are equivalences.

4.1 Static and dynamic semantics of _ref,∀
We begin by defining _ref,∀ , the language under consideration. We

specify this language in mode 𝑠 , i.e., with no guarded recursion

whatever. As we shall argue in Section 5, this ensures that our

definition of _ref,∀ adequately represents the standard definition

that one might formalize in Coq or similar.

We define the syntax of (untyped) terms and types as inductive

types. We then define term and type contexts (TCxt, Cxt) and heaps
(Heap) on top of these. The typing judgments as well as the opera-

tional semantics are realized by inductively-defined propositions:

isCx : TCxt→ Cxt→ hProp
isTy : TCxt→ Ty→ hProp
hasTy : (Ξ : TCxt) → Cxtwf Ξ→ Tm→ Tywf Ξ→ hProp
isVal : Tm→ hProp
(↦→) : Tm × Heap→ Tm × Heap→ hProp

We sketch all of these definitions in Fig. 2, using informal BNF

grammars to specify the syntax of terms and types and inference

rules for the judgments. We leave implicit many details as they

are orthogonal to our case study and refer the reader to Birkedal

et al. [7]. We have also assumed the existence of various standard

operations on lists, such as snoc, lookup, etc. We do note that we

formalize heaps as a list of values and that allocation is deterministic.

Moreover, primitive locations loc(ℓ) are never well-typed; they
arise only in intermediate stages of execution for programs and are

never written by a user.

𝜏 : Ty ::= tvar(𝑖) | Ref(𝜏) | forall(𝜏) | 𝜏 × 𝜏 | . . .
𝑒 : Tm ::= var(𝑖) | !𝑒 | new(𝑒) | set(𝑒, 𝑒) | Λ𝑒 | 𝑒 [𝜏] | . . .

TCxt = Nat Cxt = List Ty Cxtwf Ξ =
∑

Γ:Cxt isCxtΞ Γ

Tywf Ξ =
∑
𝜏 :Ty isTyΞ𝜏 Val =

∑
𝑒 :Tm isVal 𝑒 Heap = List Val

isTm(Ξ, Γ, 𝑒, 𝜏)
isTm(Ξ, Γ, new(𝑒), Ref(𝜏))

isTm(Ξ, Γ, 𝑒, Ref(𝜏))
isTm(Ξ, Γ, !𝑒, 𝜏)

isTm(Ξ, Γ, 𝑒1, Ref(𝜏)) isTm(Ξ, Γ, 𝑒2, 𝜏)
isTm(Ξ, Γ, set(𝑒1, 𝑒2), 𝜏)

(new(𝑣), ℎ) ↦→ (loc(lenℎ), snoc(ℎ, 𝑣))
(!loc(ℓ), ℎ) ↦→ (lookup(ℎ, ℓ), ℎ) (ℓ < lenℎ)

(set(loc(ℓ), 𝑣), ℎ) ↦→ (𝑣, replace(ℎ, ℓ, 𝑣)) (ℓ < lenℎ)

Figure 2: Selected rules of _ref,∀

We will write ↦→∗ for the reflexive transitive closure of ↦→. As

in Birkedal et al. [7], we have opted to present the operational

semantics with deterministic allocation as this simplifies a number

of technical details. We shall write Good : Tm × Heap → hProp
for the following:

canStep(𝑒, ℎ) = ∃𝑒′, ℎ′ . (𝑒, ℎ) ↦→ (𝑒′, ℎ′)
Good 𝑒 ℎ = ∀(𝑒′, ℎ′). ((𝑒, ℎ) ↦→∗ (𝑒′, ℎ′)) →

isVal 𝑒′ ∨ canStep(𝑒′, ℎ′)
In other words, a configuration consisting of an expression and

a heap is good if one can execute the pair for an arbitrary number

of steps and the resulting expression and heap has either resulted

in a value or can be run further. Our goal for the remainder of this

section is to prove the following version of type-safety.

Theorem 4.2 (Safety of _ref,∀). If isTm 0 nil 𝑒 𝜏 then Good 𝑒 nil

We note that the presence of loc(ℓ) makes this theorem difficult

to prove: the intermediate stages are not typed and so progress and

preservation does not apply.

4.2 A unary logical relation interpretation
In order to prove Theorem 4.2, we will construct a model of _ref,∀
which interprets _ref,∀ types as elements of a construction in mode

𝑡 . Morally, the construction is a Kripke logical relation, but the

presence of higher-order references necessitates a rich and highly-

recursive type of worlds. It is for this reason that we must pass to

mode 𝑡 , where Löb induction is available; we shall use it to define

the semantic universe of types alongside the worlds indexing them.

P𝐴 = 𝐴→ hPropacc
W : Uacc (⊑) : W→W→ hPropacc
(W, ⊑) = loeb(𝐴, ≤ . (X(𝐴, ≤),R(𝐴, ≤)))
where

X (𝐴, ≤) = Nat ⇀fin ((▶𝐴, ≤†) →mon (P⟨𝛿 | Val⟩, ⊆))
R (𝐴, ≤)𝑤1𝑤2 = ∀ℓ .𝑤1 (ℓ)↓ → 𝑤1ℓ = 𝑤2ℓ

T : Uacc

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

T = W→mon P⟨𝛿 | Val⟩

Notation 4.3. We followGratzer [16] inwriting foo† to lift a function
or relation foo to apply to a sequence of modal arguments similar

to idiom brackets for applicative functors [25].

A few words of discussion are in order. First,→mon refers to the

subtype of monotone maps where P⟨𝛿 | Val⟩ is ordered by subset

inclusion. To use W in the domain of→mon, we must define W
simultaneously with its ordering relation ⊑. For this reason, we
use Löb induction to compute an element of

∑
𝐴:Uacc 𝐴 → 𝐴 →

hPropacc rather than merely Uacc. Second, ⇀fin refers to finitely-

supported partial maps. We note that this procedure is simpler than

its cousin in Birkedal et al. [7]. In particular, we have access to a

universe and therefore have no need to use an external construction.

The remaining details of the unary logical relation proceed along

similar lines to Birkedal et al. [7], though we are able to simplify

several definitions by continuing to exploit the internal language.

We define a path WEq witnessing the unfolding of W to its defini-

tion using unfold. Next, we note that since ⟨𝛿 | −⟩ is a left adjoint,
we have a crisp induction principle available and we use this to

define a map J−K− : ⟨𝛿 | Tywf Ξ⟩ →
(∑

𝑛≤Ξ T
)
→ T for each

Ξ : ⟨𝛿 | TCxt⟩ = ⟨𝛿 | Nat⟩ = Nat. This map sends a type with Ξ
free variables to a map from Ξ semantic types to a single semantic

type. The details of J−K− are not vital, but the following auxiliary

definitions will be important later:

sat𝑤 ℎ =

dom(ℎ) ⊆ dom(𝑤)
∧ ∀ℓ ∈ dom(𝑤).WEq∗𝑤 ℓ 𝑤 (lookup† ℎ ℓ)

comp : T→W→ P⟨𝛿 | Exp⟩
comp𝜙 𝑤 𝑒 =

(isVal† 𝑒 ∧ 𝜙 𝑤 𝑒)
∨ ∀ℎ : ⟨𝛿 | Heap⟩. sat𝑤 ℎ →
∃𝑒′ℎ′𝑤 ′ . (𝑒, ℎ) ↦→† (𝑒′, ℎ′) ∧𝑤 ⊑ 𝑤 ′ ∧ sat𝑤 ′ ℎ′
∧ ▶comp𝜙 𝑒′𝑤 ′

Informally, comp lifts a semantic type 𝜙 to a predicate on expres-

sions which evaluates the expression and, if it ever reaches a value,

insists the result satisfies 𝜙 .5 The following is proven as in Birkedal

et al. [7].

Lemma 4.4 (Fundamental lemma). If isTm† 0 nil 𝑒 𝜏 holds in mode
𝑡 then so does comp J𝜏K (WEq∗∅) 𝑒 .

4.3 Adequacy
At this point, we substantially deviate from Birkedal et al. [7]. It

remains to argue that Lemma 4.4 implies Theorem 4.2. In op. cit.,

the authors were forced to unfold various definitions externally and

argue that Lemma 4.4 externally implied the desired type-safety

result. Our richer modal apparatus allows us to proceed internally.

First, we note that Lemma 4.4 can be placed under ⟨𝛾 | −⟩ (it is
closed). Fixing 𝑒 and 𝜏 in mode 𝑠 , general properties of modalities

yield the following implication:

⟨𝛾 | isTm† 0 nilmod𝛿 (𝑒)mod𝛿 (𝜏)⟩

5
We note that we did not need to define comp using Löb induction, though we certainly
could have. Its definition is positive, however, and so Tarski’s fixed-point theorem

applies. The unicity of guarded fixed points, morover, ensures both approaches agree.

→ ⟨𝛾 | comp Jmod𝛿 (𝜏)K (WEq∗∅)mod𝛿 (𝑒)⟩
Inspecting the definitions, we note that the domain of this func-

tion is equal to isTm 0 nil 𝑒 𝜏 . It therefore remains only to show that

the codomain implies Good 𝑒 nil. In fact, in our case we do not need

to worry about the actual properties of the value 𝑒 runs to, so we

will consider ⟨𝛾 | comp (__.Unit) (WEq∗∅)mod𝛿 (𝑒)⟩ instead.
We prove the following helper lemma in mode 𝑡 .

Lemma 4.5. If comp (__.Unit)𝑤 𝑒 , fix an ℎ : ⟨𝛿 | Heap⟩ such that
sat𝑤 ℎ and, moreover, if (𝑒, ℎ) (↦→𝑛)† (𝑒′, ℎ′) then
▶𝑛 (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′)).

Proof. We proceed by induction on 𝑛—which we can due to

crisp induction. The base case where (𝑒, ℎ) = (𝑒′, ℎ′) is trivial. For
the inductive step, we may apply the induction hypothesis to reduce

to the case that (𝑒, ℎ) ↦→ (𝑒′, ℎ′). Noting that 𝑒 must not be a value,

we deduce that the following holds:

∃𝑒1ℎ1𝑤
′ . (𝑒, ℎ) ↦→† (𝑒1, ℎ1) ∧𝑤 ⊑ 𝑤 ′ ∧ sat𝑤 ′ ℎ1 ∧ ▶comp𝜙 𝑒1𝑤

′

As our operational semantics are deterministic, we may replace 𝑒1

and ℎ1 with 𝑒′ and ℎ′ and simplify the above:

∃𝑤 ′ ⊒ 𝑤. sat𝑤 ′ ℎ′ ∧ ▶comp𝜙 𝑒′𝑤 ′

The goal then follows by unfolding the definition of comp. □

We may now return to mode 𝑠 to complete the theorem.

Theorem 4.2 (Safety of _ref,∀). If isTm 0 nil 𝑒 𝜏 then Good 𝑒 nil

Proof. Fix 𝑒′, ℎ′, 𝑛 such that (𝑒, ℎ) ↦→𝑛 (𝑒′, ℎ′). We must show

that either isVal 𝑒′ or canStep(𝑒′, ℎ′). By Lemma 4.4, we know that

⟨𝛾 | comp (__.Unit)𝑤 mod𝛿 (𝑒)⟩ holds. Using Lemma 4.5, we there-

fore obtain the following:

⟨𝛾 | ▶𝑛 (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′))⟩
Using the equation 𝛾 ◦ ℓ = 𝛾 , we may replace this:

⟨𝛾 | (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′))⟩
⟨𝛾 | −⟩ does not commute with disjunctions. However, ⟨𝛿 | −⟩

does commute with disjunctions as it is a left adjoint. We then

replace the type under ⟨𝛾 | −⟩ with ⟨𝛿 | isVal 𝑒′ ∨ canStep(𝑒′, ℎ′)⟩.
We conclude using the equation 𝛾 ◦ 𝛿 = id. □

We note that such a proof is impossible without ⟨𝛾 | −⟩ or some-

thing equivalent to it; without such a feature we would have no

means to remove the ▶𝑛 appearing in Lemma 4.5.

5 SEMANTICS OF Gatsby
Thus far we have shown thatGatsby is usable but we not yet shown
it to be sound. In this section, we prove this, among other results, by

developing the model theory of Gatsby. This is seemingly daunting:

constructing models of cubical type theory is already a challenging

task. Fortunately Gatsby is built atop cubical MTT, which already

has a well-developed denotational semantics [1].

At a high level, we wish to interpret mode 𝑡 as PSh (𝜔) and 𝑠

as Set, but this will not serve if we wish to interpret univalence.

Instead, we must replace Set with the category of cubical sets cSet.
Beyond this change, we are able to interpret the modalities as

right adjoints between these two categories without change. We

thereby obtain a pseudofunctor 𝐹 :MGatsby → Cat which sends

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

A modal deconstruction of Löb induction Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

𝐹 (𝑠) = cSet and 𝐹 (𝑡) = PShcSet (𝜔) (cubical presheaves on 𝜔). We

show the definitions of 𝐹 on the generating 1-cells below:

𝐹 (ℓ)𝑋 𝑛 = if 𝑛 = 0 then 1 else 𝑋 (𝑛 − 1) 𝐹 (𝑒)𝑋 = 𝑋 (𝑛 + 1)

𝐹 (𝛾)𝑋 = lim
𝜔

𝑋 𝐹 (𝜖0)𝑋 = 𝑋 (0) 𝐹 (𝛿) 𝑆 𝑛 = 𝑆 𝐹 (⊤) 𝑆 = 1

In general, cubical presheaves PShcSet (C) (presheaves valued
in cubical sets) support a model of cubical type theory [22]. The

following result of Aagaard et al. [1] shows that these models of

cubical type theory can be combined into a model of cubical MTT:

Proposition 5.1 (Theorem 4.15 [1]). Fix a strict 2-functor 𝑓 :

M Cat and for each ` : 𝑛 𝑚, write 𝐹 ∗ (`) ⊣ 𝐹∗ (`) for the
adjunction between PShcSet (𝑓 (𝑛)) and PShcSet (𝑓 (𝑚)) induced by
precomposition and right Kan extension. There is a model of cubical
MTT with mode theoryM which interprets ⟨` | −⟩ as 𝐹∗ (`).

Ideally, wewould instantiate this theorem by takingM =MGatsby
and define 𝑓 in such a way that 𝐹 is induced by right Kan extending

𝑓 . Unfortunately, not every functor described by 𝐹 should be in-

terpreted using right Kan extension. In particular, 𝜖0 and ⊤ do not

arise in this way. Fortunately, 𝐹 (𝜖0) and 𝐹 (⊤) “almost” arise from

right Kan extension: their left adjoints preserve connected limits.

Moreover, the pseudofunctor induced by taking left adjoints to 𝐹 is

a strict 2-functor. This, along with similar strictness properties of

𝐹 , ensures that the coherence conditions required for a model of

cubicalMTT are trivially satisfied.

We can therefore extend Proposition 5.1:

Lemma 5.2. There exists a model of cubical MTT with mode theory
MGatsby which interprets ⟨` | −⟩ using 𝐹 (`).

The details of the proof of Lemma 5.2 require some knowledge of

cubicalMTT and we have therefore deferred them to Appendix A.

Theorem 5.3. 𝐹 supports a model of Gatsby.

Proof. Lemma 5.2 almost suffices, but we must interpret Rule 1.

However, since ⟨⊤ | −⟩ is interpreted using _ ↦→ 1, we must have

J1.{⊤}K = 0. We note that cSet is a topos and so 0 is a strict initial

object. It therefore follows that any object 𝑋 for which there is a

map 𝑋 0 must itself be the initial object. The interpretation of

Rule 1 is then immediate; it is the universal property of 0. □

Remark 5.4. The same proof strategy suffices to interpret Gatsby
into cubical presheaves on an arbitrary limit ordinal.

Corollary 5.5. Gatsby is consistent.

Beyond merely ensuring consistency, interpreting mode 𝑠 as

into the standard model of cubical type theory, ensures a degree

of adequacy for constructions carried out in Gatsby. In particular,

Theorem 5.3 shows that any construction in mode 𝑠 induces a

construction element in a model already accepted by cubical type

theorists. Consequently, there is no need to care about e.g. the topos

of trees or modalities when evaluating the content of Theorem 4.2.

6 RELATEDWORK
While many variations on guarded type theory have been pro-

posed [3, 4, 7, 11, 13, 28], these failed to meet at least one of the four

goals raised in Thesis 1. Only two prior type theories offer a rea-

sonably complete solution: stratified guarded type theory [17] and

clocked cubical type theory [21]. We discussed both in Section 1.3

and we now sharpen our prior comparison.

Stratified guarded type theory. Recall from Section 1.3 that strat-

ified guarded type theory is actually a pair of type theories: one

in which Löb computes and one in which it does not. In the type

theory where Löb induction computes, Gratzer and Birkedal [17]

introduce a notion of guarded canonicity where canonical forms

are judged in a special context 0[ℓ𝑛]. All terms trivialize when

0[ℓ𝑛] is placed under {ℓ𝑛} and so the canonicity result enables one

to extract a finite approximation to an infinite canonical form. In

Gatsby, 0[ℓ𝑛] can be defined as 1 .{𝜖0 ◦ 𝑒𝑛}. Guarded canonicity

becomes a special case of ordinary canonicity.

For example, if we assume acc to prove 𝑀 : 𝐴, we may place

𝑀 under ⟨𝜖0 ◦ 𝑒𝑛 | −⟩ to discharge acc and obtain an element of

⟨𝜖0 ◦ 𝑒𝑛 | 𝐴⟩. Just as in stratified guarded type theory, we are able

to extract information about 𝐴 from this term but we are only able

to descend “beneath 𝑛 iterations of ▶”. In this way, Gatsby takes

the idea of guarded canonicity in stratified guarded type theory

and recasts it as a modal discipline. The result is an internalization

of guarded canonicity as normal canonicity and, moreover, Gatsby
does not rule out normalization in the process.

We have also isolated the universe of accessible types where

there is a canonical and optimal choice of fuel and used this to

avoid requiring the user to choose a fuel supply each time they

wish to calculate a result. Thus, by enriching type theory with

modalities and Rule 1, we are able to essentially recover stratified

guarded type theory without splitting our theory into two.

Clocked cubical type theory. As described in Section 1.3, clocked

cubical type theory (CloTT□) is an alternative approach to guarded

recursion built around indexing ▶ by a clock. In this way, CloTT□
allows Löb induction to compute only when the clock indexing

the relevant ▶ modality has been bound. This essentially limits

computation to occurring at the top-level and thereby conjecturally

preserves canonicity and normalization. A more substantial differ-

ence between CloTT□ and Gatsby is in the approach they take to

Löb induction. In CloTT□—and all other proposed guarded type

theories—Löb induction is a primitive while in Gatsby it is derived.

At a high-level, Gatsby provides a richer set of modalities and a

simpler semantics, but does not support multi-clock guarded recur-

sion. This means thatGatsby, unlike CloTT□, can internally express
notions such as “constant types” but cannot directly encode a coin-

ductive stream of non-constant types. Despite these differences,

both theories conjecturally satisfy the goals of Thesis 1 and so both

provide adequate foundations for guarded recursion.

Interestingly, just as our approach to Löb induction necessitates

consideration of accessible types, the use of clocks in CloTT□ re-

quires users to frequently restrict to clock-irrelevant types. Roughly,
these are types which are “clock-null”. However, accessible types

form a better-behaved class than clock-irrelevant types; accessi-

ble types form an open reflective subuniverse [33]. Consequently,

we are not only able to show important type operations respect

accessibility but also prove that the universe of accessible types

is accessible. We are even able to replace a non-accessible type

by a universal accessible counterpart. This machinery is not avail-

able for clock-irrelevant types; the sort of clocks is not presented

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

as a type but, more fundamentally, it is not a homotopy proposi-

tion. Consequently, for instance, the question of whether or not a

suitable clock-irrelevant universe of clock-irrelevant types within

CloTT□ [12] remains open.

Other occurrences of accessibility. Finally, we note that variants of
the accessibility proposition acc have appeared before in the litera-

ture. In Palombi and Sterling [31], for instance, it is used to isolate

the universal property of PSh (𝜔) as a model of guarded recursion.

That ∃𝑛. ▶𝑛⊥ holds in PSh (𝜔) is also an important motivation for

transfinite Iris [36] which uses higher-ordinal models of guarded

recursion precisely to avoid having acc = ⊤ hold. Amin Timany

has further proposed taking adding the axiom acc = ⊤ to Iris, as a

more intuitive but equivalent formulation of Löb induction [9].

7 CONCLUSIONS AND FUTUREWORK
We have presented Gatsby,6 a univalent multimodal type theory

based on cubicalMTT. Proceeding from the observation that Löb

induction is an ill-behaved primitive for guarded recursion, Gatsby
uses additional modalities to essentially derive Löb induction.

Concretely, we isolate a homotopy proposition acc which suf-

fices to imply Löb induction. We then show that the collection of

accessible types 𝐴—those which are acc-null and therefore support

Löb induction—is closed under numerous standard constructions.

Gatsby also constrains the modality ⟨⊤ | −⟩ to be equivalent to

𝐴 ↦→ Unit and this ensures that all constant types are accessible.

Using these results, we show that it is possible to encode any pro-

gram in a standard guarded type theory within Gatsby. We have

further exploited Gatsby’s rich multimodal structure to improve

upon case studies considered already in guarded recursion.

Gatsby constitutes a canonical point in the space of guarded type
theories satisfying Thesis 1 as it captures much of the behavior of

the important model of guarded recursion in PSh (𝜔) while still
maintaining a well-behaved metatheory.

We summarize several directions for future work below.

7.1 Normalization and canonicity for Gatsby
At present, we have not proven that Gatsby enjoys either normal-

ization or canonicity. We conjecture that it in fact enjoys both. We

offer preliminary evidence in support of this conclusion.

We note thatGatsby is built on top of cubicalMTT and we expect
to be able to adapt a proof of normalization and canonicity for the

latter to apply to the former. At present no such proof for cubical

MTT exists, so we begin by discussing prospects for this result.

CubicalMTT is a fusion of two type theories,MTT and cubical

type theory, which both enjoy canonicity and normalization [15, 37].

Normalization and canonicity are not modular properties, so this

does not necessarily mean that cubicalMTT enjoys either. However,
given that there are no meaningful interactions between the two

theories in cubicalMTT, we expect both to hold.

In order to adapt such a proof of normalization and canonicity

for cubicalMTT to apply to Gatsby, we must show that Rule 1 does

not introduce stuck terms and does not disrupt the decidability

of normal forms. We expect the techniques used by Sterling and

Angiuli [37] to handle the false cofibration should suffice for our

6
The authors defer to the reader on whether or not Gatsby is great.

situation. In particular, we can show that the crucial lemma of op.

cit. stating that it is decidable whether a given context proves the

false cofibration can be adapted to Gatsby. That is, it is decidable
whether or not there exists a substitution from Γ to 1 .{⊤}; it is
equivalent to whether one of the following two conditions hold (1)

Γ proves the false cofibration or (2) the composite of the modalities

in Γ contains ⊤. We give a version of this theorem below which

deals withMTT extended by Rule 1 rather than cubicalMTT, as the
latter involves essentially unrelated details of cubical type theory.

Proposition 7.1. A substitution Γ ⊢ 𝑟 : 1 .{⊤} @ 𝑠 exists if and
only if the composite of all modalities within Γ is a ◦ ⊤ for some a .

Proof Sketch. We do not present the full details of the proof

because it requires a more thorough explanation of the substitution

calculus of MTT and Gatsby. We begin by noting that there is a

trivial model of Gatsby in which every type is interpreted by Unit.
The category of contexts of this model is a reflective subcategory

of the ordinary syntactic category of contexts and substitutions.

The reflection sends Γ to a new context |Γ | obtained by weakening

away all variables in Γ so |Γ | is of the form 1 .{`} for some `.

As 1 .{⊤} lies within this subcategory already, a substitution

from Γ to 1 .{⊤} exists just when one there is one from |Γ | = 1 .{`}
to 1 .{⊤}. An inductive argument shows that this occurs just when

` ≥ a ◦ ⊤ for some a . However, if ` ≥ a ◦ ⊤ then ` = a ◦ ⊤. □

While the above observations give strong support to our conjec-

ture, normalization and canonicity proofs for any type theory are

complex and cubicalMTT and Gatsby are both sophisticated type

theories. We therefore leave the normalization and canonicity of

Gatsby to future work.

7.2 Extensions to Gatsby
Aside from extending our knowledge of the metatheory of Gatsby,
we hope to study the behavior of other concepts from univalent

foundations within this framework. In particular, it remains to

isolate which higher inductive types (HITs) naturally land within

the universe of accessible types. The work on HITs within the

context of CloTT□ [21] suggests that this may hold for a broad class,

though Section 3.3.1 demonstrates that the situation is subtle. That

accessible types form a reflective subuniverse does mean that while

this may improve convenience, it is not as vital as the corresponding

question for clock-irrelevance.

We have focused on capturing the behavior of guarded recursion

within the topos of trees and, in particular, indexing over 𝜔 . In the

future, we intend to explore whether the idea of isolating accessible

types can be adapted to account for indexing over higher ordinals

with the goal of modeling PShcSet (𝛼) for at least countable 𝛼 .
Finally, we intend to explore the behavior of Gatsby further by

implementing it. Both MTT and cubical type theories have been

implemented in proof assistants and, as discussed in Section 7.1,

such implementations should be possible to extend to cubical MTT
andGatsby. Such an implementation would provide a better setting

to explore what definitional equalities are possible to achieve in

Gatsby, as checking such calculations is subtle and error-prone.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

A modal deconstruction of Löb induction Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

REFERENCES
[1] Frederik Lerbjerg Aagaard, Magnus Baunsgaard Kristensen, Daniel Gratzer,

and Lars Birkedal. 2022. Unifying cubical and multimodal type theory.

arXiv:2203.13000 [cs.LO]

[2] A. Arnold and M. Nivat. 1980. Metric interpretations of infinite trees and seman-

tics of non deterministic recursive programs. Theoretical Computer Science 11, 2
(1980), 181–205. https://doi.org/10.1016/0304-3975(80)90045-6

[3] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. 2017. The

clocks are ticking: No more delays!. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE. https://doi.org/10.1109/LICS.2017.

8005097

[4] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters,

and Andrea Vezzosi. 2019. Guarded Cubical Type Theory. Journal of Automated
Reasoning 63 (2019), 211–253.

[5] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, An-

drew M. Pitts, and Bas Spitters. 2020. Modal dependent type theory and depen-

dent right adjoints. Mathematical Structures in Computer Science 30, 2 (2020),
118–138. https://doi.org/10.1017/S0960129519000197 arXiv:1804.05236

[6] Lars Birkedal and Rasmus Ejlers Møgelberg. 2013. Intensional Type Theory with

Guarded Recursive Types qua Fixed Points on Universes. In Proceedings of the
2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’13).
IEEE Computer Society, USA, 213–222. https://doi.org/10.1109/LICS.2013.27

[7] Lars Birkedal, Rasmus Møgelberg, Jan Schwinghammer, and Kristian Støvring.

2012. First steps in synthetic guarded domain theory: step-indexing in the topos

of trees. Logical Methods in Computer Science 8, 4 (2012). https://doi.org/10.2168/

LMCS-8(4:1)2012

[8] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The Category-

Theoretic Solution of Recursive Metric-Space Equations. Theoretical Computer
Science 411, 47 (10 2010), 4102–4122. https://doi.org/10.1016/j.tcs.2010.07.010

[9] Aleš Bizjak and Lars Birkedal. 2022. Lecture Notes on Iris: Higher-Order Concur-

rent Separation Logic. Online. https://iris-project.org/tutorial-pdfs/iris-lecture-

notes.pdf.

[10] Ales Bizjak, Lars Birkedal, and Marino Miculan. 2014. A Model of Countable

Nondeterminism in Guarded Type Theory. In Rewriting and Typed Lambda
Calculi – Joint International Conference, RTA-TLCA 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings
(Lecture Notes in Computer Science, Vol. 8560), Gilles Dowek (Ed.). Springer, 108–

123. https://doi.org/10.1007/978-3-319-08918-8_8

[11] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg,

and Lars Birkedal. 2016. Guarded Dependent Type Theory with Coinductive

Types. In Foundations of Software Science and Computation Structures, Bart Jacobs
and Christof Löding (Eds.). Springer Berlin Heidelberg, 20–35.

[12] Aleš Bizjak and Rasmus Ejlers Møgelberg. 2020. Denotational semantics for

guarded dependent type theory. Mathematical Structures in Computer Science 30,
4 (2020), 342–378. https://doi.org/10.1017/S0960129520000080

[13] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. 2015.

Programming and Reasoning with Guarded Recursion for Coinductive Types. In

Foundations of Software Science and Computation Structures (Berlin, Heidelberg),
Andrew Pitts (Ed.). Springer Berlin Heidelberg, 407–421.

[14] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2017. Cubi-

cal Type Theory: a constructive interpretation of the univalence axiom. 4, 10

(2017), 3127–3169. arXiv:1611.02108 [cs.LO]

[15] Daniel Gratzer. 2022. Normalization for Multimodal Type Theory. In Proceedings
of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (Haifa,
Israel) (LICS ’22). Association for Computing Machinery, New York, NY, USA,

Article 2, 13 pages. https://doi.org/10.1145/3531130.3532398

[16] Daniel Gratzer. 2023. Syntax and semantics of modal type theory. Ph. D. Disserta-
tion. Aarhus University.

[17] Daniel Gratzer and Lars Birkedal. 2022. A Stratified Approach to Löb Induc-

tion. In 7th International Conference on Formal Structures for Computation and
Deduction (FSCD 2022) (Dagstuhl, Germany) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 228), Amy Felty (Ed.). Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik. https://doi.org/10.4230/LIPIcs.FSCD.2022.3

[18] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal

Dependent Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS ’20). ACM. https://doi.org/10.1145/3373718.

3394736

[19] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021. Multimodal

Dependent Type Theory. Logical Methods in Computer Science Volume 17, Issue

3 (07 2021). https://doi.org/10.46298/lmcs-17(3:11)2021

[20] Astra Kolomatskaia and Michael Shulman. 2023. Displayed Type Theory and

Semi-Simplicial Types. arXiv:2311.18781

[21] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi.

2022. Greatest HITs: Higher inductive types in coinductive definitions via in-

duction under clocks. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science. Association for Computing Machinery, New York,

NY, USA. https://doi.org/10.1145/3531130.3533359

[22] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018. Internal

Universes in Models of Homotopy Type Theory. In 3rd International Conference
on Formal Structures for Computation and Deduction (FSCD 2018) (Leibniz Inter-
national Proceedings in Informatics (LIPIcs)), H. Kirchner (Ed.). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 22:1–22:17. https://doi.org/10.4230/LIPIcs.

FSCD.2018.22 arXiv:1801.07664

[23] Daniel R. Licata and Michael Shulman. 2016. Adjoint Logic with a 2-Category

of Modes. In Logical Foundations of Computer Science, Sergei Artemov and Anil

Nerode (Eds.). Springer International Publishing, 219–235. https://doi.org/10.

1007/978-3-319-27683-0_16

[24] Bassel Mannaa, Rasmus Ejlers Møgelberg, and Niccolò Veltri. 2020. Ticking

clocks as dependent right adjoints: Denotational semantics for clocked type

theory. Logical Methods in Computer Science Volume 16, Issue 4 (12 2020). https:

//doi.org/10.23638/LMCS-16(4:17)2020

[25] Conor McBride and Ross Paterson. 2008. Applicative programming with ef-

fects. Journal of Functional Programming 18, 1 (2008). https://doi.org/10.1017/

S0956796807006326

[26] Rasmus Ejlers Møgelberg and Marco Paviotti. 2016. Denotational semantics of

recursive types in synthetic guarded domain theory. In LICS ’16 Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. Association for

Computing Machinery, United States, 317–326. https://doi.org/10.1145/2933575.

2934516

[27] Rasmus Ejlers Møgelberg and Andrea Vezzosi. [n. d.]. Two Guarded Recur-

sive Powerdomains for Applicative Simulation. In Proceedings 37th Conference
on Mathematical Foundations of Programming Semantics (2021-12), Vol. 351.

Electronic Proceedings in Theoretical Computer Science, 200–217. https:

//doi.org/10.4204/EPTCS.351.13

[28] Rasmus Ejlers Møgelberg. 2014. A Type Theory for Productive Coprogramming

via Guarded Recursion. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (CSL-LICS
’14). https://doi.org/10.1145/2603088.2603132

[29] Rasmus Ejlers Møgelberg and Niccolò Veltri. 2019. Bisimulation as Path Type for

Guarded Recursive Types. Proceedings of the ACM on Programming Languages 3,
POPL (12 2019). https://doi.org/10.1145/3290317

[30] H. Nakano. 2000. A modality for recursion. In Proceedings Fifteenth Annual IEEE
Symposium on Logic in Computer Science (Cat. No.99CB36332). IEEE Computer

Society, 255–266.

[31] Daniele Palombi and Jonathan Sterling. 2023. Classifying topoi in synthetic

guarded domain theory. In Proceedings 38th Conference on Mathematical Founda-
tions of Programming Semantics, MFPS 2022. https://doi.org/10.46298/entics.10323

[32] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A Model of

PCF in Guarded Type Theory. Electronic Notes in Theoretical Computer Science 319,
Supplement C (2015), 333–349. https://doi.org/10.1016/j.entcs.2015.12.020 The

31st Conference on the Mathematical Foundations of Programming Semantics

(MFPS XXXI).

[33] Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities in homotopy

type theory. Logical Methods in Computer Science 16, 1 (2020). arXiv:1706.07526
[34] Michael Shulman. 2018. Brouwer’s fixed-point theorem in real-cohesive ho-

motopy type theory. Mathematical Structures in Computer Science 28, 6 (2018),
856–941. https://doi.org/10.1017/S0960129517000147

[35] Michael Shulman. 2023. Towards third generation HoTT. Joint work

with Thorsten Altenkirch and Ambrus Kaposi. Slides available at https://home.

sandiego.edu/~shulman/papers/hott-cmu-day1.pdf.

[36] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers,

Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris: Resolving an Existential
Dilemma of Step-Indexed Separation Logic. Association for Computing Machinery,

New York, NY, USA, 80–95. https://doi.org/10.1145/3453483.3454031

[37] Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type

Theory. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS ’21). ACM, New York, NY, USA.

[38] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. 2023. Denotational seman-

tics of general store and polymorphism. arXiv:2210.02169 [cs.PL]

[39] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. 2024. Towards univalent

reference types. In Computer Science Logic (CSL 2018).
[40] The Univalent Foundations Program. 2013. Homotopy Type Theory: Uni-

valent Foundations of Mathematics. Institute for Advanced Study. https:

//homotopytypetheory.org/book

[41] Niccolò Veltri and Andrea Vezzosi. 2020. Formalizing 𝜋 -calculus in guarded

cubical Agda. In Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs. 270–283.

13

https://arxiv.org/abs/2203.13000
https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1017/S0960129519000197
https://arxiv.org/abs/1804.05236
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1016/j.tcs.2010.07.010
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1007/978-3-319-08918-8_8
https://doi.org/10.1017/S0960129520000080
https://arxiv.org/abs/1611.02108
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.46298/lmcs-17(3:11)2021
https://arxiv.org/abs/2311.18781
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://arxiv.org/abs/1801.07664
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.23638/LMCS-16(4:17)2020
https://doi.org/10.23638/LMCS-16(4:17)2020
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.4204/EPTCS.351.13
https://doi.org/10.4204/EPTCS.351.13
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1145/3290317
https://doi.org/10.46298/entics.10323
https://doi.org/10.1016/j.entcs.2015.12.020
https://arxiv.org/abs/1706.07526
https://doi.org/10.1017/S0960129517000147
https://home.sandiego.edu/~shulman/papers/hott-cmu-day1.pdf
https://home.sandiego.edu/~shulman/papers/hott-cmu-day1.pdf
https://doi.org/10.1145/3453483.3454031
https://arxiv.org/abs/2210.02169
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book


1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A THE STANDARD MODEL OF Gatsby
Unlike the rest of the paper, in this appendix we will presuppose fa-

miliarity with the contents of Aagaard et al. [1]. We further assume

the same notation as Section 5.

As mentioned in Section 5, we cannot simply apply the results

of op. cit. as-is to Gatsby to interpret it into cSet and PShcSet (𝜔),
because 𝜖0 and ⊤ are not interpreted by right Kan extension.

We begin by explicitly defining the left adjoints for the various

functors as a strict 2-functor 𝐹 :MGatsby
coop → Cat:

𝐹 (ℓ)𝑋 𝑛 = 𝑋 (𝑛 + 1) 𝐹 (𝑒)𝑋 𝑛 = 𝑋 (pred(𝑛)) 𝐹 (𝛾) 𝑆 𝑛 = 𝑆

𝐹 (𝛿)𝑋 = 𝑋 (0) 𝐹 (𝜖0) 𝑆 = if 𝑛 = 0 then 𝑆 else 0 𝐹 (⊤) 𝑆 = 0

This organizes into a strict 2-functor because each functor is

either determined by precomposition or uses sends an object to 0;
all relevant coherences are therefore necessarily realized by id.

Combining this with themodel of cubical type theory in PShcSet (𝜔)
[22], we are therefore to directly interpret all the rules of cubical

MTT as in Proposition 5.1 except for those involving the interactions
between modal and cubical features. Specifically, we must show

that there exists a set of coherent natural isomorphisms between

the interpretations of the following:

• The collections {𝜙 | Γ ⊢ 𝜙} and {𝜙 ′ | Γ.{`} ⊢ 𝜙 ′}
• Γ.{`}.I and Γ.I.{`}
• Γ.{`}.𝜙 and Γ. ¯𝜙.{`} where ¯𝜙 is induced by the first point.

Aagaard et al. [1] notes that for any modality ` interpreted by

right Kan extension, all of these isomorphisms may be realized by

the identity. While in general, this is not the case for modalities

defined by precomposition like 𝐹 (𝜖0) and 𝐹 (⊤), it is the case for
these two functors. For instance, JI𝑡 K in PShcSet (𝜔) is defined by

JI𝑡 K𝑛 = JI𝑠K. Accordingly, for ` = 𝜖0 the second isomorphism above

is equivalent to requiring an isomorphism between the following

presheaves:

JΓ.{𝜖0}.I𝑡 K𝑛 =

{
JΓ.{`}K × JI𝑠K 𝑛 = 0

0

JΓ.I𝑠 .{𝜖0}K𝑛 =

{
JΓ.{`}K × JI𝑠K 𝑛 = 0

0

In the above, we have capitalized on the fact that 0 × 𝑋 = 0 in the

category of (cubical) sets. We can therefore realize this (and all other

necessary) isomorphisms by the identity. This also ensures that

all necessary coherence conditions are satisfied. Accordingly, the

argument given for Proposition 5.1 holds without real adaptation.

14


	Abstract
	1 Introduction
	1.1 Guarded type theory
	1.2 Guarded accessible type theory: Gatsby
	1.3 Closely related approaches
	1.4 Contributions

	2 Cubical MTT and guarded recursion
	2.1 A summary of multimodal type theory
	2.2 Instantiating MTT with M[Guarded]
	2.3 A no-go theorem for Löb induction

	3 Introducing Gatsby
	3.1 The new rule
	3.2 The accessible proposition
	3.3 The universe of accessible types
	3.4 First examples in Gatsby

	4 Case study with logical relations
	4.1 Static and dynamic semantics of ToyML
	4.2 A unary logical relation interpretation
	4.3 Adequacy

	5 Semantics of Gatsby
	6 Related work
	7 Conclusions and future work
	7.1 Normalization and canonicity for Gatsby
	7.2 Extensions to Gatsby

	References
	A The standard model of Gatsby

