
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A modal deconstruction of Löb induction
Anonymous Author(s)

ABSTRACT
We present a novel analysis of the fundamental Löb induction prin-

ciple from guarded recursion. Taking advantage of recent work

in modal type theory and univalent foundations, we derive Löb

induction from a simpler and more conceptual set of primitives. We

then capitalize on these insights to presentGatsby, the first guarded
type theory capturing the rich modal structure of the topos of trees

alongside Löb induction without immediately precluding canonic-

ity or normalization. We show that Gatsby can recover many prior

approaches to guarded recursion and use its additional power to im-

prove on prior examples. We crucially rely on homotopical insights

and Gatsby constitutes a new application of univalent foundations

to the theory of programming languages.
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1 INTRODUCTION
Recursive definitions have long been both a hallmark of the theory

of programming languages and a sore point for type theory. Top-

ics as varied as the denotational semantics of 𝜆-calculus or logical

relations for higher-order mutable references all prominently fea-

ture complex recursive definitions at their heart. Those techniques

which construct solutions for such recursive equations (domain

theory, step-indexing, etc.) are among the most commonly used

within programming language theory.

On the other hand, recursive definitions in type theory intro-

duce two serious complications. First, and most notably, they are

simply unsound in general. A type theory that includes an un-

restricted fixed-point operator is easily seen to be unsound with

fix(𝑥 .𝑥) : ⊥. This problem is usually addressed by restricting the

fixed-point operator to apply only to types and operations where

we can guarantee the existence of a fixed-point. A typical such

example is present in proof assistants like Coq or Agda, where

only structural recursion is permitted. This discipline is sufficient

to accommodate inductive arguments and similar, but insufficient

for the equations arising in programming languages which often

fail to even induce a monotone operator. A successful line of work

(guarded domain theory) has focused on replacing recursive equa-

tions with guarded recursive equations and applying the results to

programming languages [2, 7, 8, 30].
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1.1 Guarded type theory
Guarded domain theory extends type theory with a new connective

▶ (pronounced later) where intuitively ▶𝐴 classifies computations

which will eventually produce an element of 𝐴 but only after work

has been done. Crucially, while there is a natural map next : 𝐴→
▶𝐴 there is no natural map in the reverse direction. It is therefore

sound to add a restricted version of fix, Löb induction:

loeb : (▶𝐴→ 𝐴) → 𝐴

Even after making such a restriction, however, a second problem

emerges: decidability. Modern type theories strive to maintain a

decidable type-checking in order to facilitate an implementation

and even adding the more restrictive operator loeb with the com-

putation rule loeb(𝑓 ) = 𝑓 (next(loeb(𝑓 ))) is sufficient to render

type-checking undecidable. This problem, along with other compli-

cations with integrating ▶ into dependent type theory, has moti-

vated over a decade of proposals for guarded type theory.

Thesis 1. We can summarize the aspirations for an ideal guarded
type theory as the following four goals:

(1) Include ▶ along with e.g., the always comonad.
(2) Include loeb with a propositional equality stating it unfolds.
(3) Ensure that closed elements of Nat compute to numerals.
(4) Ensure that type-checking is decidable.1

Example 1.1. We illustrate how these requirements may be used

simultaneously.We use 1 and 2 to define the type of guarded streams

alongside a propositional equality GStr = Nat × ▶GStr. Using 2

again, we then construct e.g., fibs the guarded stream of Fibonacci

numbers. With the always comonad from 1, we can pass under 𝑛

copies of ▶ to extract the 𝑛th element of fibs. Finally, 3 ensures

that this natural number computes to a genuine numeral while 4

implies that the entire program could be implemented in a proof

assistant.

Historically, even the first of these goals was a serious challenge

since the integration of multiple interacting modalities proved to

be difficult. For instance, much of the work on guarded recursion

uses the global sections or always comonad 2, which cannot be

included as an operation U→ U in type theory [34]. Early attempts

to incorporate both ▶ and 2 simultaneously precluded the final

two desiderata without even considering Löb induction [11, 13].

Recently, Gratzer et al. [18] proposedMTT as a convenient frame-

work for dependent type theories supporting arbitrarily many

modalities, including all those necessary for guarded recursion.

Later work [15] has further shown thatMTT enjoys both decidable

type-checking and canonicity, ensuring that this general framework

can be instantiated to automatically yield a type theory satisfying

Goals 1, 3 and 4. Unfortunately, balancing these requirements with

Goal 2 has proven to be another substantial challenge.

Two flavors of MTT have been proposed which include Löb

induction [17, 18]. Both involve adding loeb as an axiom but there-

after diverge: either adding an axiom ensuring that it unfolds up to

1
This requirement is tantamount to requiring a normalization algorithm.
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propositional equality or simply adding a definitional equality to

this effect. Adding only propositional unfolding will preclude vali-

dating Goal 3 in the resulting type theory. Gratzer and Birkedal [17]

showed, however, that adding definitional unfolding will address

Goal 3 at the cost of refuting Goal 4. Indeed, the “no-go” theorem

of op. cit. caused type theorists to weaken the second aspiration of

guarded type theory from “include loeb with a definitional unfold-

ing equation” to the 2 we listed above.

In this work, we propose a novel alternative approach. We do

not start by axiomatizing Löb induction and attempting to balance

its computation rule with decidability. Instead, we enrich our modal

framework to obtain our new type theory Gatsby and derive Löb
induction from these more basic principles.

1.2 Guarded accessible type theory: Gatsby
Following prior work, we also build Gatsby atopMTT. To do so, we
must choose a mode theory—a 2-category—specifying the collec-

tion of modalities we wish to use. Roughly, each object𝑚 represents

a different type theory which are connected by a modality ⟨𝜇 | −⟩
for each morphism 𝜇 inM. Finally, the 2-cells in a mode theory

introduce transformations between modalities. However, instanti-

ating MTT on its own is insufficient. We prove that it is impossible

to derive Löb induction just from modalities:

Theorem 2.7 (No-go). For anyM and 𝜇 ∈ M, there is no term
(⟨𝜇 | Void⟩ → Void) → Void in cubical MTT instantiated withM.

This is because nothing in MTT prevents modalities from being

trivial: there is always a model of the system which realizes each

modality by the identity. To rule out such degenerate models, we

then isolate a simple reasoning principle, similar to existing rules

in cubical type theory, which enriches the entire system enough to

rule out trivial models and thereby derive Löb induction.

1.2.1 From modalities to Löb induction. While no mode theory

is sufficient on its own, we must first choose a particular mode

theory with which to instantiate MTT. In our case, we have two

modes 𝑡 and 𝑠 . The first 𝑡 represents the guarded type theory and

will intuitively model the topos of trees PSh (𝜔). The second 𝑠 is
meant to represent ordinary non-guarded type theory and will

attempt to model sets. These modes are then linked by a collection

of modalities, and the modalities are equipped with a partial order.

We give the entire mode theory in Fig. 1. Many aspects of this mode

theory were already explored by Gratzer et al. [18]. For instance, ℓ

and 𝑒 correspond to ▶ and its left adjoint ◀. The composites 𝛿 ◦ 𝜖0

and 𝛿 ◦ 𝛾 correspond to the possibly and always modalities 3 and

2, though we have chosen to break them into adjunctions.

The crucial novelty to our system is in the final modality:⊤. Iron-
ically, this modality represents the simplest possible modality, the

one which sends every type to Unit. However, while Theorem 2.7

shows that it is impossible to realize loeb just from modalities, if

we force ⟨⊤ | 𝐴⟩ ≃ Unit, this impacts the behavior of the other

modalities enough to make loeb induction derivable.

Concretely, we isolate a particular proposition acc at mode 𝑡

and show that under the assumption of acc both Löb induction

and its unfolding principle are derivable. While this proposition is

true in our intended model, it is not derivable in Gatsby. Indeed,
the no-go theorem above Gratzer and Birkedal [17] shows that it

𝑡 𝑠

𝛾

𝛿

𝜖0

ℓ, 𝑒 ⊤

id ≤ ℓ id ≤ ℓ ◦ 𝑒 𝑒 ◦ ℓ = id 𝛾 ◦ 𝛿 = id

𝛾 ◦ ℓ = 𝛾 ◦ 𝑒 = 𝛾 𝛿 ◦ 𝛾 ≤ id 𝜖0 ◦ 𝛿 = id id ≤ 𝛿 ◦ 𝜖0

𝜉 ≤ 𝜈 ◦ ⊤ ◦ 𝜇 ⊤ ◦ 𝜖0 = 𝜖0 ◦ ℓ

Figure 1:MGatsby: the mode theory for Gatsby

must not be. However, this is where the more sophisticated modal

framework and special behavior of ⊤ comes into play. While acc is
not provable, ⟨𝜇 | acc⟩ holds for a large class of modalities 𝜇.

One can then write a program which assumes acc and thereby

has access to Löb induction and guarded reasoning. Once the pro-

gram is completed, a user can apply ⟨𝜇 | −⟩ to the entire closed

term and discharge the acc assumption to actually compute a result.

In this manner, the choice of 𝜇 plays the role of type-based “fuel”, al-

lowing a user to extract arbitrary but finite prefixes from a guarded

type without requiring the type-checker to compare infinite types.

1.2.2 Working with accessible types. While theoretically sufficient,

the prospect of carrying acc through every computation is un-

pleasant. Moreover, in a theory like Gatsby with modalities, real

problems could possibly emerge. For instance, we may pass under

2 and lose access to the acc assumption we desired. Both problems

can be resolved simultaneously by restricting to types which are

accessible, i.e., where 𝐴 is equivalent to acc→ 𝐴. Intuitively, these

are types for which there is a canonical and best way to discharge

an acc assumption and so it can be done automatically.

When working with an accessible type, there is no need to carry

around a proof of acc as it can always be obtained from the goal it-

self. We show that that the subuniverse of accessible types supports

a model of guarded type theory closed under all the connectives

of type theory, including all modal operators and the universe. Re-

markably, even types like booleans, natural numbers, and 2𝐴 are

automatically accessible. The result is that essentially any standard

guarded recursive algorithm will need to mention only accessible

types, freeing the user from any obligation to think about accwhen
programming. Formally, we have the following result:

Theorem 3.13 (Completeness). Any program written inMLTT with
▶,2, and loeb with propositional unfolding can be encoded in Gatsby.

More informally, our strategy is complete with respect to a more

standard formulation of guarded recursion.

1.3 Closely related approaches
While comparison to related work is carried out in Section 6, two ap-

proaches are sufficiently close to warrant earlier mention: stratified

guarded type theory [17] and clocked cubical type theory [3, 21].

Stratified guarded type theory (GuTT) [17] balances the tensions
of Thesis 1 by proposing two separate but related type theories: one

satisfying Goals 1, 2 and 4 and one satisfying Goals 1 to 3. Gatsby
2
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sharpens this idea by careful unifying these theories through a

more sophisticated modal analysis of Löb induction. In particular,

by discarding GuTT’s Löb induction axioms, we are able to recover

GuTT’s type-based notion of fuel through the class of modalities for

which ⟨𝜇 | acc⟩. We then use this to derive Löb induction. Gatsby
also offers a richer class of modalities than GuTT and seamlessly

includes 2.

Clocked cubical type theory (CloTT□) [21] also attempts to sat-

isfy Thesis 1 but through very different means. Firstly, rather than

including multiple interacting modalities, CloTT□ includes only ▶
but then indexes it by a clock 𝜅 which can be quantified over. The

presence of clocks allows CloTT□ to add Löb induction as an axiom

which unfolds only in specific circumstances; roughly after the par-

ticular clock 𝜅 has been bound to prevent any further occurrences

of ▶𝜅 . Like Gatsby, CloTT□ conjecturally satisfies canonicity and

decidable type-checking and, like Gatsby, it therefore provisionally
satisfies Goals 1 to 4.

2
However, the approach is very different.

CloTT□’s indexed ▶ modality offers a richer framework for

guarded programming. However, clock quantification does not repli-

cate all uses of 2 and forces a more complex semantics [24]. More-

over, clock quantification necessitates considering clock-irrelevant
types, complicating the theory of universes. On the other hand,

while Gatsby enjoys a simpler semantics, richer modalities, and

better-behaved universes, programming with modalities can be

less intuitive than with clocks and clocks are required for nested

guarded types. The biggest difference is in the approachGatsby and
CloTT□ take for Löb induction. WhileCloTT□ adds in Löb induction
as an axiom and restricts its computation to decide type-checking,

Gatsby derives Löb induction from modalities. In addition to the in-

trinsic interest of this decomposition, this approach arguably makes

it easier to extend Gatsby with additional reasoning principles.

Despite these differences, Gatsby has crucially benefited from

the work behind CloTT□. The CloTT□ approach to clock-irrelevant

types motivates our exploration of accessible types which sub-

stantially improves the usability of Gatsby. Moreover, the cubical

variant of MTT [1] which Gatsby extends is inspired by CloTT□.

1.4 Contributions
We present guarded accessible type theory or Gatsby: a modal type

theory built on MTT extended with a new primitive computational

modality⊤. From this purely modal extension, we derive Löb induc-

tion and offer a complete solution to the problems of the original

guarded dependent type theory proposed by Birkedal et al. [7].

• We show thatGatsby satisfies Goals 1 and 2 above and offer
evidence for Goals 3 and 4.

• We show that more standard presentations of guarded re-

cursion can be compiled faithfully into Gatsby.
• We demonstrate that Gatsby is usable by providing a case-

study extending an example given by Birkedal et al. [7].

Gatsby is the first guarded type theory to support computa-

tional Löb induction alongside the rich modal structure of PSh (𝜔)
(▶,◀,2,3) without immediately precluding decidable type-checking.

2
The non-cubical variant of CloTT□ [3] is known to enjoy normalization and satisfies

Goals 1, 3 and 4. However, it does not include any means of proving loeb(𝑓 ) =

𝑓 (next(loeb𝑓 ) ) and therefore does not satisfy Goal 2.

Moreover, the good behavior of universes and propositions in univa-

lent foundations is critical to Gatsby, making it a novel application

of homotopy type theory to programming languages.

Organization. In Section 2 we introduce cubicalMTT, the founda-
tion of Gatsby. Section 3 introducesGatsby itself and tours through
its most essential features. Section 4 uses Gatsby to improve upon a

logical-relations argument from Birkedal et al. [7]. Finally, Section 5

discusses the semantics of Gatsby and proves its soundness.

2 CUBICALMTT AND GUARDED RECURSION
Gatsby depends on a computational account of univalence and a

well-behaved theory of modalities. In this section we recall some

of the details of a system which contains both: Cubical MTT [1].

CubicalMTT is a variant on ordinaryMTT in which every mode

contains a copy of cubical type theory, as opposed to the ordinary

copy of intensional Martin-Löf type theory. Fortunately, the details

of cubical type theory are not essential to understanding Gatsby.
The same cannot be said of the theory of modalities used by Gatsby
where details do matter.

Accordingly, we will give a brief overview of MTT only, as the

reader will be able to follow all the constructions of Sections 3

and 4 simply by assuming that Gatsby is built atop ordinary MTT
extended with univalence; the only import of the cubical implemen-

tation of univalence is that it is computational.
3

For a comprehensive review of MTT we refer the reader to

Gratzer [16, Chapter 6] or Gratzer et al. [19]. For cubical type theory

and computational univalence, we suggest Cohen et al. [14].

A glossary for homotopy type theory. We will take advantage of a

variety of standard notations and definitions from homotopy type

theory. The standard reference for these is the HoTT Book [40].

For convenience, we recall that if 𝑝 : 𝑥 = 𝑦 then transport𝐵 𝑝 :

𝐵 𝑥 → 𝐵𝑦. In the special case where 𝐵 = id, then we write 𝑝∗ for
the induced map. If 𝑓 : 𝐴→ 𝐵 and 𝑝 : 𝑎0 = 𝑎1, we write ap𝑓 𝑝 for

the induced path 𝑓 𝑎0 = 𝑓 𝑎1. We shall have frequent occasion to

use the univalent version of propositions: homotopy proposition or

hprop. An hprop is a type 𝐴 equipped with a (necessarily unique)

function (𝑎0, 𝑎1 : 𝐴) → 𝑎0 = 𝑎1. We write hProp𝑖 for the subtype
of the universe U𝑖 spanned by hprops. We write ∥𝐴∥ for the unique
homotopy proposition equipped with a map 𝜂 : 𝐴→ ∥𝐴∥ such that

𝜂∗ : 𝑃 ∥𝐴∥ → 𝑃𝐴 is an equivalence for all propositions 𝑃 .

Finally, for convenience, we shall generally omit subscripts around

universes and avoid discussing size issues. So we shall write U : U
and leave it to the reader to insert the subscripts U𝑖 : U𝑖+1. This
also applies to hProp𝑖 for which we will simply write hProp.

2.1 A summary of multimodal type theory
To a first approximation, MTT is a machine which accepts as input

an abstract specification of modalities (a mode theory [23]) and

produces a modal type theory as output satisfying canonicity and

normalization [15]. While generally, a mode theory is allowed to

be a strict 2-category, for our purposes it suffices to consider a

1-category enriched in partial orders. That is, a mode theory is a

3
We conjecture that an alternative account of computational univalence—e.g., the work

by Shulman, Altenkirch, and Kaposi [35]—could be adapted for a similar purpose.

3
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categoryM where every hom-set homM (𝑥,𝑦) is a partial order
such that composition is monotone.

Suppose MTT is instantiated with some mode theoryM. The

objects of M are called modes (ranged over by 𝑚,𝑛, 𝑜) and the

morphisms are modalities (ranged over by 𝜇, 𝜈, 𝜉). In MTT, each
mode𝑚 yields a separate copy of type theory with its attendant set

of judgments (⊢ Γ cx @ 𝑚, Γ ⊢ 𝐴 type @ 𝑚, etc.). Each type theory

is then extended with several operations to reflect the modalities

which link the modes:

(Cx) Γ,Δ F . . . | Γ.(𝜇 | 𝐴) | Γ.{𝜇}
(Ty) 𝐴, 𝐵 F . . . | ⟨𝜇 | 𝐴⟩
(Tm) 𝑀, 𝑁 F . . . | mod𝜇 (𝑀) | let𝜈 mod𝜇 (−) ← 𝑀 in 𝑁

The idea behindMTT is that eachmodality 𝜇 : 𝑛 𝑚 induces (1)

a type former ⟨𝜇 | −⟩ sending mode 𝑛 types to mode𝑚 types along

with (2) a context former −.{𝜇} sending𝑚 contexts to 𝑛 contexts.

We add equations ensuring that Γ.{id} = Γ and Γ.{𝜈}.{𝜇} = Γ.{𝜈𝜇}.
Roughly, −.{𝜇} is the left adjoint to ⟨𝜇 | −⟩; modalities inMTT

are (weak) dependent right adjoints [5]. Hence, an element Γ ⊢
𝑀 : ⟨𝜇 | 𝐴⟩ is roughly equivalent to an element Γ.{𝜇} ⊢ 𝑁 : 𝐴.

Converting 𝑁 to𝑀 is the role of the introduction rule:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛

Γ ⊢ ⟨𝜇 | 𝐴⟩ type @ 𝑚

Γ.{𝜇} ⊢ 𝑀 : 𝐴 @ 𝑛

Γ ⊢ mod𝜇 (𝑀) : ⟨𝜇 | 𝐴⟩ @ 𝑚

The passage from𝑀 to𝑁 is more fraught. The elimination princi-

ple ought to give such an inverse. Directly adding such an operation,

however, disrupts the substitution property of the type theory. We

instead add a “pattern-matching” elimination rule similar to the

elimination principle used for booleans or natural numbers.

It is here that the modified form of context Γ.(𝜇 | 𝐴) is used, so
we postpone the elimination rule and first explain how this novel

form of context extension works. Roughly, Γ.(𝜇 | 𝐴) is a context
with a variable of type 𝐴 annotated with 𝜇. While morally the same

as an element of ⟨𝜇 | 𝐴⟩, the force of the annotation is that it can

be used in the variable rule to pull a variable out from behind {𝜇}:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛 𝜇 ≤ 𝜈 : 𝑛 𝑚

Γ.(𝜇 | 𝐴) .{𝜈} ⊢ v : 𝐴[p.{𝜈}] @ 𝑚

The variable rule is where the partial order on modalities enters

the type theory. The most basic form of the variable rule states that

a 𝜇-annotated variable can be used behind {𝜇}. We enhance this

rule slightly by not requiring the annotation 𝜇 to precisely match

the restriction {𝜈}. Instead, we require only that the annotation

implies the restriction: 𝜇 ≤ 𝜈 .

Notation 2.1. We have written this rule using de Bruijn indices and

explicit substitutions. This is convenient when specifying modal

type theories, as substitution is often subtle and non-standard. In

future examples we shall opt for more readable named variables.

Notation 2.2. When writing MTT terms “informally”, we will write

𝑥 :𝜇 𝐴 to indicate the variable 𝑥 exists in the context with annota-

tion 𝜇 and type𝐴. If 𝜇 = id, we suppress it to recover the traditional
notation. See Gratzer [16, Section 6.1] for a detailed discussion.

We now return to the original question of the elimination rule

for ⟨𝜇 | 𝐴⟩. Intuitively, this rule ensures that it suffices to assume

every element of ⟨𝜇 | 𝐴⟩ is of the form mod𝜇 (−):
𝜈 : 𝑚 𝑜

Γ.{𝜈} ⊢ 𝑀 : ⟨𝜇 | 𝐴⟩ @ 𝑚 Γ.(𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 type @ 𝑜

Γ.(𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑁 : 𝐵 [id .mod𝜇 (v)] @ 𝑜

Γ ⊢ let𝜈 mod𝜇 (−) ← 𝑀 in 𝑁 : 𝐵 [id .𝑀] @ 𝑜

let𝜈 mod𝜇 (−) ← mod𝜇 (𝑀) in 𝑁 = 𝑁 [id .𝑀]
We will take occasional advantage of a convenience feature of

MTT. It is common to accept 𝑥 : ⟨𝜇 | 𝐴⟩ as an argument and imme-

diately pattern-match on it. This is simplified by modal functions:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛 Γ.(𝜇 | 𝐴) ⊢ 𝑀 : 𝐵 @ 𝑚

Γ ⊢ 𝜆𝑀 : (𝜇 | 𝐴) → 𝐵 @ 𝑚

Γ.{𝜇} ⊢ 𝑁 : 𝐴 @ 𝑛 Γ ⊢ 𝑀 : (𝜇 | 𝐴) → 𝐵 @ 𝑚

Γ ⊢ 𝑀 (𝑁 ) : 𝐵 [id .𝑁 ] @ 𝑚

We use (𝑥 :𝜇 𝐴) → 𝐵(𝑥) for the informal version of (𝜇 | 𝐴) → 𝐵.

2.2 InstantiatingMTT withMGatsby
We now turn from MTT in general to its instantiation with the

specific mode theory required for Gatsby as detailed in Fig. 1. The

mode theory is a combination of mode theories previously used to

adapt MTT to study guarded recursion [16–18].

Unlike many presentations of guarded recursion, it contains

multiple modes. The types at mode 𝑡 are intended to behave like

objects from PSh (𝜔) and can exhibit guarded behavior, while 𝑠 is

intended to capture Set. Each modality 𝜇 is intended to capture a

particular right adjoint 𝐹𝜇 on or between these categories:

𝐹ℓ (𝑋 ) = ▶𝑋 𝐹𝑒 (𝑋 ) = ◀𝑋 𝐹𝛿 (𝑆) = 𝜆𝑛. 𝑆

𝐹𝛾 (𝑋 ) = lim
𝜔

𝑋 𝐹𝜖0
(𝑋 ) = 𝑋 (0) 𝐹⊤ (𝑋 ) = {★}

See Birkedal et al. [7] for the definitions of ◀ and ▶ on PSh (𝜔).
Inspired by the above, we will write ▶𝐴 ≜ ⟨ℓ | 𝐴⟩, ◀𝐴 ≜ ⟨𝑒 | 𝐴⟩,
2𝐴 ≜ ⟨𝛿 ◦ 𝛾 | 𝐴⟩, and 3𝐴 ≜ ⟨𝛿 ◦ 𝜖0 | 𝐴⟩.

Remark 2.3. For the sake of simplicity, we have chosen to ignore

the complications imposed by modeling cubical MTT and inter-

preting univalence above. In Section 5 we shall return to this point

and show that the preceding sketch can be turned into a valid con-

struction by replacing sets with cubical sets and presheaves with

cubical presheaves. For the next two sections we shall ignore uni-

valence when providing semantic intuitions and simply note that

all arguments can be adapted to cubical sets with minimal changes.

Several modal combinators are definable for any modality in

MTT and, when appropriately instantiated, these yield familiar

operations in guarded recursion. In particular, we shall have use

for the following generalMTT combinators:

⊛ : ⟨𝜇 | 𝐴→ 𝐵⟩ → ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩ triv : ⟨id | 𝐴⟩ ≃ 𝐴

comp : ⟨𝜈 | ⟨𝜇 | 𝐴⟩⟩ ≃ ⟨𝜈 ◦ 𝜇 | 𝐴⟩ coe𝜇≤𝜈 : ⟨𝜇 | 𝐴⟩ → ⟨𝜈 | 𝐴⟩
For instance, the standard map next : 𝐴 → ▶𝐴 is defined as

coeid≤ℓ ◦ triv−1
and the equivalence now : 2▶𝐴 ≃ 2𝐴 is realized

by comp. We record these and more in an omni-bus theorem:

Theorem 2.4.
4
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(1) ▶ is a well-pointed applicative functor,
(2) 2 is an idempotent comonad and 2▶ ≃ 2 ≃ 2◀,
(3) the following pairs of modalities are adjoint: ◀ ⊣ ▶, 3 ⊣ 2,
⟨𝛿 | −⟩ ⊣ ⟨𝛾 | −⟩, and ⟨𝜖0 | −⟩ ⊣ ⟨𝛿 | −⟩.

We emphasize that certain modalities, ◀ and ⟨𝛿 | −⟩, are left ad-
joint modalities. These modalities enjoy particularly good behavior

inMTT in the form of a variety of crisp induction principles [16, 34].
For instance, ⟨𝛿 | Nat⟩ is equivalent to Nat and we may therefore

perform induction on an element of the former as if it were the

latter. This is not the case for every modality ⟨𝜇 | −⟩. In general,

inductive types are preserved by left adjoint modalities, and we

shall capitalize on this fact several times.

Finally, we note two specific consequences of working with

cubicalMTT rather than ordinaryMTT. First, as already mentioned,

each mode supports the univalence axiom. Second, each modality

preserves identity types:

Theorem 2.5. The map mod𝜇 (𝑎) = mod𝜇 (𝑏) → ⟨𝜇 | 𝑎 = 𝑏⟩ send-
ing refl to mod𝜇 (refl) is an equivalence. We denote the inverse map
𝜄 : ⟨𝜇 | 𝑎 = 𝑏⟩ → mod𝜇 (𝑎) = mod𝜇 (𝑏).

Corollary 2.6. The map ⟨𝜇 | 𝐴→ 𝐵⟩ → (⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩) re-
stricts to a map ⟨𝜇 | 𝐴 ≃ 𝐵⟩ → (⟨𝜇 | 𝐴⟩ ≃ ⟨𝜇 | 𝐵⟩).

2.3 A no-go theorem for Löb induction
Thus far we have avoided any mention of Löb induction. Indeed, as

an instantiation of cubicalMTT, our theory thus far cannot possibly
validate Löb induction without additional axioms. We now give a

proof of this no-go theorem which implies that no choice of mode

theory makes Löb induction derivable in an instantiation of MTT
without additional axioms.

Theorem 2.7 (No-go). For anyM and 𝜇 ∈ M, there is no term
(⟨𝜇 | Void⟩ → Void) → Void in cubical MTT instantiated withM.

Proof. MTT with mode theory M has a model where each

mode is interpreted by ordinary (cubical) type theory and each

modality is realized by the identity. If (⟨𝜇 | Void⟩ → Void) → Void
was derivable in (cubical)MTT, then interpreting this term into this

model would yield an element of (JVoidK→ JVoidK) → JVoidK
in (cubical) type theory for each 𝐴 in MTT. Since JVoidK = Void
(the empty type), we would have𝑀 : (Void→ Void) → Void and

so 𝑀 (id) : Void; this contradicts the soundness of cubical type

theory. □

3 INTRODUCING Gatsby
In Section 2 we introduced (cubical)MTT and discussed its instanti-

ation toMGatsby. As it stands, this instantiation must be extended

with a new rule in order to validate Löb induction (Theorem 2.7).

We now present this new rule (Rule 1) and show that it forces

⟨⊤ | 𝐴⟩ = Unit. We term the system extended with it Gatsby.
A priori, constraining ⊤ in this manner is entirely unrelated to

Löb induction. We prove, however, that the interactions between ⊤
and other modalities in the system give us the ability to define Löb
induction on a large class of types. We carry out this derivation

in stages; we define a homotopy proposition which entails Löb

induction (Theorem 3.5) and then show that this homotopy propo-

sition holds in certain circumstances (Theorem 3.7). In Sections 3.3

and 3.4, we then show how to parlay this new reasoning principle

into a workable guarded type theory.

3.1 The new rule
As shown in Theorem 2.7, the key obstruction to deriving Löb

induction is that we cannot guarantee that ▶ (or indeed any of our

modalities) is not actually the identity. In order to rule this out, we

shall add a new rule forcing one modality, ⊤, to be not the identity.

To do this, note that ⟨⊤ | 𝐴⟩ is intended to encode Unit and so its

left adjoint action Γ.{⊤} corresponds to extending Γ by the empty

type. In particular, Γ.{⊤} will be interpreted by the empty set. With

this in mind, we add the following rule:

Γ ⊢ 𝑟 : 1 .{⊤} @ 𝑠

Γ ⊢ J
(1)

In the above, J ranges over any judgment. Intuitively, if there exist

a substitution from Γ to 1 .{⊤}, then Γ will be interpreted by the

empty set as well and so the principle of explosion ought to let us

conclude any judgment we wish in this context.

Remark 3.1. This rule is similar to the rule in cubical type theory

stating that Γ ⊢ J holds if Γ proves the false cofibration [14].

While we phrased this rule in an algebraic way by asking for

a substitution from the context to 1 .{⊤}, we can prove that it is

decidable whether such a substitution exists (see Proposition 7.1).

Such a metatheorem is crucial for showing that Gatsby admits a

normalization algorithm. Indeed, similar rules yield undecidable

type theories because of the absence of such a result.

Lemma 3.2. Rule 1 implies ⟨⊤ | 𝐴⟩ = Unit.

Proof. First, we note that ⟨⊤ | 𝐴⟩ is inhabited. Indeed, to con-

struct an element of ⟨⊤ | 𝐴⟩, it suffices to construct an element

of 𝐴 in a context restricted by {⊤} but Rule 1 ensures this is true
regardless of 𝐴. By univalence, it then suffices to argue that all

elements in ⟨⊤ | 𝐴⟩ are equal. While one can argue directly, this is

an immediate consequence of Theorem 2.5 and the argument above

after replacing 𝐴 by 𝑎0 =𝐴 𝑎1. □

In light of this result, we say that ⟨⊤ | −⟩ is a computational
modality [20]. On its own, constraining ⟨⊤ | 𝐴⟩ to be Unit is not
a useful change. After all, if we only cared about constraining

⟨⊤ | 𝐴⟩ we could simply discard the modal apparatus and take this

equivalence to be an equality. The force of this extension comes

through the interactions between ⊤ and other modalities. In partic-

ular, 𝜖0 ◦ ℓ = ⊤ ◦ 𝜖0 together with Lemma 3.2 implies the following:

⟨𝜖0 | ▶𝐴⟩ = Unit

While this is obviously true in the model (the first stage of ▶𝑋
is {★} by definition), it is only after forcing ⟨⊤ | 𝐴⟩ = Unit that
we can derive this result purely within the theory. Having some

circumstances under which ▶𝐴 trivializes opens up a new avenue

to encoding Löb induction.

3.2 The accessible proposition
Contrary to prior guarded type theories, we will not endeavor to

make Löb induction directly available on each type at mode 𝑡 . We

will instead split things up into two steps:
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(1) Define an (h-)proposition acc which implies Löb induction.

(2) Prove that ⟨𝜇 | acc⟩ holds for a large class of modalities 𝜇.

This two-step approach offers a way to include Löb induction

in Gatsby without directly postulating it. Instead, when working

with guarded recursion we will assume acc holds, such that the

type of the end result will be acc → 𝐴. In order to actually run

such a program, we then choose an appropriate modality 𝜇 and

switch to considering ⟨𝜇 | acc→ 𝐴⟩. The general principles of MTT
modalities together with our proof of ⟨𝜇 | acc⟩ then enables us to

conclude ⟨𝜇 | 𝐴⟩. By choosing 𝜇 appropriately, we are then able to

extract arbitrary finite approximations of 𝐴 and compute with Löb

induction without ever directly postulating it. While the first step

can be carried out in ordinary MTT, showing that ⟨𝜇 | acc⟩ is true
for any modality requires Gatsby’s computational ⊤ modality.

The proposition acc is defined using the truncation modality

∥−∥ from homotopy type theory:

Definition 3.3. We define acc =


∑

𝑛:Nat ▶
𝑛Void




at mode 𝑡 .

Remark 3.4. Note that acc is globally true when 𝑡 is interpreted into
PSh (𝜔) where it is realized by ∃𝑛. ▶𝑛⊥. In this model, ▶𝑛⊥ has a

more recognizable form as the representable presheaf y(𝑛). From
this viewpoint, acc is equivalent to the join of all y(𝑛) which is 1 by

construction. However, while it holds in the intended model, it is

not derivable withinGatsby. For instance, one could interpret mode

𝑡 using Sh(𝜔2) where acc is not globally true; it circumscribes the

open embedding of PSh (𝜔) into Sh(𝜔2).

We now set out to prove that assuming acc is sufficient to derive

Löb induction. Intuitively, as acc states that there exists some 𝑛

such that ▶𝑛Void holds, we ought to be able to define loeb(𝑓 ) : 𝐴

where 𝑓 : ▶𝐴→ 𝐴 by induction on 𝑛; if 𝑛 = 0 then we use the now

modality-free assumption of Void and otherwise we apply 𝑓 to an

element of ▶𝐴 which we obtain by induction. Unfortunately, this

naïve proof strategy does not work: the propositional truncation

used to define acc means that we cannot directly scrutinize 𝑛 when

constructing an element of 𝐴. However, we may strengthen our

goal slightly to work around this issue.

Instead of constructing loeb(𝑓 ) : 𝐴, we could instead construct

an element loeb(𝑓 ) : 𝐴 together with a proof that loeb(𝑓 ) is a
guarded fixed-point i.e., 𝑓 (next(loeb 𝑓 )) = loeb 𝑓 . Indeed, while
there are potentially many distinct elements of 𝐴, we prove that 𝑓

has at most one guarded fixed-point. We will therefore prove that

the type of guarded fixed-points of 𝑓 is contractible (inhabited and

all inhabitants are equal). This type is a hprop and so it is valid

to scrutinize an element of acc when proving it. We emphasize

that this strategy relies heavily on the good behavior of homotopy

propositions in univalent foundations.

Theorem 3.5. In mode 𝑡 , for any𝐴 : U and 𝑓 : ▶𝐴→ 𝐴 there exists
a term gfix : acc→ isContr(GFix𝐴 𝑓 ) where GFix𝐴 𝑓 is the type of
guarded fixed-points

∑
𝑎:𝐴 𝑓 (next𝑎) = 𝑎.

Proof. We take advantage of the fact that isContr is a propo-
sition to ignore the truncation on acc and actually scrutinize the

underlying natural number. We define gfix as follows:
gfix ∥(0, 𝑝)∥ = absurd𝑝
gfix ∥(1 + 𝑛,modℓ (𝑝))∥ 𝑓 = ?0 : isContr(GFix 𝑓 )

where

𝐶 :ℓ isContr(GFix 𝑓 )
𝐶 = gfix ∥(𝑛, 𝑝)∥ 𝑓

To fill this hole, we start with a preliminary observation: given

any element of ▶GFix 𝑓 , we may promote it to an element ofGFix 𝑓 .

promote : (𝑟ℓ :ℓ GFix 𝑓 ) →
∑
𝑟 :GFix 𝑓 ▶(𝑟 = 𝑟ℓ )

promote (𝑎, 𝑝) = let 𝑟 = (𝑓 (modℓ (𝑎)), ap𝑓 (𝜄 (modℓ (𝑝)))) in
(𝑟,modℓ ( {ℓ} ⊢ ?1 : 𝑟 = (𝑎, 𝑝) ))

To fill ?1 , it suffices to fill the following:

{ℓ} ⊢ ?2 : 𝑓 (next(𝑎)) = 𝑎

{ℓ} ⊢ ?3 : ap𝑓 (𝜄 (next𝑝)) = ?2 • 𝑝 • ap𝑓 ◦next (?2
−1)

The choice for ?2 is clear enough: 𝑝−1
. Plugging this in, it

suffices to construct a term of the following type:

{ℓ} ⊢ ap𝑓 (𝜄 (next 𝑝)) = ap𝑓 ◦next (𝑝)
This follows immediately from the definition of 𝜄.

Next, we note that 𝜋1 (promote 𝑟 ) = 𝑟 . We again have two holes

to fill if we let 𝑟 = (𝑎, 𝑝):
?4 : 𝑓 (next(𝑎)) = 𝑎

?5 : ap𝑓 (𝜄 (next 𝑝)) = ?2 • 𝑝 • ap𝑓 ◦next (?2
−1)

A similar argument fills these two holes with ?4 = 𝑝−1
.

We now return to ?1 . It suffices to implement the following:

?6 : GFix 𝑓 ?7 : (𝑟 : GFix 𝑓 ) → ?6 = 𝑟

We fill ?6 = promote(𝜋1𝐶). For the second hole, we use our re-

mark that 𝑟 = promote 𝑟 together with 𝜋2𝐶 , transitivity, and 𝜄. □

We can derive Löb induction from gfix:

loeb : (𝐴 : U) → (▶𝐴→ 𝐴) → acc→ 𝐴

loeb𝐴 𝑓 𝑧 = 𝜋1 (𝜋1 (gfix𝐴 𝑓 𝑧))

unfold : (𝐴 : U) (𝑓 : ▶𝐴→ 𝐴) → acc→
𝑓 (next(loeb 𝑓 )) = loeb 𝑓

unfold𝐴 𝑓 𝑧 = 𝜋2 (𝜋1 (gfix𝐴 𝑓 𝑧))

Notation 3.6. We shall often work with loeb : ((ℓ | 𝐴) → 𝐴) → 𝐴

(where the argument type is a modal function type) rather than

(▶𝐴→ 𝐴) → 𝐴 as the two types are equivalent.

While this is certainly interesting, if we can never discharge the

acc assumption from gfix, this brings us no closer to ever being

able to actually use these combinators. While we cannot prove acc
holds on its own, we can show that ⟨𝜖0 ◦ 𝑒𝑛 | acc⟩ holds. We break

this statement apart into two results:

Theorem 3.7. The following hold in modes 𝑡 and 𝑠 respectively:
• ◀acc = acc
• ⟨𝜖0 | acc⟩ = Unit

Proof. For the first point, we note that ◀ is a left adjoint and

therefore commutes with both propositional truncation and natural

numbers [16, Lemmas 6.4.16 and 6.4.15]. By propositional univa-

lence, it therefore suffices to show that acc implies the following:

∑
𝑚:Nat ◀▶

𝑚Void
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Scrutinizing our assumption of acc, we know that there exists some

𝑘 such that ▶𝑘Void; we then choose𝑚 = 𝑘 + 1 to obtain the goal.

For the second claim, we switch to working in mode 𝑠 . As all

modalities in Gatsby preserve identity types and the unit, they

preserve homotopy levels and, in particular, h-props. It therefore

suffices to show that ⟨𝜖0 | acc⟩ holds at all and we shall accom-

plish this by arguing that

〈
𝜖0 |

∑
𝑛:Nat ▶

𝑛Void
〉
holds. Commuting

this modality with the dependent sum, it suffices to argue that

⟨𝜖0 | ▶Void⟩ holds. However, we have shown in the prior subsec-

tion that ⟨𝜖0 | ▶Void⟩ = ⟨⊤ | ⟨𝜖0 | Void⟩⟩ = Unit. □

Corollary 3.8. For 𝑛 : Nat we have ⟨𝜖0 | ◀𝑛acc⟩ = Unit.

In particular, if we confine ourselves to just working in mode

𝑡 , we will not be able to (dis)prove acc and so loeb cannot be run.
However, if we write a closed program e.g.𝑀 : acc→ ▶𝑛Nat, we
can place the entire program under ⟨𝜖0 | ◀𝑛−⟩ and discharge the

acc assumption to obtain a program of type ⟨𝜖0 | ◀𝑛▶𝑛Nat⟩ ≃ Nat.
Intuitively, the choice of 𝑛 allows us to internally recover a type-

based “fuel” discipline for running guarded programs. We explore

this process in the next two sections.

3.3 The universe of accessible types
The previous subsection outlined an approach for guarded recur-

sion in Gatsby: hypothesize acc when constructing a program and

discharge it for closed terms using modalities. However, this simple

strategy has two major drawbacks. First, it is hardly convenient to

manually thread the acc assumption through every program we

write. Second, it may not even be possible to do so! Working in a

modal type theory, some connectives restrict access to the context

and so wemay write a programwhich assumes acc in the beginning
and yet find ourselves unable to rely on this assumption midway

through the program having descended beneath 2 or ▶.
The solution to both of these problems is the same: rather than

manually passing around acc, we should consistently work with

the acc-null types. That is, types 𝐴 such that the canonical map

𝐴→ (acc→ 𝐴) is an equivalence. Informally, these are the types

that “do not care” if a finite number of steps remain. By restricting

attention to these types, we free ourselves of the requirement to pass

acc around manually; whenever we require a witness for acc we
can simply “pull it out” of the goal 𝐴 by replacing it with acc→ 𝐴.

This has another startling consequence: if we limit ourselves

to working with accessible types, we never need to mention or

explicitly discharge acc. Each accessible type knows how to remove

the acc and we shall see that this allows the process to fade into

the background.

Definition 3.9. We say a type is accessible if it is acc-null. The
universe of accessible types Uacc is therefore written as follows:

Uacc =
∑
𝐴:U isEquiv(const : 𝐴→ (acc→ 𝐴))

This is a subuniverse of U; the map Uacc → U is an embedding.

If we restrict gfix, loeb, and unfold to applications where 𝐴 be-

longs to Uacc rather than U, we may dispense with the acc hypoth-
esis e.g., loeb : (𝐴 : Uacc) → (▶𝐴→ 𝐴) → 𝐴. This leads us to ask

what structure Uacc possess and which types are accessible.

The universe of accessible types is a reflective subuniverse [33].
We therefore conclude a number of results about Uacc from op. cit.

Proposition 3.10 (Rijke et al. [33]).
(1) Uacc is spanned by �-modal types where �𝐴 = acc→ 𝐴.
(2) Uacc is closed under dependent products and sums, the unit

type, and identity types.
(3) Uacc and hPropacc are accessible types.
(4) � is a lex idempotent monad (in fact, an open modality

4).
Moreover, Uacc is a model of HoTT and � a morphism of models.

We will not reproduce the entire proof for reasons of space, but

we will show the argument for why Uacc is accessible. We highlight

this because it relies crucially upon univalence and is one place

where working with cubicalMTT over ordinaryMTT is vital.

Proof. We claim that 𝜂 : Uacc → �Uacc is an equivalence. By

another result of Rijke et al. [33, Lemma 1.20], it is sufficient to

construct a left inverse to 𝜂. That is, we must define 𝑟 : �Uacc →
Uacc such that for all 𝐴 : Uacc, 𝑟 (𝜂 𝐴) = 𝐴. We define 𝑟 as follows:

𝑟 𝐴̃ = (𝑧 : acc) → 𝐴̃ 𝑧

To show that this is a left inverse, we must show that if 𝐴 : Uacc
then 𝐴 = acc→ 𝐴. By univalence, it suffices to show that there is

an equivalence 𝐴 ≃ acc→ 𝐴. We conclude by noting that const is
such an equivalence because 𝐴 : Uacc. □

The universe of accessible types Uacc enjoys a number of addi-

tional closure properties, specifically due to the behavior of acc.
In particular, acc is closed under both 2 and ▶, and we can prove

these facts purely within Gatsby without additional assumptions.

Theorem 3.11.
(1) If 𝐴 :ℓ Uacc then ▶𝐴 is accessible.
(2) If 𝐴 :𝛿 U then ⟨𝛿 | 𝐴⟩ is accessible.

The last statement implies that, in particular, 2𝐴 : Uacc.

Proof. We begin with the first statement. Suppose that 𝐴 :ℓ

Uacc. We note that ▶ is a right adjoint modality and employ the

transposition equivalence proven by Gratzer [16, Lemma 6.4.2]:

acc→ ▶𝐴 ≃ ▶(◀acc→ 𝐴)
By Theorem 3.7, ◀acc = acc and we therefore continue:

▶(◀acc→ 𝐴) ≃ ▶(acc→ 𝐴) ≃ ▶𝐴
The last step follows from Corollary 2.6 applied to modℓ (𝜋2𝐴) :

▶(𝐴 ≃ (acc→ 𝐴)). This proves that ▶𝐴 ≃ (acc→ ▶𝐴) and com-

putation shows that the induced equivalence is the constant map.

The second statement is similar, since ⟨𝛿 | −⟩ is right adjoint to 𝜖0

and we have already shown that ⟨𝜖0 | acc⟩ = Unit (Corollary 3.8):

acc→ ⟨𝛿 | 𝐴⟩ ≃ ⟨𝛿 | ⟨𝜖0 | acc⟩ → 𝐴⟩ ≃ ⟨𝛿 | 𝐴⟩
Again, computation shows that the inverse map induced by this

chain of equivalences is the constant map. □

Corollary 3.12. Both Nat and Bool are accessible and if 𝐴, 𝐵 : Uacc
then 𝐴 + 𝐵 is also accessible.

Proof. As 𝛿 is a left adjoint, ⟨𝛿 | Nat⟩ = Nat and ⟨𝛿 | Bool⟩ =
Bool. The second statement follows by noting that dependent sums

and Bool suffices to define + and Uacc is closed under both. □

4
There is an unfortunate terminological clash here; Rijke et al. [33] use the term

modality to refer to lex idempotent monads while Gratzer et al. [18] use it to refer to

⟨𝜇 | −⟩. For us, modality is meant in the latter sense.
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This corollary, which is a direct consequence of Lemma 3.2, is

essential for ensuring that Uacc is usable. Absent this result, Uacc
would still be closed under a large collection of operations but

contain no non-trivial base types. However, since essentially all

connectives and base types do land in Uacc, we are able to perform

all standard operations in mode 𝑡 and stay within Uacc, without

ever mentioning non-accessible types.

For instance, we may construct the type of guarded streams fea-

tured in the introduction without explicitly threading acc through
the construction. We simply replace U with Uacc to ensure that we

are applying Löb induction to an accessible type:

GStr = loeb(𝜆𝑆.Nat × ▶𝑆)
Here we have taken advantage of the fact that Uacc is closed under

both Nat and ×. We have also used loeb : ((ℓ | 𝐴) → 𝐴) → 𝐴 to

avoid immediately having to pattern-match upon 𝑆 in the above

example. The propositional unfolding associatedwith Löb induction

also ensures that GStr = Nat × ▶GStr.
In fact, we can codify this procedure more generally:

Theorem 3.13 (Completeness). Any program written inMLTT with
▶,2, and loeb with propositional unfolding can be encoded in Gatsby.

Proof. We must construct a model of such a type theory in

Gatsby. We do so by interpreting types as accessible types—thereby

interpreting Löb induction. We then use Proposition 3.10, Theo-

rem 3.11, and Corollary 3.12 to interpret all connectives. □

3.3.1 Inaccessible types. Care is required when working with types
such as propositional truncation ∥−∥ which do not preserve accessi-
bility. Indeed, acc itself is not accessible in all models; if it were, then

acc would simply be true. However, acc is the propositional trun-
cation of the type

∑
𝑛:Nat ▶

𝑛Void which is accessible in all models.

Phrased differently, ∥−∥ does not restrict to a map Uacc to Uacc.

Consequently, if we were to use ∥𝐴∥ in a guarded program, it

would be necessary to explicitly replace it by the accessible type

∥𝐴∥′ = acc→ ∥𝐴∥. This cannot cause issues within the program

itself: mapping out of ∥𝐴∥′ to an accessible type is the same as

mapping out of ∥𝐴∥. However, after the construction is completed

and one wishes to inspect the results as an ordinary type, it is

necessary to record that the replacement has taken place. In such

situations we must use Corollary 3.8 ourselves. After obtaining a

closed term𝑀 : acc→ ∥𝐴∥, we must choose some natural number

𝑛 and considermod𝜖0◦𝑒𝑛 (𝑀) ⊛★ : ⟨𝜖0 ◦ 𝑒𝑛 | ∥𝐴∥⟩. Choosing differ-
ent numbers 𝑛 enables us to extract different finite approximations

of ∥𝐴∥. This may be important if e.g., 𝐴 = ▶𝑘𝐴0 so that the first

stages of ∥𝐴∥ are trivial. This corresponds to the idea of type-based
fuel introduced by Gratzer and Birkedal [17].

Thus, it is possible, if more complex, to apply guarded reasoning

handle types which are not accessible. Fortunately, the standard

operations of type theory and guarded recursion (2, ▶) do land in

Uacc so this occurs infrequently.

3.4 First examples in Gatsby
We begin by working through some elementary constructions in

guarded type theory in order to give a flavor of working within the

system. We begin by filling in the example sketched in Example 1.1:

GStr : Uacc → Uacc

GStr𝐴 = loeb(𝑆.𝐴 × ▶𝑆)

GStrEq : (𝐴 : Uacc) → GStr𝐴 = 𝐴 × ▶GStr𝐴
GStrEq𝐴 = unfold(𝑆.𝐴 × ▶𝑆)

We demonstrate how one might carry out small but complete

guarded program which first (1) calculates an infinite stream of

Fibonacci numbers and then (2) extracts the third number. We begin

by defining the stream of numbers using Löb induction:

fibs : GStrNat
fibs = go 0 1

where
go : Nat→ Nat→ GStr
go =

loeb(𝑓 . 𝜆𝑚,𝑛. (GStrEqNat)−1

∗ (𝑚,modℓ (𝑓 𝑛 (𝑚 + 𝑛))))

Notice that in this example, (GStrEq𝐴)−1

∗ —coercing backwards

along the equation GStr𝐴 = 𝐴 × ▶GStr𝐴—plays the role of cons.
We record this: cons𝐴 = (GStrEq𝐴)−1

∗ : 𝐴 × ▶GStr𝐴 → GStr𝐴.
Deconstructing a stream uses the inverse coercion i.e., hd = 𝜋1 ◦
(GStrEq𝐴)∗ and tl = 𝜋2 ◦ (GStrEq𝐴)∗ : GStr𝐴→ ▶GStr𝐴.

To extract the third element, we must bring 2 into play. In

particular, in order to obtain an element of type Nat rather than
▶2Nat, we will use the equivalence 2▶𝐴 ≃ 2𝐴. We note that both

GStrNat and fibs are closed terms and we may form the following:

fibs′ : 2(GStrNat)
fibs′ = mod𝛿◦𝛾 (fibs)

We then use now : 2▶𝐴 ≃ 2𝐴 and extract : 2𝐴 → 𝐴 to pull

out the third element:

third : Nat
third = let mod𝛿◦𝛾 (𝑠) ← fibs′ in extract(now(now(go 𝑠)))

where
go : (𝛿 ◦ 𝛾 | GStrNat) → 2▶▶Nat
go 𝑠 = mod𝛿◦𝛾 (next(next hd) ⊛ (next tl ⊛ tl 𝑠))

We note that under the assumption of canonicity for Gatsby
(Section 7.1), we can compute third and obtain a closed natural

number. Thus, in particular, purely through careful use of modali-

ties, we are able to derive Löb induction and use it to compute a

closed result. Even without the assumption of canonicity, we are

able to use unfold to prove that third = 1.

To cultivate intuition, let us consider a pair of counterfactuals.

Suppose that we had worked within a theory without Rule 1,

what would have changed in the above example? The main differ-

ence would be in the behavior of Nat: without Rule 1, Nat would
not land in Uacc. We could replace it with acc→ Nat and the rest

of the calculation would proceed along the same lines. However,

the final result would have type acc→ Nat. Without Theorem 3.7,

there would be no way to discharge that hypothesis.

Suppose instead that we considered a type theory without uni-

valence but with a good theory of propositions, such as extensional

type theory. In this case, we would not be able to show Uacc to

be accessible. More ad-hoc replacements are possible, for instance

acc→ U, but these alternatives will (1) not form a cumulative hier-

archy and (2) not admit an embedding into U without additional

axioms. This hinders the construction of elements of GStr.
8
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4 CASE STUDYWITH LOGICAL RELATIONS
In this section, we present a case-study of Gatsby by using it to

construct a (synthetically) step-indexed logical relation for an ML-

like language 𝜆ref,∀ with general references (pointers to complex

structures) and parametric polymorphism. We then use it to deduce

semantic type-safety. This 𝜆ref,∀ language and the logical relation

is based on the account given by Birkedal et al. [7, Section 3] but

our more advanced guarded type theory allows us to improve upon

their results in two respects:

(1) We do not need to worry about local contractibility of do-

main equations because we have access to a universe and

solve the domain equation as an ordinary fixed point [6].

(2) We have no need to carry out a challenging external argu-

ment after constructing the logical relation because Gatsby
is multimodal. Accordingly, we work internally to Gatsby
throughout the entire proof.

We have chosen this example to “complete the story” started

by Birkedal et al. [7], but many other applications of guarded type

theory to denotational semantics and logical relations exist [10, 11,

26, 27, 29, 32, 38, 39, 41]. Many of these applications can also be

simplified in light of Gatsby’s richer modal apparatus.

For reasons of space, we have included only selected details of

this case study. In particular, where there is little difference from

working in Gatsby versus the framework of Birkedal et al. [7], we

have avoided duplicating their work.

Convention 4.1. In order to construct a logical relation for para-

metric polymorphism, we require an impredicative universe of

propositions. Accordingly, in this section we assume propositional

resizing i.e., that the maps hProp𝑖 → hProp𝑖+1 are equivalences.

4.1 Static and dynamic semantics of 𝜆ref,∀
We begin by defining 𝜆ref,∀ , the language under consideration. We

specify this language in mode 𝑠 , i.e., with no guarded recursion

whatever. As we shall argue in Section 5, this ensures that our

definition of 𝜆ref,∀ adequately represents the standard definition

that one might formalize in Coq or similar.

We define the syntax of (untyped) terms and types as inductive

types. We then define term and type contexts (TCxt, Cxt) and heaps
(Heap) on top of these. The typing judgments as well as the opera-

tional semantics are realized by inductively-defined propositions:

isCx : TCxt→ Cxt→ hProp
isTy : TCxt→ Ty→ hProp
hasTy : (Ξ : TCxt) → Cxtwf Ξ→ Tm→ Tywf Ξ→ hProp
isVal : Tm→ hProp
(↦→) : Tm × Heap→ Tm × Heap→ hProp

We sketch all of these definitions in Fig. 2, using informal BNF

grammars to specify the syntax of terms and types and inference

rules for the judgments. We leave implicit many details as they

are orthogonal to our case study and refer the reader to Birkedal

et al. [7]. We have also assumed the existence of various standard

operations on lists, such as snoc, lookup, etc. We do note that we

formalize heaps as a list of values and that allocation is deterministic.

Moreover, primitive locations loc(ℓ) are never well-typed; they
arise only in intermediate stages of execution for programs and are

never written by a user.

𝜏 : Ty ::= tvar(𝑖) | Ref(𝜏) | forall(𝜏) | 𝜏 × 𝜏 | . . .
𝑒 : Tm ::= var(𝑖) | !𝑒 | new(𝑒) | set(𝑒, 𝑒) | Λ𝑒 | 𝑒 [𝜏] | . . .

TCxt = Nat Cxt = List Ty Cxtwf Ξ =
∑

Γ:Cxt isCxtΞ Γ

Tywf Ξ =
∑
𝜏 :Ty isTyΞ𝜏 Val =

∑
𝑒 :Tm isVal 𝑒 Heap = List Val

isTm(Ξ, Γ, 𝑒, 𝜏)
isTm(Ξ, Γ, new(𝑒), Ref(𝜏))

isTm(Ξ, Γ, 𝑒, Ref(𝜏))
isTm(Ξ, Γ, !𝑒, 𝜏)

isTm(Ξ, Γ, 𝑒1, Ref(𝜏)) isTm(Ξ, Γ, 𝑒2, 𝜏)
isTm(Ξ, Γ, set(𝑒1, 𝑒2), 𝜏)

(new(𝑣), ℎ) ↦→ (loc(lenℎ), snoc(ℎ, 𝑣))
(!loc(ℓ), ℎ) ↦→ (lookup(ℎ, ℓ), ℎ) (ℓ < lenℎ)

(set(loc(ℓ), 𝑣), ℎ) ↦→ (𝑣, replace(ℎ, ℓ, 𝑣)) (ℓ < lenℎ)

Figure 2: Selected rules of 𝜆ref,∀

We will write ↦→∗ for the reflexive transitive closure of ↦→. As

in Birkedal et al. [7], we have opted to present the operational

semantics with deterministic allocation as this simplifies a number

of technical details. We shall write Good : Tm × Heap → hProp
for the following:

canStep(𝑒, ℎ) = ∃𝑒′, ℎ′ . (𝑒, ℎ) ↦→ (𝑒′, ℎ′)
Good 𝑒 ℎ = ∀(𝑒′, ℎ′). ((𝑒, ℎ) ↦→∗ (𝑒′, ℎ′)) →

isVal 𝑒′ ∨ canStep(𝑒′, ℎ′)
In other words, a configuration consisting of an expression and

a heap is good if one can execute the pair for an arbitrary number

of steps and the resulting expression and heap has either resulted

in a value or can be run further. Our goal for the remainder of this

section is to prove the following version of type-safety.

Theorem 4.2 (Safety of 𝜆ref,∀). If isTm 0 nil 𝑒 𝜏 then Good 𝑒 nil

We note that the presence of loc(ℓ) makes this theorem difficult

to prove: the intermediate stages are not typed and so progress and

preservation does not apply.

4.2 A unary logical relation interpretation
In order to prove Theorem 4.2, we will construct a model of 𝜆ref,∀
which interprets 𝜆ref,∀ types as elements of a construction in mode

𝑡 . Morally, the construction is a Kripke logical relation, but the

presence of higher-order references necessitates a rich and highly-

recursive type of worlds. It is for this reason that we must pass to

mode 𝑡 , where Löb induction is available; we shall use it to define

the semantic universe of types alongside the worlds indexing them.

P𝐴 = 𝐴→ hPropacc
W : Uacc (⊑) : W→W→ hPropacc
(W, ⊑) = loeb(𝐴, ≤ . (X(𝐴, ≤),R(𝐴, ≤)))
where

X (𝐴, ≤) = Nat ⇀fin ((▶𝐴, ≤†) →mon (P⟨𝛿 | Val⟩, ⊆))
R (𝐴, ≤)𝑤1𝑤2 = ∀ℓ .𝑤1 (ℓ)↓ → 𝑤1ℓ = 𝑤2ℓ

T : Uacc

9
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T = W→mon P⟨𝛿 | Val⟩

Notation 4.3. We followGratzer [16] inwriting foo† to lift a function
or relation foo to apply to a sequence of modal arguments similar

to idiom brackets for applicative functors [25].

A few words of discussion are in order. First,→mon refers to the

subtype of monotone maps where P⟨𝛿 | Val⟩ is ordered by subset

inclusion. To use W in the domain of→mon, we must define W
simultaneously with its ordering relation ⊑. For this reason, we
use Löb induction to compute an element of

∑
𝐴:Uacc 𝐴 → 𝐴 →

hPropacc rather than merely Uacc. Second, ⇀fin refers to finitely-

supported partial maps. We note that this procedure is simpler than

its cousin in Birkedal et al. [7]. In particular, we have access to a

universe and therefore have no need to use an external construction.

The remaining details of the unary logical relation proceed along

similar lines to Birkedal et al. [7], though we are able to simplify

several definitions by continuing to exploit the internal language.

We define a path WEq witnessing the unfolding of W to its defini-

tion using unfold. Next, we note that since ⟨𝛿 | −⟩ is a left adjoint,
we have a crisp induction principle available and we use this to

define a map J−K− : ⟨𝛿 | Tywf Ξ⟩ →
(∑

𝑛≤Ξ T
)
→ T for each

Ξ : ⟨𝛿 | TCxt⟩ = ⟨𝛿 | Nat⟩ = Nat. This map sends a type with Ξ
free variables to a map from Ξ semantic types to a single semantic

type. The details of J−K− are not vital, but the following auxiliary

definitions will be important later:

sat𝑤 ℎ =

dom(ℎ) ⊆ dom(𝑤)
∧ ∀ℓ ∈ dom(𝑤).WEq∗𝑤 ℓ 𝑤 (lookup† ℎ ℓ)

comp : T→W→ P⟨𝛿 | Exp⟩
comp𝜙 𝑤 𝑒 =

(isVal† 𝑒 ∧ 𝜙 𝑤 𝑒)
∨ ∀ℎ : ⟨𝛿 | Heap⟩. sat𝑤 ℎ →
∃𝑒′ℎ′𝑤 ′ . (𝑒, ℎ) ↦→† (𝑒′, ℎ′) ∧𝑤 ⊑ 𝑤 ′ ∧ sat𝑤 ′ ℎ′
∧ ▶comp𝜙 𝑒′𝑤 ′

Informally, comp lifts a semantic type 𝜙 to a predicate on expres-

sions which evaluates the expression and, if it ever reaches a value,

insists the result satisfies 𝜙 .5 The following is proven as in Birkedal

et al. [7].

Lemma 4.4 (Fundamental lemma). If isTm† 0 nil 𝑒 𝜏 holds in mode
𝑡 then so does comp J𝜏K (WEq∗∅) 𝑒 .

4.3 Adequacy
At this point, we substantially deviate from Birkedal et al. [7]. It

remains to argue that Lemma 4.4 implies Theorem 4.2. In op. cit.,

the authors were forced to unfold various definitions externally and

argue that Lemma 4.4 externally implied the desired type-safety

result. Our richer modal apparatus allows us to proceed internally.

First, we note that Lemma 4.4 can be placed under ⟨𝛾 | −⟩ (it is
closed). Fixing 𝑒 and 𝜏 in mode 𝑠 , general properties of modalities

yield the following implication:

⟨𝛾 | isTm† 0 nilmod𝛿 (𝑒)mod𝛿 (𝜏)⟩

5
We note that we did not need to define comp using Löb induction, though we certainly
could have. Its definition is positive, however, and so Tarski’s fixed-point theorem

applies. The unicity of guarded fixed points, morover, ensures both approaches agree.

→ ⟨𝛾 | comp Jmod𝛿 (𝜏)K (WEq∗∅)mod𝛿 (𝑒)⟩
Inspecting the definitions, we note that the domain of this func-

tion is equal to isTm 0 nil 𝑒 𝜏 . It therefore remains only to show that

the codomain implies Good 𝑒 nil. In fact, in our case we do not need

to worry about the actual properties of the value 𝑒 runs to, so we

will consider ⟨𝛾 | comp (𝜆_.Unit) (WEq∗∅)mod𝛿 (𝑒)⟩ instead.
We prove the following helper lemma in mode 𝑡 .

Lemma 4.5. If comp (𝜆_.Unit)𝑤 𝑒 , fix an ℎ : ⟨𝛿 | Heap⟩ such that
sat𝑤 ℎ and, moreover, if (𝑒, ℎ) (↦→𝑛)† (𝑒′, ℎ′) then
▶𝑛 (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′)).

Proof. We proceed by induction on 𝑛—which we can due to

crisp induction. The base case where (𝑒, ℎ) = (𝑒′, ℎ′) is trivial. For
the inductive step, we may apply the induction hypothesis to reduce

to the case that (𝑒, ℎ) ↦→ (𝑒′, ℎ′). Noting that 𝑒 must not be a value,

we deduce that the following holds:

∃𝑒1ℎ1𝑤
′ . (𝑒, ℎ) ↦→† (𝑒1, ℎ1) ∧𝑤 ⊑ 𝑤 ′ ∧ sat𝑤 ′ ℎ1 ∧ ▶comp𝜙 𝑒1𝑤

′

As our operational semantics are deterministic, we may replace 𝑒1

and ℎ1 with 𝑒′ and ℎ′ and simplify the above:

∃𝑤 ′ ⊒ 𝑤. sat𝑤 ′ ℎ′ ∧ ▶comp𝜙 𝑒′𝑤 ′

The goal then follows by unfolding the definition of comp. □

We may now return to mode 𝑠 to complete the theorem.

Theorem 4.2 (Safety of 𝜆ref,∀). If isTm 0 nil 𝑒 𝜏 then Good 𝑒 nil

Proof. Fix 𝑒′, ℎ′, 𝑛 such that (𝑒, ℎ) ↦→𝑛 (𝑒′, ℎ′). We must show

that either isVal 𝑒′ or canStep(𝑒′, ℎ′). By Lemma 4.4, we know that

⟨𝛾 | comp (𝜆_.Unit)𝑤 mod𝛿 (𝑒)⟩ holds. Using Lemma 4.5, we there-

fore obtain the following:

⟨𝛾 | ▶𝑛 (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′))⟩
Using the equation 𝛾 ◦ ℓ = 𝛾 , we may replace this:

⟨𝛾 | (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′))⟩
⟨𝛾 | −⟩ does not commute with disjunctions. However, ⟨𝛿 | −⟩

does commute with disjunctions as it is a left adjoint. We then

replace the type under ⟨𝛾 | −⟩ with ⟨𝛿 | isVal 𝑒′ ∨ canStep(𝑒′, ℎ′)⟩.
We conclude using the equation 𝛾 ◦ 𝛿 = id. □

We note that such a proof is impossible without ⟨𝛾 | −⟩ or some-

thing equivalent to it; without such a feature we would have no

means to remove the ▶𝑛 appearing in Lemma 4.5.

5 SEMANTICS OF Gatsby
Thus far we have shown thatGatsby is usable but we not yet shown
it to be sound. In this section, we prove this, among other results, by

developing the model theory of Gatsby. This is seemingly daunting:

constructing models of cubical type theory is already a challenging

task. Fortunately Gatsby is built atop cubical MTT, which already

has a well-developed denotational semantics [1].

At a high level, we wish to interpret mode 𝑡 as PSh (𝜔) and 𝑠

as Set, but this will not serve if we wish to interpret univalence.

Instead, we must replace Set with the category of cubical sets cSet.
Beyond this change, we are able to interpret the modalities as

right adjoints between these two categories without change. We

thereby obtain a pseudofunctor 𝐹 :MGatsby → Cat which sends
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𝐹 (𝑠) = cSet and 𝐹 (𝑡) = PShcSet (𝜔) (cubical presheaves on 𝜔). We

show the definitions of 𝐹 on the generating 1-cells below:

𝐹 (ℓ)𝑋 𝑛 = if 𝑛 = 0 then 1 else 𝑋 (𝑛 − 1) 𝐹 (𝑒)𝑋 = 𝑋 (𝑛 + 1)

𝐹 (𝛾)𝑋 = lim
𝜔

𝑋 𝐹 (𝜖0)𝑋 = 𝑋 (0) 𝐹 (𝛿) 𝑆 𝑛 = 𝑆 𝐹 (⊤) 𝑆 = 1

In general, cubical presheaves PShcSet (C) (presheaves valued
in cubical sets) support a model of cubical type theory [22]. The

following result of Aagaard et al. [1] shows that these models of

cubical type theory can be combined into a model of cubical MTT:

Proposition 5.1 (Theorem 4.15 [1]). Fix a strict 2-functor 𝑓 :

M Cat and for each 𝜇 : 𝑛 𝑚, write 𝐹 ∗ (𝜇) ⊣ 𝐹∗ (𝜇) for the
adjunction between PShcSet (𝑓 (𝑛)) and PShcSet (𝑓 (𝑚)) induced by
precomposition and right Kan extension. There is a model of cubical
MTT with mode theoryM which interprets ⟨𝜇 | −⟩ as 𝐹∗ (𝜇).

Ideally, wewould instantiate this theorem by takingM =MGatsby
and define 𝑓 in such a way that 𝐹 is induced by right Kan extending

𝑓 . Unfortunately, not every functor described by 𝐹 should be in-

terpreted using right Kan extension. In particular, 𝜖0 and ⊤ do not

arise in this way. Fortunately, 𝐹 (𝜖0) and 𝐹 (⊤) “almost” arise from

right Kan extension: their left adjoints preserve connected limits.

Moreover, the pseudofunctor induced by taking left adjoints to 𝐹 is

a strict 2-functor. This, along with similar strictness properties of

𝐹 , ensures that the coherence conditions required for a model of

cubicalMTT are trivially satisfied.

We can therefore extend Proposition 5.1:

Lemma 5.2. There exists a model of cubical MTT with mode theory
MGatsby which interprets ⟨𝜇 | −⟩ using 𝐹 (𝜇).

The details of the proof of Lemma 5.2 require some knowledge of

cubicalMTT and we have therefore deferred them to Appendix A.

Theorem 5.3. 𝐹 supports a model of Gatsby.

Proof. Lemma 5.2 almost suffices, but we must interpret Rule 1.

However, since ⟨⊤ | −⟩ is interpreted using _ ↦→ 1, we must have

J1.{⊤}K = 0. We note that cSet is a topos and so 0 is a strict initial

object. It therefore follows that any object 𝑋 for which there is a

map 𝑋 0 must itself be the initial object. The interpretation of

Rule 1 is then immediate; it is the universal property of 0. □

Remark 5.4. The same proof strategy suffices to interpret Gatsby
into cubical presheaves on an arbitrary limit ordinal.

Corollary 5.5. Gatsby is consistent.

Beyond merely ensuring consistency, interpreting mode 𝑠 as

into the standard model of cubical type theory, ensures a degree

of adequacy for constructions carried out in Gatsby. In particular,

Theorem 5.3 shows that any construction in mode 𝑠 induces a

construction element in a model already accepted by cubical type

theorists. Consequently, there is no need to care about e.g. the topos

of trees or modalities when evaluating the content of Theorem 4.2.

6 RELATEDWORK
While many variations on guarded type theory have been pro-

posed [3, 4, 7, 11, 13, 28], these failed to meet at least one of the four

goals raised in Thesis 1. Only two prior type theories offer a rea-

sonably complete solution: stratified guarded type theory [17] and

clocked cubical type theory [21]. We discussed both in Section 1.3

and we now sharpen our prior comparison.

Stratified guarded type theory. Recall from Section 1.3 that strat-

ified guarded type theory is actually a pair of type theories: one

in which Löb computes and one in which it does not. In the type

theory where Löb induction computes, Gratzer and Birkedal [17]

introduce a notion of guarded canonicity where canonical forms

are judged in a special context 0[ℓ𝑛]. All terms trivialize when

0[ℓ𝑛] is placed under {ℓ𝑛} and so the canonicity result enables one

to extract a finite approximation to an infinite canonical form. In

Gatsby, 0[ℓ𝑛] can be defined as 1 .{𝜖0 ◦ 𝑒𝑛}. Guarded canonicity

becomes a special case of ordinary canonicity.

For example, if we assume acc to prove 𝑀 : 𝐴, we may place

𝑀 under ⟨𝜖0 ◦ 𝑒𝑛 | −⟩ to discharge acc and obtain an element of

⟨𝜖0 ◦ 𝑒𝑛 | 𝐴⟩. Just as in stratified guarded type theory, we are able

to extract information about 𝐴 from this term but we are only able

to descend “beneath 𝑛 iterations of ▶”. In this way, Gatsby takes

the idea of guarded canonicity in stratified guarded type theory

and recasts it as a modal discipline. The result is an internalization

of guarded canonicity as normal canonicity and, moreover, Gatsby
does not rule out normalization in the process.

We have also isolated the universe of accessible types where

there is a canonical and optimal choice of fuel and used this to

avoid requiring the user to choose a fuel supply each time they

wish to calculate a result. Thus, by enriching type theory with

modalities and Rule 1, we are able to essentially recover stratified

guarded type theory without splitting our theory into two.

Clocked cubical type theory. As described in Section 1.3, clocked

cubical type theory (CloTT□) is an alternative approach to guarded

recursion built around indexing ▶ by a clock. In this way, CloTT□
allows Löb induction to compute only when the clock indexing

the relevant ▶ modality has been bound. This essentially limits

computation to occurring at the top-level and thereby conjecturally

preserves canonicity and normalization. A more substantial differ-

ence between CloTT□ and Gatsby is in the approach they take to

Löb induction. In CloTT□—and all other proposed guarded type

theories—Löb induction is a primitive while in Gatsby it is derived.

At a high-level, Gatsby provides a richer set of modalities and a

simpler semantics, but does not support multi-clock guarded recur-

sion. This means thatGatsby, unlike CloTT□, can internally express
notions such as “constant types” but cannot directly encode a coin-

ductive stream of non-constant types. Despite these differences,

both theories conjecturally satisfy the goals of Thesis 1 and so both

provide adequate foundations for guarded recursion.

Interestingly, just as our approach to Löb induction necessitates

consideration of accessible types, the use of clocks in CloTT□ re-

quires users to frequently restrict to clock-irrelevant types. Roughly,
these are types which are “clock-null”. However, accessible types

form a better-behaved class than clock-irrelevant types; accessi-

ble types form an open reflective subuniverse [33]. Consequently,

we are not only able to show important type operations respect

accessibility but also prove that the universe of accessible types

is accessible. We are even able to replace a non-accessible type

by a universal accessible counterpart. This machinery is not avail-

able for clock-irrelevant types; the sort of clocks is not presented
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as a type but, more fundamentally, it is not a homotopy proposi-

tion. Consequently, for instance, the question of whether or not a

suitable clock-irrelevant universe of clock-irrelevant types within

CloTT□ [12] remains open.

Other occurrences of accessibility. Finally, we note that variants of
the accessibility proposition acc have appeared before in the litera-

ture. In Palombi and Sterling [31], for instance, it is used to isolate

the universal property of PSh (𝜔) as a model of guarded recursion.

That ∃𝑛. ▶𝑛⊥ holds in PSh (𝜔) is also an important motivation for

transfinite Iris [36] which uses higher-ordinal models of guarded

recursion precisely to avoid having acc = ⊤ hold. Amin Timany

has further proposed taking adding the axiom acc = ⊤ to Iris, as a

more intuitive but equivalent formulation of Löb induction [9].

7 CONCLUSIONS AND FUTUREWORK
We have presented Gatsby,6 a univalent multimodal type theory

based on cubicalMTT. Proceeding from the observation that Löb

induction is an ill-behaved primitive for guarded recursion, Gatsby
uses additional modalities to essentially derive Löb induction.

Concretely, we isolate a homotopy proposition acc which suf-

fices to imply Löb induction. We then show that the collection of

accessible types 𝐴—those which are acc-null and therefore support

Löb induction—is closed under numerous standard constructions.

Gatsby also constrains the modality ⟨⊤ | −⟩ to be equivalent to

𝐴 ↦→ Unit and this ensures that all constant types are accessible.

Using these results, we show that it is possible to encode any pro-

gram in a standard guarded type theory within Gatsby. We have

further exploited Gatsby’s rich multimodal structure to improve

upon case studies considered already in guarded recursion.

Gatsby constitutes a canonical point in the space of guarded type
theories satisfying Thesis 1 as it captures much of the behavior of

the important model of guarded recursion in PSh (𝜔) while still
maintaining a well-behaved metatheory.

We summarize several directions for future work below.

7.1 Normalization and canonicity for Gatsby
At present, we have not proven that Gatsby enjoys either normal-

ization or canonicity. We conjecture that it in fact enjoys both. We

offer preliminary evidence in support of this conclusion.

We note thatGatsby is built on top of cubicalMTT and we expect
to be able to adapt a proof of normalization and canonicity for the

latter to apply to the former. At present no such proof for cubical

MTT exists, so we begin by discussing prospects for this result.

CubicalMTT is a fusion of two type theories,MTT and cubical

type theory, which both enjoy canonicity and normalization [15, 37].

Normalization and canonicity are not modular properties, so this

does not necessarily mean that cubicalMTT enjoys either. However,
given that there are no meaningful interactions between the two

theories in cubicalMTT, we expect both to hold.

In order to adapt such a proof of normalization and canonicity

for cubicalMTT to apply to Gatsby, we must show that Rule 1 does

not introduce stuck terms and does not disrupt the decidability

of normal forms. We expect the techniques used by Sterling and

Angiuli [37] to handle the false cofibration should suffice for our

6
The authors defer to the reader on whether or not Gatsby is great.

situation. In particular, we can show that the crucial lemma of op.

cit. stating that it is decidable whether a given context proves the

false cofibration can be adapted to Gatsby. That is, it is decidable
whether or not there exists a substitution from Γ to 1 .{⊤}; it is
equivalent to whether one of the following two conditions hold (1)

Γ proves the false cofibration or (2) the composite of the modalities

in Γ contains ⊤. We give a version of this theorem below which

deals withMTT extended by Rule 1 rather than cubicalMTT, as the
latter involves essentially unrelated details of cubical type theory.

Proposition 7.1. A substitution Γ ⊢ 𝑟 : 1 .{⊤} @ 𝑠 exists if and
only if the composite of all modalities within Γ is 𝜈 ◦ ⊤ for some 𝜈 .

Proof Sketch. We do not present the full details of the proof

because it requires a more thorough explanation of the substitution

calculus of MTT and Gatsby. We begin by noting that there is a

trivial model of Gatsby in which every type is interpreted by Unit.
The category of contexts of this model is a reflective subcategory

of the ordinary syntactic category of contexts and substitutions.

The reflection sends Γ to a new context |Γ | obtained by weakening

away all variables in Γ so |Γ | is of the form 1 .{𝜇} for some 𝜇.

As 1 .{⊤} lies within this subcategory already, a substitution

from Γ to 1 .{⊤} exists just when one there is one from |Γ | = 1 .{𝜇}
to 1 .{⊤}. An inductive argument shows that this occurs just when

𝜇 ≥ 𝜈 ◦ ⊤ for some 𝜈 . However, if 𝜇 ≥ 𝜈 ◦ ⊤ then 𝜇 = 𝜈 ◦ ⊤. □

While the above observations give strong support to our conjec-

ture, normalization and canonicity proofs for any type theory are

complex and cubicalMTT and Gatsby are both sophisticated type

theories. We therefore leave the normalization and canonicity of

Gatsby to future work.

7.2 Extensions to Gatsby
Aside from extending our knowledge of the metatheory of Gatsby,
we hope to study the behavior of other concepts from univalent

foundations within this framework. In particular, it remains to

isolate which higher inductive types (HITs) naturally land within

the universe of accessible types. The work on HITs within the

context of CloTT□ [21] suggests that this may hold for a broad class,

though Section 3.3.1 demonstrates that the situation is subtle. That

accessible types form a reflective subuniverse does mean that while

this may improve convenience, it is not as vital as the corresponding

question for clock-irrelevance.

We have focused on capturing the behavior of guarded recursion

within the topos of trees and, in particular, indexing over 𝜔 . In the

future, we intend to explore whether the idea of isolating accessible

types can be adapted to account for indexing over higher ordinals

with the goal of modeling PShcSet (𝛼) for at least countable 𝛼 .
Finally, we intend to explore the behavior of Gatsby further by

implementing it. Both MTT and cubical type theories have been

implemented in proof assistants and, as discussed in Section 7.1,

such implementations should be possible to extend to cubical MTT
andGatsby. Such an implementation would provide a better setting

to explore what definitional equalities are possible to achieve in

Gatsby, as checking such calculations is subtle and error-prone.
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A THE STANDARD MODEL OF Gatsby
Unlike the rest of the paper, in this appendix we will presuppose fa-

miliarity with the contents of Aagaard et al. [1]. We further assume

the same notation as Section 5.

As mentioned in Section 5, we cannot simply apply the results

of op. cit. as-is to Gatsby to interpret it into cSet and PShcSet (𝜔),
because 𝜖0 and ⊤ are not interpreted by right Kan extension.

We begin by explicitly defining the left adjoints for the various

functors as a strict 2-functor 𝐹 :MGatsby
coop → Cat:

𝐹 (ℓ)𝑋 𝑛 = 𝑋 (𝑛 + 1) 𝐹 (𝑒)𝑋 𝑛 = 𝑋 (pred(𝑛)) 𝐹 (𝛾) 𝑆 𝑛 = 𝑆

𝐹 (𝛿)𝑋 = 𝑋 (0) 𝐹 (𝜖0) 𝑆 = if 𝑛 = 0 then 𝑆 else 0 𝐹 (⊤) 𝑆 = 0

This organizes into a strict 2-functor because each functor is

either determined by precomposition or uses sends an object to 0;
all relevant coherences are therefore necessarily realized by id.

Combining this with themodel of cubical type theory in PShcSet (𝜔)
[22], we are therefore to directly interpret all the rules of cubical

MTT as in Proposition 5.1 except for those involving the interactions
between modal and cubical features. Specifically, we must show

that there exists a set of coherent natural isomorphisms between

the interpretations of the following:

• The collections {𝜙 | Γ ⊢ 𝜙} and {𝜙 ′ | Γ.{𝜇} ⊢ 𝜙 ′}
• Γ.{𝜇}.I and Γ.I.{𝜇}
• Γ.{𝜇}.𝜙 and Γ. ¯𝜙.{𝜇} where ¯𝜙 is induced by the first point.

Aagaard et al. [1] notes that for any modality 𝜇 interpreted by

right Kan extension, all of these isomorphisms may be realized by

the identity. While in general, this is not the case for modalities

defined by precomposition like 𝐹 (𝜖0) and 𝐹 (⊤), it is the case for
these two functors. For instance, JI𝑡 K in PShcSet (𝜔) is defined by

JI𝑡 K𝑛 = JI𝑠K. Accordingly, for 𝜇 = 𝜖0 the second isomorphism above

is equivalent to requiring an isomorphism between the following

presheaves:

JΓ.{𝜖0}.I𝑡 K𝑛 =

{
JΓ.{𝜇}K × JI𝑠K 𝑛 = 0

0

JΓ.I𝑠 .{𝜖0}K𝑛 =

{
JΓ.{𝜇}K × JI𝑠K 𝑛 = 0

0

In the above, we have capitalized on the fact that 0 × 𝑋 = 0 in the

category of (cubical) sets. We can therefore realize this (and all other

necessary) isomorphisms by the identity. This also ensures that

all necessary coherence conditions are satisfied. Accordingly, the

argument given for Proposition 5.1 holds without real adaptation.
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