
DENOTATIONAL SEMANTICS OF TYPE THEORY

DANIEL GRATZER

Abstract. These are the lecture notes associated to a short talk given to a

local seminar at Aarhus University. Below is the abstract for this talk.

Many of us use proof assistants like Coq or Agda to formalize the logics
and arguments that we study. In so doing, however, it is not uncommon

to bump into uncomfortable restrictions imposed by the type theory these

tools support. In these circumstances, it is usually quickest to extend the
proof assistant through postulates, rewrite rules, or plugins to better host our

informal arguments. Doing this, however, carries a substantial risk: how do

we know that we have not introduced an inconsistency?
In this talk I review the basics of (denotational) semantics for type theory

with the aim of answering this question. We will work through the definition
of a model of type theory and discuss how to construct one. Throughout, our

focus be on how semantics can provide us with confidence that what we write

in a proof assistant corresponds with our intentions.

Contents

1. Introduction 1
2. What is a model? What is a type theory? 2
3. Specifying type constructors 5
4. Our first model of type theory 8
5. The standard model 9
6. Consequences 11
7. Validating function extensionality 12
References 14

1. Introduction

Suppose we are working within a proof assistant based on dependent type theory
(Coq, Agda, Idris, etc.) and suppose further that we end up requiring a reasoning
principle that is not by-default available within these systems (function extension-
ality, propositional irrelevance, excluded middle, etc.). When are we allowed to
simply postulate this principle as an axiom?

This question is far from obvious. There are many different extensions we can
add to Coq and they are not always compatible. So, how are we to decide if it is
OK to add something. As a first step, let us consider what “OK” means in this
context. The coarsest answer is surely the following:

Principle 1. It is OK to add an axiom to type theory if the result is still consistent
i.e., we cannot prove ⊥ after assuming the axiom.

Date: Monday 24th April, 2023.
1

2 DANIEL GRATZER

So this leads us to a new question: how do we tell if a type theory is consistent?
A typical answer for type theory might be to prove something stronger and deduce
consistency as a corollary.

For instance, we might prove that our type theory satisfies canonicity and then
note that there are no canonical elements of ⊥. This approach, however, is ill-suited
for our situation. Our goal was to consider type theories which have extra axioms
thrown in which will certainly produce stuck terms.

We opt for a different approach and argue for consistency by constructing a
model. At a high level, a model consists of the following:

(1) A set C which represents contexts.
(2) A family of sets {Ty(c) | c ∈ C} representing the types in each context.
(3) A family of sets {Tm(c, t) | c ∈ C ∧ t ∈ Ty(c)} representing terms of a given

type in a context.
(4) A function J−K assigning well-formed contexts, types, and terms to elements

of the appropriate sets which respects definitional equality.

As a quick remark on this last requirement, we demand that if a pair of terms
are definitionally equal Γ ⊢ M = N : A then their interpretations are equal:

JMK = JNK ∈ Tm(JΓK, JAK)

Even with just this fuzzy definition in place, we can present a roadmap for
our proof of consistency will go. We will construct a model and ensure that
Tm(J1K, J⊥K) = ∅. We can then easily argue that there is no term 1 ⊢ M : ⊥.

Theorem 1.1. If we have a model of our type theory such that Tm(J1K, J⊥K) = ∅,
our type theory is consistent.

Proof. We must argue that there are no termsM : ⊥ in the empty context. Suppose
that we had such a term. We may then interpret this term into our model JMK ∈
Tm(J1K, J⊥K). By assumption, Tm(J1K, J⊥K) is empty, so no such M may exist. □

Definition 1.2. We will call any model of type theory satisfying the above condi-
tion non-trivial.

We may summarize this line of reasoning as follows:

Principle 2. It is OK to add an axiom if the result has non-trivial models.

2. What is a model? What is a type theory?

Unfortunately, we cannot get very far in this process without getting a little bit
more explicit about various definitions. We really need to crystallize a definition of
model. Even worse, since the point of this exercise is to define models for various
extensions of type theory, we really must define what a type theory is as well. We
begin with the latter question.

Let us swallow the bitter pill first: there is not presently a good definition which
captures everything we call type theory. There are several definitions, each captur-
ing a different class of type theories with trade-offs in their convenience and what
metatheorems they provide off-the-shelf.

In essence, we are after a definition which is somehow a compromise between two
things. First, the definition should faithfully represent the syntax (adequacy). The
point of this is to assure ourselves that what we’re typing into Coq actually means
something after all; we had better have a way to connect “type theory” to that.

DENOTATIONAL SEMANTICS OF TYPE THEORY 3

As a second point, however, we also want a definition which concise, tractable, and
close to the semantics if possible.

These two goals are often directly opposed to each other. In Coq, for instance,
a great deal of work goes into ensuring the user does not have to write certain
arguments or type annotations. A model of type theory, however, should be based
on something not subject to change with every minor revision of Coq. It also
intuitively feels like type theory without type annotations here is roughly the same
as type theory with annotations, so it would be ideal if our definition of type theory
was somehow invariant over these small details of syntax.1

For these notes, we deal with this issue by... not dealing with it. The goal is to
focus on the high-level goals of semantics, so we will simply specify what a model
is and offer only a few citations to assure the reader that this notion can be “linked
up” with syntax [Car78; Dyb96; KKA19; Uem19; Uem21].

The bare-bones model of dependent type theory without any connectives is a
slightly souped-up version of the structure introduced in the introduction.

Definition 2.1 (Category with Families). A category with families (CwF) is a
category C equipped with any of the following equivalent structures:

(1) A functor Ty : Cop Set and an assignment of sets Tm : (c : C)× Ty(c) Set
together with a C-action satisfying appropriate functoriality conditions:

− · f : Tm(c, A) Tm(c′, A · f) M · id = M M · f · g = M · (f ◦ g)
(2) A functor Ty : Cop Set and a functor Tm :

∫
Uop

Set.
(3) A functor τ : Cop Fam into the category of families of sets.
(4) A natural transformation τ : U• U in PSh(C).

Remark 3. Of these formulations, (1) and (4) are the most useful in practice.

The category portion of a CwF is meant to represent the context and simulta-
neous substitutions between them. If we take the first description of the structure,
Ty(c) represents the set of valid types in context c and Tm(c, A) represents the
terms in context c of type A. The functoriality of Ty and Tm encodes substitution.

Given a type A context c and a simultaneous substitution f : c′ c we can
apply f to A to obtain a new type A · f ∈ Ty(c′). The functor laws assure us that
these substitution operations behave as expected.

Remark 4. Why do simultaneous substitutions play such an important role? Af-
ter all, it is not as though users frequently write substitutions between contexts
when using Coq! In fact, the emphasis on simultaneous substitutions (hereafter,
substitutions) and contexts is an important maneuver in making category theory a
suitable language for the semantics of type theory.

Dependent type theory is predominantly concerned with families. A type is,
morally, somehow a family indexed by the context. The primary objects of category
theory are, however, emphatically not families! Objects are standalone gadgets with
no sort of “context” at play. It is only by emphasizing contexts and substitutions
between them that we can even view some part of dependent type theory as a
category in any recognizable way.

For semantics of simple type theory, this distinction is basically linguistic. After
all, in the simply-typed lambda calculus every type is precisely a length one context

1Small does not, however, mean unimportant. The ability of a proof assistant to minimize
user-provided type annotation is critical for usability.

4 DANIEL GRATZER

but the same is only true of closed types when we switch to Martin-Löf type theory.
To directly encode dependent types, we therefore need more than just a category.

The definition of a CwF is essentially a compromise between these two facts.
We isolate contexts and substitutions to have something categorical to base our
semantics on, but keep track of open types and terms through the Ty and Tm
functors. Other definitions of model split the difference differently and emphasize
contexts and substitutions even more heavily [Joy17]. This is far more categorically
natural but makes it more work to connect a model with syntax.

Remark 5. CwFs are closely linked to presentations of the syntax of type theory
with explicit substitutions. In this style, we have syntactic objects representing
substitutions in addition to types and terms. Applying a substitution becomes a
first-class operation in syntax and definitional equalities are then added to ripple a
substitution through a term to the variables [Mar92]. When presented in this style,
the definition of a CwF can be mechanically obtained. In fact, this is how CwFs
were first introduced [Dyb96].

Exercise 1. Convince yourself that these structures are all in fact equivalent.

I’ve somewhat atypically chosen to break this definition into three parts. The
definition of CwF above does not force the category of contexts C to have any
particular structure. To form a model of type theory, we must ensure that C
contains an empty context and is closed under context extension.

Definition 2.2. A CwF C has an empty context just when C has a terminal object.

Exercise 2. What does the universal property of the terminal object encode here?

Context extension is a little more involved. It is also the construction which ties
the presheaves of types and terms firmly to the category of contexts:

Definition 2.3 (Context extension). A CwF on C is said to have context extensions
if any of the following properties are satisfied:

(1) For any c : C and A ∈ Ty(c), there exists a c′ along with a morphism
p : c′ c and an element q ∈ Tm(c′, A · f). Moreover, given a map f :
d c and an element a ∈ Tm(d,A · g) there exists a unique factorization
f = p ◦ ⟨f, a⟩ such that q · ⟨f, a⟩ = a.

(2) For any c : C and A ∈ Ty(c), there exists a c′ along with an isomorphism:

Hom(−, c′) ∼= (f : Hom(−, d))× Tm(−, A · f)
(3) Each fiber of τ is representable; for each c : C there exists some c′ such that

U• ×U y(c) ∼= y(c′).

Remark 6. When (3) holds, we call τ a representable natural transformation [Awo18].

It is quite difficult to see why these definitions should model Γ.A. The most
direction connection is to compare (1) with the rules for substitutions around Γ.A:

↑: Γ.A Γ Γ.A ⊢ v0 : A[↑]
γ : ∆ Γ ∆ ⊢ M : A[γ]

γ.M : ∆ Γ.A

In our semantics, p corresponds to ↑, q is v0, and ⟨γ,M⟩ is γ.M . If one reads
a full description of the equational theory of of substitutions in Martin-Löf type
theory, versions of all the equalities specified in (1) are present [Hof97; Mar92].

DENOTATIONAL SEMANTICS OF TYPE THEORY 5

Henceforth, we shall assume that all CwFs we consider have both an empty
context and context extensions. We will also usually presenting a CwF with a
pair of functors Ty and Tm and occasionally reference how various structures are
manifested if we encoded a CwF through a representable natural transformation.

Notation 7. We will write c.A for the context extension of c by A ∈ Ty(c).

Exercise 3. Convince yourself that these properties are in fact properties. That is,
show that c′ is determined up to unique isomorphism in each of these items.

Exercise 4. Convince yourself that these properties are all equivalent.

With these three elements, we’ve successfully defined a model of type theory
with no connectives. That is, this is sufficient to interpret the basic constructions
of type theory. It only remains to heap a bunch of auxiliary structures on top of a
CwF to let us interpret each connective.

Remark 8. Thus far only the first part of the definition of a CwF legitimately
specified structure; the empty contexts and context extensions were constrained up
to unique isomorphism if they existed. This is a good state of affairs for category
theory. It works best with relatively little structure but lots of properties.2

Unfortunately, this nice state of affairs goes out the window when we start adding
in type connectives. Each connective will add new structure to the CwF and the
data they add is not determined up to isomorphism. This is particularly dissatisfy-
ing as most type connectives should really be determined up to unique isomorphism
and the fact that they are not leads to genuine proof obligations in practice.

3. Specifying type constructors

We will work through the addition of three representative connectives to CwFs:
a unit type, an empty type, and dependent products. We refer to Awodey [Awo18]
for an explanation for how these constructors can be specified when systematically
using representable natural transformations.

3.1. The unit type.

Definition 3.1. A CwF (C,Ty,Tm) interprets the unit type when it equipped with
the following structure:

(1) For all contexts c, a type unitc ∈ Ty(c).
(2) For all contexts c, an isomorphism ιc : Tm(c, unitc) ∼= {⋆}.
Moreover, given a substitution f : c′ c, we require unitc′ = unitc · f .

These structures are the simplest case of a general pattern: we add structure for
the type constructors then operations on terms corresponding to introduction and
elimination. In this case, we were able to specify the introduction, elimination, β,
and η rules in one move. One direction of the isomorphism we required above is
introduction rule, one is the elimination rule. The β and η rules are encoded by
requiring these operations be inverse to each other. We must also stipulate that all
our operations are stable under substitutions (the final requirement).

2Consider the complexity of monoidal category theory compared to categories with finite
products.

6 DANIEL GRATZER

Remark 9. Again, if one consults a sufficiently detailed presentation of type theory
with explicit substitutions, all of these elements will be present [Hof97]. This def-
inition should be seen as translating the existing rules into the language of CwFs
instead of inference rules.

Exercise 5. One could ask that ι−1
c is likewise stable under substitution:

ι−1
c (⋆) · f = ι−1

c′ (⋆)

Show that this equation holds automatically.

Exercise 6. Show that to equip (C,Ty,Tm) with a unit type it suffices to give unit1
and Tm(c, unit · !) ∼= {⋆} for each c : C.

Exercise 7 (∗). Show that (C, τ) supports a unit type just when there is morphism
unit : 1 U such that U• ×U 1 ∼= 1.

3.2. Dependent products. The case of unit types was particularly straightfor-
ward because we were able to bundle up all the operations and equations regarding
terms into a single isomorphism. In fact, we are able to execute this maneuver for
essentially all types with an η law.

Definition 3.2. A CwF (C,Ty,Tm) interprets dependents products when it is
equipped with the following structure:

• An operation on types prod : (c : C)(A : Ty(c)) → Ty(c.A) → Ty(c).
• For each c : C along with types A ∈ Ty(c) and B ∈ Ty(c.A), an isomorphism:

ιc : Tm(c, prodc(A,B)) ∼= Tm(c.A,B)

We further require that both ι and prod are natural in c.

Once again the first piece of required structure is the formation rule; an oper-
ation which assigns the formation data of a dependent product type to an actual
type. The naturality requirement ensures that the formation rule is stable un-
der substitution. This would typically be represented by an equation stating e.g.,
(A → B)[σ] = A[σ] → B[(σ ◦ ↑).v0].

The isomorphism bundles up the lambda rule, the application rule, and the β
and η equalities. The lambda rule is easier to recognize: it corresponds to ι−1

c .
The application rule is presented somewhat atypically here. Rather than allowing
application to an arbitrary element of Tm(c, A), the elimination operation encoded
here turns an element of the dependent product type back into an open term. This
operation is sometimes referred to as fun split or unlam [NPS90]. It is completely
interderivable with the normal function application. To apply a function M ∈
Tm(c, prod(A,B)) to a normal argument N ∈ Tm(c, A), we use the isomorphism to
obtain ιc(M) ∈ Tm(c.A,B). We then use the functoriality of Tm together with the
substitution ⟨id, N⟩ : c c.A to obtain the following:

M(N) ≜ ιc(M) · ⟨id, N⟩ ∈ Tm(c,B · ⟨id, N⟩)

Exercise 8. Show that the β and η rules hold for this definition of application using
the fact that ι is an isomorphism.

Exercise 9. Show that the normal application rule with β and η laws is sufficient
to define ι (reversing the process we described above).

DENOTATIONAL SEMANTICS OF TYPE THEORY 7

3.3. The empty type. We conclude with one type which lacks an η law: the
empty type empty. Since this type is perhaps less well-known than the unit type
and dependent products, we recall the traditional inference rules for it here:

Γ ⊢ 0 type

Γ ⊢ M : 0

Γ ⊢ absurd(M) : A

Notice that (1) unlike our other types, there are no introduction rules and (2)
there are no β or η laws.3

Remark 10. It is certainly possible to state an η law for 0. Unfortunately, adding
this rule to a type theory will invariable preclude decidable type-checking. Inter-
estingly, it is the case that most of the models one encounters “in the wild” do
support the η law for 0:

Γ ⊢ M : 0 Γ ⊢ N : A

Γ ⊢ absurd(M) = N : A

Definition 3.3. A CwF (C,Ty,Tm) interprets an empty type when it is equipped
with the following structure:

• Given c : C, a choice of emptyc ∈ Ty(c)
• Given c : C, A ∈ Ty(c), M ∈ Tm(c, emptyc), a term absurdc(M) ∈ Tm(c, A).

We also require that both empty and absurd are natural in c so that, e.g.:

absurd(c,M) · f = absurd(c′,M · f)

Exercise 10 (∗). It might be natural to suggest that a τ : U• U interprets an
empty type if there is a point empty : 1 U such that the fiber over this point
U• ×U 1 is the initial object. Show that no such point can ever exist.

3.4. The complete definition of a model.

Definition 3.4. A (Π,1,0)-CwF is a CwF which interprets the unit type, the
empty type, and dependent products.

Recall from Section 1 that our coarse definition of a model required a way to
interpret each term, type, and context into the sets of terms, types, and contexts.
Having now laid out the various definitions of a model, the reader may notice that
this requirement has not explicitly reappeared. Instead, we have required that the
various operations available for building up terms, types, and contexts are somehow
supported by the model. This still gives a way to interpret a way to interpret entire
syntactic objects: we proceed by inductively to build up a corresponding object in
the model by replaying each operation.

Definition 3.5. Given a CwF (C,Ty,Tm), we will write JΓK, JAK, or JMK for the
inductive interpretation of a given context, type, or term into (C,Ty,Tm).

Requiring the interpretation to be defined in this manner is the hallmark of
denotational semantics. It is often referred to as a compositional interpretation and
is a stronger requirement than merely requiring that each term can be interpreted
somehow. For instance, we have required that we can construct an inhabitant of

3It is difficult to imagine stating a β rule without an introduction rule.

8 DANIEL GRATZER

Tm(c, A) for any A ∈ Ty(c) when we have a proof of empty, but not every inhabitant
of Ty(c) needs to correspond to a syntactically definable type.4

For another example, consider dependent products. Our rules state that ele-
ments of Tm(c, prod(A,B)) correspond to all terms in an extended context. This
will frequently mean that Tm(c, prod(A,B)) has elements corresponding to non-
computable functions but we still require that the expected rules apply to these
‘exotic’ elements. Conversely, we require that syntactically-definable functions can
be applied to all arguments, not merely those which are definable.

There are two principle benefits to these extra constraints. First, it gives a
convenient way to compute the interpretations of terms and types within our model.
Moreover, it allows us extend an interpretation of type theory to support an axiom
without having to start from scratch. To argue that a model supports an axiom of
type Γ ⊢ A, it is sufficient to show that there is some inhabitant of Tm(JΓK, JAK).
Without compositionality, we would have to argue that we could still interpret a
function applied to this axiom and that we could interpret a pair consisting of this
axiom and something else and so on. Having ensured that our model supported a
compositional interpretation essentially frontloads all this work.

Beyond this, compositionality gives us immense power in showing the undefin-
ability of various operations. We can argue that if a function were definable then
we could interpret it into some model and apply it to some non-definable argument
and thereby derive a contradiction. This style of argument, for instance, is the
foundation of many independence or continuity results.

4. Our first model of type theory

We now turn to actually constructing a category with families. We will begin
with the so-called syntactic model.

Definition 4.1. The syntactic category of contexts Cx has contexts for objects and
(equivalence classes of) substitutions for morphisms.

It is necessary to take substitutions up to definitional equality in order to ensure
that Cx forms a category.

Notation 11. Given a type Γ ⊢ A, we write [A] for the equivalence class of types
definitionally equal to A. Likewise, we write [M] for the equivalence class of terms
definitionally equal to M .

Definition 4.2. The category of contexts Cx can be equipped with a CwF structure
by defining the presheaves of types and terms as follows:

Ty(Γ) = {[A] | Γ ⊢ A type} Ty(Γ, [A]) = {[M] | Γ ⊢ M : A}

Once again, we must consider terms and types up to definitional equality in order
to ensure that the definitions are functorial.

Exercise 11. Show that (Cx,Ty,Tm) is a (Π,0,1)-CwF.

4In a typical model Ty(c) will be uncountable so that nearly every type in the model cannot
be realized syntactically.

DENOTATIONAL SEMANTICS OF TYPE THEORY 9

5. The standard model

While the syntactic CwF is perhaps the simplest example we can construct, it
tells us precious little that we didn’t already know. In particular, it does not help
us in our goal to show the consistency of our type theory. Let us instead focus on
a model that offers some new insights in this regard: the set model of type theory.

5.1. A digression on size. The set model of type theory quickly leads to some
fundamentally unimportant size issues. Essentially: we have already committed to
having the collection of types in a context form a set but we will obtain a proper
class of types if we proceed naively. There are a number of ways to circumvent this5

but we will opt for a solution which gives us an opportunity to discuss a concept of
fundamental importance in the semantics of type theory.

Definition 5.1. A Grothendieck universe V is a transitive set closed under the
formation of pairs, V-indexed unions, and powersets. Unless otherwise specified,
we will also assume V contains the set of natural numbers.

Remark 12. A Grothendieck universe is precisely an inaccessible cardinal.

Grothendieck universes give us a workable proxy for the non-existent “set of all
sets”. Essentially, the definition above ensures that we can do any of the normal
operations of set theory and if the inputs to these operations are elements of V,
the output will be an element of V as well. In fact, this can be precisely stated:
V serves as a model of set theory. This crystallization makes it clear that incom-
pleteness precludes us from obtaining a Grothendieck universe without adding some
extra strength to our metatheory. This should not be a source of undue concern:
the existence of a hierarchy of Grothendieck universes is a reasonably weak and
unobjectionable addition. Accordingly, for the remainder of this document fix a
Grothendieck universe V.

Definition 5.2. A set is V-small if it is isomorphic to an element of V.

5.2. Types as families of sets. In this model a context is interpreted as a set.
Writing Set for the category of sets and functions between them, we will therefore
take Set as our category of contexts. It now remains to endow Set with the
structure of a CwF. Ideally, we would like to interpret a type in context X as a
family of sets indexed by X.

Remark 13. While working in the category of sets, we have many different defi-
nitions of families of sets. Only one readily generalizes to an arbitrary category
with finite limits: a family of sets (Yx)x∈X is exactly a set Y together with a map
f : Y X. The set at index x is realized precisely by the preimage of x i.e.
Yx = f−1(x) = {y ∈ Y | f(y) = x} i.e. the pullback 1 ×X Y or the fiber over x.
This definition arises frequently in geometry under the name fibration where it is
used to capture the notion of a smoothly-varying families of shapes.

We would ideally now define Ty(X) = “families over X”. Unfortunately, this is
where we encounter size issues: the collection of families over a set is too large to
form a set. To salvage the situation, we restrict types to families of V-small sets.
This restriction is not too draconian; we have already noted that we can perform
any reasonable set-theoretic operations on V-small sets without leaving V.

5For the sake of exposition, handwaving is a defensible choice

10 DANIEL GRATZER

Remark 14. In fact, it is entirely possible to restrict the category of contexts to the
full subcategory spanned by V-small sets.

While we have already defined the notion of a V-small set, we will take a moment
to crystallize the definition of a family of V-small sets:

Definition 5.3. An X-family of V-small sets is a function X V.
Exercise 12. Show that a family f : X V determines a set Y and a map π :
Y X such that π induces f by taking preimages. What is the result of this
procedure when applied to the identity map V V? Can this process be reversed:
does every family π : Y X determine a map X V? If not, what conditions
can be placed upon π to ensure this is the case?

With this definition to hand, we can now state the presheaf of types in our model:

Ty(X) = Hom(X,V)
Even more tersely: Ty = y(V).

The collection of terms is slightly more involved. Fix a set X and a family
f : X V. A term in this model will consists of a family of elements (ax)x∈X such
that ax ∈ f(x). While this definition is perfectly serviceable as-is, we can rephrase
it in a way which will make properties later easier to prove.

Definition 5.4. Define V• to be the set {(A, x) | A ∈ V ∧ x ∈ A}. Let π : V• V
be the evident map induced by projection.

We now define terms as follows:

Tm(X, f) =
{
f̃ : X V•

∣∣ π ◦ f̃ = f
}

Lemma 5.5. Ty is a presheaf and Tm is equipped with a C-action satisfying the
necessary axioms.

Proof. We have already mentioned the first part of this in passing. Both actions are
induced by precomposition. It is straightforward to show that they are functorial.

□

We next turn to defining a context extension structure and the relevant type
formers. We leave the empty context as an exercise.

Exercise 13. The CwF (Set,Ty,Tm) has an empty context.

Lemma 5.6. The CwF (Set,Ty,Tm) supports context extension.

Proof. We begin by fixing X : Set and f : X V. We now wish to define X.f .
Intuitively, a context extend by f should consist of (1) an element x ∈ X and (2)
an element of f(x). This is essentially already enough for a definition:

X.f =
∑

x∈X f(x)

The weakening map p : X.f X is projection of the first component. The term
q ∈ Tm(X.f, f ◦ p) is essentially projection of the second component:

q(x ∈ X, a ∈ f(x)) = (f(x), a)

Finally, we must show that given a Y together with a map γ : Y X and a ∈
Tm(Y, f ◦ γ) there exists a unique map ⟨γ, a⟩ : Y X.f such that p ◦ ⟨γ, a⟩ = γ
and q · ⟨γ, a⟩ = a. This follows from the definition of X.f as a disjoint sum:

⟨γ, a⟩(y ∈ Y) = (γ(y), π2(a(y)))

DENOTATIONAL SEMANTICS OF TYPE THEORY 11

Check that this satisfies the required equations and is unique with this property
is routine. □

Lemma 5.7. The CwF (Set,Ty,Tm) interprets the unit type.

Proof. As mentioned in an exercise, it suffices to define a map unit : 1 V along
with a family of isomorphisms Tm(X, unit ◦ !) ∼= {⋆}. To this end, we define
unit(⋆) = 1 and we are essentially done. □

Lemma 5.8. The CwF (Set,Ty,Tm) interprets the empty type.

Proof. We first define emptyX for each X : Set as follows:

emptyX() = ∅
To define absurdX , let us fix f : X V and e ∈ Tm(X, emptyX). We must con-

struct absurdX(f, e) ∈ Tm(X, f) ⊆ Hom(X,V•). It therefore suffices to construct
an element of f(x) for each x ∈ X. We may now observe that any x ∈ X, we have
π2(e(x)) ∈ ∅, an absurdity. □

Lemma 5.9. The CwF (Set,Ty,Tm) interprets the dependent products.

Proof. This is more involved than the previous two examples as it suffers from an
abundance of indices. We begin by defining prod.

Fix X along with f : X V and g : X.f V. We now define prodX(f, g) as
follows:

prodX(f, g) =
∏

x∈X

∏
a∈f(x) g(⟨x, a⟩)

We must argue that this definition is natural in X, but we leave this routine cal-
culation to the reader.

It remains to construct the following natural isomorphism:

ιX : Tm(X, prod(f, g)) ∼= Tm(X.f, g)

This follows essentially by definition. The left-hand side is isomorphic to the
following by definition: ∏

x∈X

∏
a∈f(x) g(⟨x, a⟩)

The right-hand side, meanwhile, is isomorphic to the following:∏
⟨x,a⟩∈

∑
x∈X f(x) g(⟨x, a⟩)

There is an evident natural isomorphism given by currying:

ι(ϕ) = λ⟨x, a⟩. ϕ x a □

.

6. Consequences

We can derive quite a few interesting consequences from the existence of the Set
model. The most important is the following:

Theorem 6.1. Type theory with Π, 0, and 1 is consistent.

Of course, it is routine to extend the set model with other connectives (sums,
identity types, universes, etc.). Once we have done this, we can argue that various
axioms are consistent additions to type theory by observing that they are validated
by this model. The following axioms are validated in this model:

(1) Function extensionality

12 DANIEL GRATZER

(2) Law of the excluded middle (untruncated and truncated forms)
(3) The axiom of choice
(4) . . .

7. Validating function extensionality

In order to expand on this last point and show that function extensionality is
validated by the standard model, we must first add enough connectives to our
model to interpret the axiom. Recall that function extensionality in type theory is
a constant of the following type:∏

fg:(a:A)→B(a)

(∏
a:A Id(f a, g a)

)
→ Id(f, g) (1)

Our discussion thus far as not touched on a crucial type within the above ex-
pression: identity types. As a case study for how denotational semantics work with
an extension of type theory, let us examine the effects of adding intensional iden-
tity types to our type theory, the definition of a model, and extend the standard
model to support them. Finally, we examine equality reflection within the standard
model.

7.1. Intensional identity types in type theory. We consider the intensional
formulation of identity types characteristic of Martin-Löf type theory [Mar84]. The
formation and introduction (reflexivity) rules are given below:

Γ ⊢ A Γ ⊢ M,N : A

Γ ⊢ Id(M,N)

Γ ⊢ A Γ ⊢ M : A

Γ ⊢ refl(a) : Id(M,M)

The character of the intensional identity type is given by its (rather complex)
elimination, often named simply denoted “J”:6

Γ ⊢ A Γ ⊢ M0,M1 : A
Γ.A.A[p].Id(q[p], q) ⊢ B Γ.A ⊢ N : B[id.q.refl(q)] Γ ⊢ P : Id(M0,M1)

Γ ⊢ ind(B,N, P) : B[id.M0.M1.P]

ind(B,N, refl(M)) = N [id.M]

Remark 15. While ind is certainly a mouthful, type theory with this formulation of
identity types admits a normalization result and therefore decidable type-checking.
Moreover, this elimination principle admits an interesting homotopical perspective.
See Univalent Foundations Program [Uni13] for a more gentle introduction to this
type former and the aforementioned homotopical interpretation.

7.2. Specifying identity types in CwFs. Following Section 3, we specify when
a CwF supports identity types. As the connective does not support an η principle,
the formulation is closest to the empty type.

Definition 7.1. A CwF (C,Ty,Tm) interprets intensional identity types when it
is equipped with the following structure:

6Near as I can tell, this name mostly stems from the fact that I is followed by J in the Latin
alphabet.

DENOTATIONAL SEMANTICS OF TYPE THEORY 13

• Given c : C, a type A ∈ Ty(c), and two terms a0, a1 ∈ Tm(c, A), a choice of
idc(A, a0, a1) ∈ Ty(c).

• Given c : C, A ∈ Ty(c), and a ∈ Tm(c, A), a term reflc(A, a) ∈ Ty(c, id(A, a, a)).
• Fix the following:

(1) c : C
(2) A ∈ Ty(c)
(3) B ∈ Ty(c.A.A.Id(q · p, q))
(4) N ∈ Tm(c.A,B · ⟨⟨id, q⟩, reflc.A(A · p, q)⟩)
(5) M0,M1 : Tm(c, A)
(6) P : Tm(c, id(A,M0,M1))
We then require a term J(c, A,B,N,M0,M1, P) ∈ Tm(c,B · ⟨⟨⟨id,M0⟩,M1⟩, P ⟩).

We further require that id, refl, and J are all natural and that the following
equation holds:

J(c, A,B,N,M,M, reflc(A,M)) = N · ⟨id,M⟩

In order to actually witness this structure on a model in practice, the following
lemma is frequently helpful:

Lemma 7.2. To equip a CwF (C,Ty,Tm) with intensional identity types, it suffices
to provide the following data:

• Given c : C, a type A ∈ Ty(c), and two terms a0, a1 ∈ Tm(c, A), a natural
choice of idc(A, a0, a1) ∈ Ty(c).

• Given c : C, A ∈ Ty(c), and terms M,N ∈ Tm(c, A), a natural isomorphism
of the following shape:

ι : Tm(c, Id(A,M,N)) ∼= {⋆ | M = N}

Proof. The first two components of Definition 7.1 are given by id and ι−1. The
final component is defined as follows:

J(c, A,B,N,M0,M1, P) = N · ⟨id,M0⟩
Here we take advantage of the fact that ι(P) ∈ {⋆ | M0 = M1} so that, in

particular, M0 = M1 and P = refl(M0). The naturality and computation equations
follow from either assumption or definition. □

Remark 16. This lemma can be rephrased syntactically to say that extensional
identity types interpret intensional identity types.

7.3. Identity types in the standard model. We now discuss the extension of
standard model to support identity types and—finally—consider the validity of
function extensionality in the model. Rather than directly constructing Defini-
tion 7.1, we will factor our proof through Lemma 7.2.

Lemma 7.3. The standard model introduced in Section 5 supports the hypotheses
of Lemma 7.2.

Proof. We have two pieces of data to supply. First, fix f : Ty(X) and s0, s1 :
Tm(X, f) for some X : Set. We define Id(f, s0, s1) as follows:

Id(f, s0, s1) = λx.

{
{⋆} if s0(x) = s1(x)

∅ otherwise

By construction, this definition is natural in X.

14 DANIEL GRATZER

We must provide a natural isomorphism Tm(X, Id(f, s0, s1)) ∼= {⋆ | s0 = s1}.
First, note that any such isomorphism is automatically natural (there is at most
one element of the right-hand side). Next, notice that if s0 = s1, then Id(f, s0, s1) =
λ .{⋆} which has precisely one term: the function which picks out ⋆. By function
extensionality in sets, this map is a bijection: if we have a term of Id(f, s0, s1) then
s0 and s1 are equal on all elements and thus equal. Accordingly, λ .⋆ gives an
isomorphism Tm(X, Id(f, s0, s1)) → {⋆ | s0 = s1}. □

Theorem 7.4. The standard model validates function extensionality.

Proof. We wish to show that the interpretation of Eq. (1) is inhabited. We begin
by unfolding this interpretation in a context X with two types f : Ty(X) and
g : Ty(X.f) which we will use to interpret A and B respectively.

Unraveling the interpretation and utilizing the various natural isomorphisms we
have constructed, we are left with the following:

(s0, s1 : Tm(X.f, g))

→ ((a : Tm(X, f)) → {⋆ | ∀x. s0 ⟨x, a⟩ = s1 ⟨x, a⟩})
→ {⋆ | ∀x′ : X.f. s0 x

′ = s1 x
′}

At this point, let us examine the second term:

(a : Tm(X, f)) → {⋆ | ∀x. s0 ⟨x, a⟩ = s1 ⟨x, a⟩}
Using function extensionality of sets, we see that it is in fact isomorphic to the
following:

{⋆ | ∀a, x. s0 ⟨x, a⟩ = s1 ⟨x, a⟩}
Using the fact that X.f =

∑
x:X f(x), we can now see that every element of

X.f is of the form ⟨x, a⟩ for some x and a. Accordingly, function extensionality is
isomorphic to the following set:

(s0, s1 : Tm(X.f, g)) → {⋆ | ∀x′ : X.f. s0 x
′ = s1 x

′} → {⋆ | ∀x′ : X.f. s0 x
′ = s1 x

′}
As this set is clearly inhabited, function extensionality is validated by this model.

□

References

[Awo18] Steve Awodey. “Natural models of homotopy type theory”. In: Mathe-
matical Structures in Computer Science 28.2 (2018), pp. 241–286. issn:
09601295. doi: 10.1017/S0960129516000268. eprint: 1406.3219 (cit.
on pp. 4, 5).

[Car78] John Cartmell. “Generalised Algebraic Theories and Contextual Cate-
gories”. PhD thesis. University of Oxford, 1978 (cit. on p. 3).

[Dyb96] Peter Dybjer. “Internal type theory”. In: Types for Proofs and Programs.
Ed. by Stefano Berardi and Mario Coppo. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 120–134. doi: 10.1007/3-540-61780-9_66
(cit. on pp. 3, 4).

https://doi.org/10.1017/S0960129516000268
1406.3219
https://doi.org/10.1007/3-540-61780-9_66

REFERENCES 15

[Hof97] Martin Hofmann. “Syntax and Semantics of Dependent Types”. In:
Semantics and Logics of Computation. Ed. by Andrew M. Pitts and
P. Dybjer. Cambridge University Press, 1997, pp. 79–130. doi: 10 .

1017/CBO9780511526619.004. url: https://www.tcs.ifi.lmu.
de/mitarbeiter/martin- hofmann/pdfs/syntaxandsemanticsof-

dependenttypes.pdf (cit. on pp. 4, 6).
[Joy17] Andre Joyal. Notes on Clans and Tribes. 2017. url: https://arxiv.

org/abs/1710.10238 (cit. on p. 4).
[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. “Construct-

ing Quotient Inductive-inductive Types”. In: Proc. ACM Program. Lang.
3.POPL (Jan. 2019), 2:1–2:24. issn: 2475-1421. doi: 10.1145/3290315
(cit. on p. 3).

[Mar84] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin.
Vol. 1. Studies in Proof Theory. Bibliopolis, 1984, pp. iv+91. isbn: 88-
7088-105-9 (cit. on p. 12).

[Mar92] Per Martin-Löf. Substitution calculus. Notes from a lecture given in
Göteborg. 1992 (cit. on p. 4).

[NPS90] B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin-
Löf ’s Type Theory: An Introduction. International series of monographs
on computer science. Clarendon Press, 1990. isbn: 9780198538141 (cit.
on p. 6).

[Uem19] Taichi Uemura. “A General Framework for the Semantics of Type The-
ory”. In: (Apr. 2019). eprint: 1904.04097 (math.CT). url: https:
//arxiv.org/abs/1904.04097 (cit. on p. 3).

[Uem21] Taichi Uemura. “Abstract and Concrete Type Theories”. PhD thesis.
Amsterdam: Universiteit van Amsterdam, 2021. url: https://www.
illc.uva.nl/cms/Research/Publications/Dissertations/DS-

2021-09.text.pdf (cit. on p. 3).
[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study, 2013. url:
https://homotopytypetheory.org/book (cit. on p. 12).

https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://arxiv.org/abs/1710.10238
https://arxiv.org/abs/1710.10238
https://doi.org/10.1145/3290315
1904.04097
https://arxiv.org/abs/1904.04097
https://arxiv.org/abs/1904.04097
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2021-09.text.pdf
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2021-09.text.pdf
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2021-09.text.pdf
https://homotopytypetheory.org/book

	1. Introduction
	2. What is a model? What is a type theory?
	3. Specifying type constructors
	4. Our first model of type theory
	5. The standard model
	6. Consequences
	7. Validating function extensionality
	References

