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Proof assistants versus core type theory

What differentiates a core theory from an actual proof assistant?

• Advanced features: implicit arguments, unification, pattern-matching

• Intermediate features: termination checking, schemata for inductive types

• Very basic features: definitions

Our goal: improve the UX of a feature by pushing the core theory to include it.
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Definitions in proof assistants

Turns out this is hard, so let’s start with the basics: definitions

Crucial point:

two : N
two ≜ 2

: two = 2

≜ refl

Hardly a startling insight, but it is rather crucial; only way to prove something
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The next steps

Fully translucent definitions certainly work, but not without cost.

Pros of unfolding Cons of unfolding

We can prove things Goals become unreadable

Type-checking performance degrades

Increases coupling between implementation and use

In practice, the left-hand column wins.
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Controlled unfolding: desiderata

We can’t just refuse to unfold definitions, but we can control when it happens...

• Default opaque/abstract definitions

• Users may explicitly unfold a definition within a fixed scope

• The system tracks dependencies to ensure type-soundness

• Unfolding should be silent in terms; can’t obstruct further computation

Library authors leave things abstract-by-default. If a user must unfold, they can.
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Our contributions

Our core idea is to design a mechanism satisfying these desiderata

• We revisit the type-theoretic account of translucent definitions (singleton types)

• Refine this idea by replacing singleton types with extension types

• Show that extension types can be used to encode semi-translucent definitions

• Propose a surface syntax/elaboration mechanism

Starting with the core language makes it easy to propose various extensions

Interesting type theory to be found even in this most basic feature.
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Singleton types: an account of translucent definitions

How does one express translucent definitions type-theoretically?

• Each definition will be encoded by a variable

• ... but with a fancy type.

• This idea doesn’t come from dependent type theory, but from module systems

Encode a definition x : A ≜ M through a type containing only one element: M.
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Singleton types: an account of translucent definitions II

For a given type M : A, we define the singleton type SA(M) by the following rules:

N : A M = N : A

N : SA(M)

N : SA(M)

N : A

N : SA(M)

N = M : A

Hypothesizing over a variable x : SA(M)↭ working relative to x : A ≜ M
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Translucent definitions versus abstract definitions

Very roughly, we have the following:

• Opaque definitions:

x : A ≜ M↭ x : A ∼=
∑

a:A⊥ → (a = M)

• Translucent definitions:

x : A ≜ M↭ x : SA(M) ∼=
∑

a:A⊤ → (a = M)

Either we never gain access to the proof a = M or we’re always stuck with it.

8



Translucent definitions versus abstract definitions

Very roughly, we have the following:

• Opaque definitions:

x : A ≜ M↭ x : A ∼=
∑

a:A⊥ → (a = M)

• Translucent definitions:

x : A ≜ M↭ x : SA(M) ∼=
∑

a:A⊤ → (a = M)

Either we never gain access to the proof a = M or we’re always stuck with it.

(For the sake of this slide: extensional equality)
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Extension types

• Key idea: let’s allow propositions other than ⊤ and ⊥.

• We need a universe of very strict propositions F.

• Close F under (at least) ⊤ and ∧.

Notation and properties inspired by cofibrations from cubical type theory.

(Spoilers): F isolates subshapes ⇝ F classifies which definitions unfold.
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Working with F

New form of context: Γ, ϕ.

New form of judgment Γ ⊢ ϕ true:

ϕ ∈ Γ

Γ ⊢ ϕ true Γ ⊢ ⊤ true

Γ ⊢ ϕ true Γ ⊢ ψ true

Γ ⊢ ϕ ∧ ψ true

Γ ⊢ ϕ ∧ ψ true

Γ ⊢ ϕ true Γ ⊢ ψ true

“Very strict”: user never has to write proofs for elements of F.
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Two new type formers: partial element types

ϕ ⊢ A type

ϕ→ A type

ϕ ⊢ M : A

⟨ϕ⟩M : ϕ→ A

M : ϕ→ A ϕ true

M! : A

Normal β/η rules
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Two new type formers: partial element types

ϕ ⊢ A type

ϕ→ A type

ϕ ⊢ M : A

⟨ϕ⟩M : ϕ→ A

M : ϕ→ A ϕ true

M! : A

Normal β/η rules

No proof of ϕ explicitly given.
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Two new type formers: extension types

A type ϕ ⊢ M : A

{A | ϕ ↪→ M} type

N : A ϕ ⊢ N = M : A

in(N) : {A | ϕ ↪→ M}

N : {A | ϕ ↪→ M}

out(N) : A

Normal β/η rules

N : {A | ϕ ↪→ M} ϕ true

out(N) = M : A
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Two new type formers: extension types

A type ϕ ⊢ M : A

{A | ϕ ↪→ M} type

N : A ϕ ⊢ N = M : A

in(N) : {A | ϕ ↪→ M}

N : {A | ϕ ↪→ M}

out(N) : A

Normal β/η rules

N : {A | ϕ ↪→ M} ϕ true

out(N) = M : A

Only defined when ϕ is true.
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Extension types generalize singleton types

We can make good on an earlier promise:

SA(M) = {A | ⊤ ↪→ M}

⊤ is always true, so

N : SA(M)

out(N) = M : A

We haven’t added ⊥, but if we did we could prove {A | ⊥ ↪→ M} ∼= A
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Big idea: definitions become extension types

Fix a definition x : A ≜ M.

1. Associate a fresh proposition symbol Υx to the definition.

2. Encode the definition as a constant x : {A | Υx ↪→ M}.
3. Replace subsequent occurrences of x with out(x).

Taking Υx = ⊤ gives normal definitions.

If Υx is some fresh symbol, how can we ever unfold this definition?
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Unfolding definitions via extension types

Short answer: more extension types.

• We first consider how to unfold definitions for an entire subsequent definition.

• In our above language, dictionary, have

x : {A | Υx ↪→ M} y : {B | Υy ↪→ N}

• If we want to make sure x unfolds definitionally in N, force Υy =⇒ Υx

We check N after assuming Υy

=⇒ so Υx holds when checking N

=⇒ so out(x) = M in N
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Unfolding definitions via extension types

Short answer: more extension types.

• We first consider how to unfold definitions for an entire subsequent definition.

• In our above language, dictionary, have

x : {A | Υx ↪→ M} y : {B | Υy ↪→ N}

• If we want to make sure x unfolds definitionally in N, force Υy =⇒ Υx

We check N after assuming Υy

=⇒ so Υx holds when checking N

=⇒ so out(x) = M in N

This is why we want to be sure to check N as a partial element!
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Big idea II

Fix a definition x : A ≜ M.

1. Specify which definitions x unfolds e.g. y0 . . . yn

2. Associate a fresh proposition symbol Υx to the definition.

3. Add the following principle:

Γ ⊢ Υx true

Γ ⊢ Υyi true

4. Encode the definition as a constant x : {A | Υx ↪→ M}.
5. Replace subsequent occurrences of x with out(x).

Warning

A bunch of ways to specify what it means to add these propositions/inequalities.

Don’t worry about it.
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What is a program?

• Normally, a program is a sequence of definitions

• For us then, a program is a sequence of axioms

• Each axiom either specified a proposition, an inequality, and an extension type.

neg : Z → Z
neg ≜ . . .

invol : (n : Z) → neg(neg n) = n

invol ≜ . . .

⇝

prop Υneg

axiom neg : {Z → Z | Υneg ↪→ . . . }

prop Υinvol

inequality Υinvol ≤ Υneg

axiom invol :

{(n : Z) → neg(neg n) = n | Υcomm ↪→ . . . }
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Some key points

This is the beginning of some informal elaboration strategy

• Automatically “type-safe”

• Automatically invariant under conversion (replacing equals by equals)

• Equations are definitional and don’t produce coherence hell!
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A small tangent

One nice example of how this methodology helps:

Q. Does unfolding A in B allow this unfolding in the type of B?

A. No! Extension types require the type to be fully defined!

Crucial point, otherwise uses might be ill-formed!
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Two forms of dependence

This translation surfaces two ways to use a prior definition:

• Opaque usage

• Transparent usage

Crystallized by whether we require Υx ≤ Υy .
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Two forms of dependence

This translation surfaces two ways to use a prior definition:

• Opaque usage

• Transparent usage

Caring about every single aspect of the definition; occasionally necessary

Crystallized by whether we require Υx ≤ Υy .
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Two forms of dependence

This translation surfaces two ways to use a prior definition:

• Opaque usage

• Transparent usage

Crystallized by whether we require Υx ≤ Υy .
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Two forms of dependence II

Suppose A depends on B depends on C.

• If A → B is transparent and B → C is transparent, so is A → C.

• Not the case for any of the other instances of 2-of-3

This is crucial: we can unfold something without having it infect the whole codebase.
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Two forms of dependence II

Suppose A depends on B depends on C.

• If A → B is transparent and B → C is transparent, so is A → C.

• Not the case for any of the other instances of 2-of-3

This is crucial: we can unfold something without having it infect the whole codebase.

Necessary for “subject reduction”.
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Evaluating this mechanism

• Using extension types automatically ensures we unfold “just enough”

• Unless requested, nothing will unfold!

• Still automatically type safe & respects conversions

Not a panacea

• Currently at the granularity of definitions

• Writing these extension types is weird

• Within a scope, something unfolds always or never unfolds (no single-stepping.)
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Evaluating this mechanism

• Using extension types automatically ensures we unfold “just enough”

• Unless requested, nothing will unfold!

• Still automatically type safe & respects conversions

Not a panacea

• Currently at the granularity of definitions

• Writing these extension types is weird

• Within a scope, something unfolds always or never unfolds (no single-stepping.)

Solved through elaboration!

Future work. shrug
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A surface syntax for unfolding

• Now that we have a target core language in place, we want nice syntax

• Should abstract a bit, but the translation should be simple and predictable

• In particular, the transformation should be compositional and local
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Surface syntax for unfolding II

We will define the surface syntax by elaboration.

• No typing judgments per se, just elaboration judgments

• Tautologically, well-formed surface programs produce well-formed core terms
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Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

[abbreviation] unfolding bar0 . . . barn

foo ≜ M

M may make use definitions other than bari ! They just won’t unfold
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Anatomy of a surface-level definition

A surface-level definition consists of the following parts:

foo : A

[abbreviation] unfolding bar0 . . . barn

foo ≜ M
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M may make use definitions other than bari ! They just won’t unfold
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How do we elaborate abbreviations?

Most of this is familiar, except abbreviation.

Almost identical, except:

Υfoo =
∧
i

Υbari

Now if all bari unfold, foo will unfold automatically.

Returning to 3-for-2, this gives us one of the two outstanding implications.
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Conveniences

• Many, many convenience features are possible.

• We’ll settle for one: local unfolds

TLDR: a construct to create a local scope where a definition unfolds.
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A warmup: a design pattern with unfolding

What if we do want something to unfold in a type?

• Obvious issue: could this be used without this unfolding?

• Potentially yes...

• ... provided no details of the type were exposed

Just create an auxiliary definition for the type which unfolds things.
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A warmup: a design pattern with unfolding II

two ≜ 2

tp : U abbreviation unfolding two

tp ≜ (p : two = 2) → p = refl

contr : tp

contr ≜ . . .

• If two isn’t unfoldable, well-formed but useless.

• If two is unfoldable, vanishes definitionally.
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Local unfold syntax

The basic idea: a new expression form

unfold foo in M

two ≜ 2

contr : unfold two in (p : two = 2) → p = refl

contr ≜ . . .
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Local unfold syntax

The basic idea: a new expression form

unfold foo in M

two ≜ 2

contr : unfold two in (p : two = 2) → p = refl

contr ≜ . . .
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Realizing local unfolding

A few complications

• What should this expression be equal to?

• What about the type of M?

• Type may not even be well-formed without some unfolding...
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Local unfold through elaboration

Roughly, we elaborate local unfolds by hoisting:

• Elaborating one definition can yield multiple constants

• Each local unfold will yield a constant

To elaborate

foo : B unfolding bar0 . . . barn

foo ≜ N(unfold bar in M)

Will produce/use the following:

axiom hoisted : Υbar0 → · · · → Υbarn → {A | Υbar ↪→ M}

Replace unfold bar in M with out(hoisted)! · · · !
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Local unfold through elaboration

Roughly, we elaborate local unfolds by hoisting:

• Elaborating one definition can yield multiple constants

• Each local unfold will yield a constant

To elaborate

foo : B unfolding bar0 . . . barn

foo ≜ N(unfold bar in M)

Will produce/use the following:

axiom hoisted : Υbar0 → · · · → Υbarn → {A | Υbar ↪→ M}

Local unfolds need partial element types!

Replace unfold bar in M with out(hoisted)! · · · !

32



Equations with local unfolding

• If they’re blocked, a local unfold is generative

• If definition does unfold, local unfold is definitionally equal to the body

• Similar to pattern-matching in Agda

Still easy to reason about: just encoding a common design pattern.
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A small amount of precision.

How can we actually crystallize this?

• Define several elaboration judgments

• Term-level components look like fancy bidirectional type-checking

• Should be decidable ⇝ elaboration can be implemented
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A small amount of precision.

How can we actually crystallize this?

• Define several elaboration judgments

• Term-level components look like fancy bidirectional type-checking

• Should be decidable ⇝ elaboration can be implemented

Decidable iff conversion in the core language is decidable, so normalization
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Signatures in the core language

Output of elaboration must be a signature in the core language

• Bind fresh proposition

• Force equalities or inequalities of propositions

• Bind axioms of a given type

(signatures) Σ ::= ϵ | Σ,D
(declarations) D ::= axiom x : A | prop p ≤ q | prop p = q

Not explained: signatures induce a context (“A is well-formed wrt Σ”).
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The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Bidirectionalism minimizes user-provided annotations.
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Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Elaborate a type;

Σ: input signature

Γ: local variables

hoist local-unfolds into Σ′

Invariant: A wf wrt Σ, Γ,Σ′

Bidirectionalism minimizes user-provided annotations.
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Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,M

Elaborate a term

A is given & wf’d

Output is a core term

Bidirectionalism minimizes user-provided annotations.
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The judgments for elaboration

Elaboration is controlled by 4 key judgments:

Σ ⊢ S⃗ ⇝ Σ′

Σ; Γ ⊢ τ ⇐ type ⇝ Σ′,A

Σ; Γ ⊢ e ⇐ A⇝ Σ′,M

Σ; Γ ⊢ e ⇒ A⇝ Σ′,MElaborate a term

Key difference: A is output.

Bidirectionalism minimizes user-provided annotations.
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An example: one rule

Σ; Γ ⊢ e0 ⇒ (x : A) → B(x)⇝ Σ1;M

Σ; Γ ⊢ e1 ⇐ A⇝ Σ2;N

Σ; Γ ⊢ e0(e1) ⇒ B[N/x ]⇝ Σ1,Σ2;M(N)

Read this top-down.

• Elaborate e0, get the type (x : A) → B(x) along with the M

• Elaborate e1 using the type we just computed from e0

• Combine the computed signatures & use the appropriate core term.
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An example: one medium scary rule

(Mostly to convince you that someone considered this)

Σ; Γ,Υϑ ⊢ e ⇐ A⇝ Σ1;M

let χ := gensym ()

let Σ2 := Σ1, axiomχ :
∏

Γ {A | Υϑ ↪→ M}

Σ; Γ ⊢ unfold ϑ in e ⇐ A⇝ Σ2; outΥϑ
χ[Γ]

Read this top-down.

• Recursively elaborate e, get some core term M : A

• Close up M; extend Σ1 with hoisted-out constant.

• Output signature is extended Σ1 & output term uses new constant.
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• Recursively elaborate e, get some core term M : A

• Close up M; extend Σ1 with hoisted-out constant.

• Output signature is extended Σ1 & output term uses new constant.
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An example: one very scary rule

Σ; Γ ⊢ e ⇒ A⇝ Σ1;M

Γ ⊢ A = B type

Σ; Γ ⊢ e ⇒ A⇝ Σ1;M

• Recursively elaborate e, get some core term M and type A

• Ensure the term we’re checking against matches the synthesized type
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Deciding conversion

One final foray into some theory.

• As indicated before, elaboration should be decidable.

• So we need to decide conversion in the core theory.

• Our approach: normalization

• Our approach to this approach: Synthetic Tait Computability

The hard bit: the conditional rule for extension types
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Unstable neutrals

• Crucial step in normalization proofs: carve out renamings

• Big problem: the neutrality of out(e) isn’t stable under renamings

• Authors 2 & 3 already considered STC for cubical type theory (similar problems)

• Reuse a key idea: unstable neutrals
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Normalization results

TLDR: type theory with extension types & partial element types enjoys normalization.

Further details are banished to bonus slides.
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Implementations

Currently, there are two implementations of controlled unfolding:

• cooltt: already had extension types, implemented as described above.

https://github.com/RedPRL/cooltt

• Agda: doesn’t use extension types, implemented by Amélia Liao & Jesper Cockx

https://github.com/agda/agda/pull/6354

(Interested in adding controlled unfolding to your proof assistant? I’m around.)
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The role of extension types

We can implement controlled unfolding without fancy types, so why bother with them?

• To structure the proof of decidability of conversion

• To guide us in various design choices (what is unfolded where)

• Give a reference for users to reason about to predict interactions

However, don’t have to implement extension types to use controlled unfolding!
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What have I ignored?

A few interesting questions remain...

• What’s the best way for this to interact with unification?

• Can we describe unfolding recursive definitions only a fixed number of times?

• What about data types? Can we interpolate between Σ’s and records?

• What other features of proof assistants benefit from this attention?
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Conclusions

• We revisit the type-theoretic account of translucent definitions (singleton types)

• Refine this idea by replacing singleton types with extension types

• Show that extension types can be used to encode semi-translucent definitions

• Propose a surface syntax/elaboration mechanism

https://arxiv.org/abs/2210.05420
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STC

• Work internally to a presheaf topos to define the normalization model

• Each type former is modeled in turn, as a sequence of programming exercises.

• Each type is equipped with reify/reflect operations.

• Used for cubical type theory, multimodal type theory, and ∞-type theories.

Cubical type theory is the most relevant: it also has extension types.



Stabilized neutrals

The proof of normalization is almost standard, except for aforementioned issue.

• Standard normalization uses normals and neutrals

• We can’t have neutrals, but we can have neutrals keyed by a proposition

• Big idea: proposition represents when the neutral isn’t meaningful

Key case: the neutral for outϕ is associated to ϕ.



Stabilized neutrals II

Reflect function becomes more complicated:

reflect :

(M : Tm(A))(ϕ : P) (e : NeAϕM) (M• : ϕ→ Tm•(A,M))

→ {Tm•(A,M) | ϕ ↪→ M•}

Informally: you just provide the answer when the neutral doesn’t help.
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