Normalization by Evaluation for Modal Dependent Type Theory

Daniel Gratzer
Jonathan Sterling
Lars Birkedal

March 1, 2019

Contents

1 Modal Dependent Type Theory 1
1.1 The syntax of MLTT 1
1.2 Admissible rules 3
2 Computing in MLTT 16
2.1 Semantic domain 16
2.2 Semantic partial operations 16
2.3 Determinism 20
3 Completeness of Normalization 21
3.1 PER model 21
3.2 Properties of the PER model 24
3.3 Completeness 32
4 Soundness of Normalization 40
4.1 A well-ordering on semantic types 40
4.2 The logical relation for soundness 41
4.3 Properties of the logical relation 44
4.4 Soundness 61
Bibliography 75

1 Modal Dependent Type Theory

Here, we treat the syntax of $\operatorname{MLTT}_{\boldsymbol{\Omega}}$, a modal dependent type theory with typed definitional equality and a predicative hierarchy of universes.

1.1 The syntax of $\mathrm{MLTT}_{\mathrm{a}}$

We represent the syntax of TT abstractly using De Bruijn indices and explicit substitutions [Dyb96; Gra13]. By convention, we use a distinguished color for syntactic objects (as opposed to the semantic objects that we will introduce in later chapters).

```
(contexts) Г,\Delta ::= • | Г.А Г Г.@
(types) }\quadA,B,T\quad::=\quadt|\mathrm{ nat | U | | П(A,B)| 片A,B)| םA | Id (A,t,t)
```



```
    refl(t)| |(C,t,t)| zero | succ}(t)|\operatorname{natrec}(A,t,t,t)|t[\delta
(subst.) }\quad\gamma,\delta\quad::= id | .t | \delta\circ\delta| 午 |.
```

We now turn to the typing rules for this calculus. We write $\Gamma^{\boldsymbol{\sim}}$ for the operation which removes all locks from a context. We write $\Gamma \triangleright_{\varrho} \Gamma^{\prime}$ to mean that Γ^{\prime} is a version of Γ with locks added.

$$
\begin{aligned}
& \Gamma_{0} \triangleright_{Q} \Gamma_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma c t x
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma c t x \\
& \frac{\Gamma c t x \quad \Gamma \vdash T \text { type }}{\Gamma . T c t x} \\
& \Gamma \vdash T \text { type } \\
& \Gamma \vdash T: \mathrm{U}_{i} \\
& \frac{\Gamma \vdash T \text { type } \quad \Gamma \vdash t_{0}, t_{1}: T}{\Gamma \vdash \operatorname{ld}\left(T, t_{0}, t_{1}\right) \text { type }} \\
& \frac{\Gamma \vdash \delta: \Delta \quad \Delta \vdash T \text { type }}{\Gamma \vdash T[\delta] \text { type }}
\end{aligned}
$$

$\Gamma \vdash t: T$

$$
\begin{aligned}
& \frac{\Gamma \vdash t: \Pi(A, B) \quad \Gamma \vdash u: A \quad \Gamma . A \vdash B \text { type }}{\Gamma \vdash t(u): B[\mathrm{id} . u]} \quad \frac{\Gamma \vdash A: \mathrm{U}_{i} \quad \Gamma . A \vdash B: \mathrm{U}_{i}}{\Gamma \vdash \Pi(A, B): \mathrm{U}_{i}} \\
& \frac{\Gamma \vdash t_{0}: A \quad \Gamma . A \vdash B \text { type } \quad \Gamma \vdash t_{1}: B\left[\mathrm{id} . t_{0}\right]}{\Gamma \vdash\left\langle t_{0}, t_{1}\right\rangle: \Sigma(A, B)} \quad \frac{\Gamma \vdash t: \Sigma(A, B) \quad \Gamma \vdash A \text { type }}{\Gamma \vdash \mathrm{fst}(t): A} \\
& \frac{\Gamma \vdash t: \Sigma(A, B) \quad \Gamma \vdash A \text { type } \quad \Gamma . A \vdash B \text { type }}{\Gamma \vdash \operatorname{snd}(t): B[\operatorname{id} .(\mathrm{fst}(t))]} \quad \frac{\Gamma \vdash A: \mathrm{U}_{i} \quad \Gamma . A \vdash B: \mathrm{U}_{i}}{\Gamma \vdash \Sigma(A, B): \mathrm{U}_{i}} \quad \frac{\Gamma \mathrm{ctx}}{\Gamma \vdash \text { zero : nat }} \\
& \Gamma \vdash t \text { : nat } \\
& \Gamma \vdash \operatorname{succ}(t): \text { nat } \\
& \underline{\Gamma . n a t \vdash A \text { type } \quad \Gamma \vdash t_{n}: \text { nat } \quad \Gamma \vdash t_{z}: A[\text { id.zero }] \quad \Gamma . n a t . A \vdash t_{s}: A\left[p^{2} . \operatorname{succ}\left(\operatorname{var}_{1}\right)\right]} \\
& \Gamma \vdash \operatorname{natrec}\left(A, t_{n}, t_{z}, t_{s}\right): A\left[\operatorname{id} . t_{n}\right] \\
& \frac{\Gamma c t x}{\Gamma \vdash \text { nat }: \mathrm{U}_{i}} \quad \frac{\Gamma \vdash T: \mathrm{U}_{i} \quad \Gamma \vdash t_{0}, t_{1}: T}{\Gamma \vdash \operatorname{ld}\left(T, t_{0}, t_{1}\right): \mathrm{U}_{i}} \quad \frac{\Gamma \vdash T \text { type } \quad \Gamma \vdash t: T}{\Gamma \vdash \operatorname{refl}(t): \operatorname{Id}(T, t, t)} \\
& \Gamma \vdash T \text { type } \quad \Gamma \vdash u_{0}, u_{1}: T \quad \text { Г.T.T }\left[\mathrm{p}^{1}\right] . \operatorname{Id}\left(T\left[\mathrm{p}^{2}\right], \operatorname{var}_{1}, \mathrm{var}_{0}\right) \vdash C \text { type } \\
& \underline{\Gamma . T \vdash t_{0}: C\left[i d . \operatorname{var}_{0} . \text { var }_{0} \cdot \operatorname{refl}\left(\operatorname{var}_{0}\right)\right] \quad \Gamma \vdash t_{1}: \operatorname{Id}\left(T, u_{0}, u_{1}\right)} \\
& \text { Г. } \boldsymbol{\text { @ }}+t: A \\
& \Gamma \vdash \mathrm{~J}\left(C, t_{0}, t_{1}\right): C\left[\mathrm{id} . u_{0} . u_{1} \cdot t_{1}\right] \\
& \overline{\Gamma \vdash[t]_{\mathbf{@}}: \square A} \\
& \Gamma \vdash \delta: \Delta \\
& \frac{\Gamma_{0} \cdot \Gamma_{1} c t x \quad \Gamma_{0}^{\prime} c t x \quad \Gamma_{0} \triangleright_{\mathbf{Q}} \Gamma_{0}^{\prime} \quad k=\left\|\Gamma_{1}\right\| \quad \mathbf{Q} \notin \Gamma_{1}}{\Gamma_{0} \cdot \Gamma_{1} \vdash \mathrm{p}^{k}: \Gamma_{0}^{\prime}}
\end{aligned}
$$

We omit most of the rules for definitional equality, which are standard, presenting only those which pertain to the new type connectives. We have equipped both depenent function and dependent pair types with the appropriate η rules. The rules the \square connective are specified below.

$$
\begin{aligned}
& \frac{\Gamma \vdash T \text { type } \quad \Delta \vdash \mathrm{id}: \Gamma}{\Delta \vdash T[\mathrm{id}]=T \text { type }} \quad \frac{\Gamma_{0} \vdash \gamma_{1}: \Gamma_{1} \quad \Gamma_{1} \vdash \gamma_{2}: \Gamma_{2} \quad \Gamma_{2} \vdash T \text { type }}{\Gamma_{0} \vdash T\left[\gamma_{2}\right]\left[\gamma_{1}\right]=T\left[\gamma_{2} \circ \gamma_{1}\right] \text { type }} \quad \frac{\Gamma \vdash t: T \quad \Delta \vdash \mathrm{id}: \Gamma}{\Delta \vdash t[\mathrm{id}]=t: T} \\
& \frac{\Gamma_{0}+\gamma_{1}: \Gamma_{1} \quad \Gamma_{1}+\gamma_{2}: \Gamma_{2} \quad \Gamma_{2}+t: T}{\Gamma_{0}+t\left[\gamma_{2}\right]\left[\gamma_{1}\right]=t\left[\gamma_{2} \circ \gamma_{1}\right]: T\left[\gamma_{2} \circ \gamma_{1}\right]} \quad \frac{\Gamma . \boldsymbol{\Omega}+A=B \text { type }}{\Gamma \vdash \square A=\square B \text { type }} \quad \frac{\Gamma . \boldsymbol{\Omega}+A=B: U_{i}}{\Gamma \vdash \square A=\square B: U_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash \delta: \Delta \quad \Delta^{\curvearrowleft}+t: \square T}{\Gamma+[t]_{\curvearrowleft}[\delta]=[t[\delta]]_{\infty}: T[\delta]}
\end{aligned}
$$

The rules for equality of substitution are largely standard, but presented in a more general way in order to properly mediate the presence of

$$
\begin{array}{cc}
\frac{\Gamma_{0} \vdash \mathrm{p}^{1} \cdot \mathrm{var}_{0}: \Gamma_{1}}{\Gamma_{0} \vdash \mathrm{p}^{1} \cdot \operatorname{var}_{0}+\mathrm{id}: \Gamma_{1}} & \frac{\Gamma_{0} \vdash \gamma_{1}: \Gamma_{1}}{\Gamma_{0} \vdash \gamma_{3} \circ\left(\gamma_{2} \circ \gamma_{1}\right)=\left(\gamma_{3} \circ \gamma_{2}\right) \circ \gamma_{1}: \Gamma_{3}} \\
\frac{\Gamma_{0} \vdash \gamma_{1}: \Gamma_{1}}{\Gamma_{0} \vdash \mathrm{id} \circ \gamma_{1}=\gamma_{1}: \Gamma_{2}} \quad \frac{\Gamma_{1} \vdash \mathrm{id}: \Gamma_{2}}{\Gamma_{0} \vdash \gamma_{2} \circ \mathrm{id}=\gamma_{2}: \Gamma_{2}} & \frac{\Gamma_{0} \vdash \mathrm{id}: \Gamma_{1}}{\Gamma_{1} \vdash(\gamma \cdot t) \circ \gamma_{2}=\left(\gamma \circ \gamma_{2}\right) \cdot\left(t\left[\gamma_{2}\right]\right): \Gamma_{3}} \\
\frac{\Gamma_{1} \vdash \gamma_{2}: \Gamma_{2}}{\Gamma_{0} \vdash \mathrm{p}^{n+1}=\mathrm{p}^{n} \circ \mathrm{p}^{1}: \Gamma_{1}} & \frac{\Gamma_{0} \vdash \gamma \cdot t: \Gamma_{1} \quad \Gamma_{1} \vdash \mathrm{p}^{1}: \Gamma_{2}}{\Gamma_{0} \vdash \mathrm{p}^{1} \circ(\gamma . t)=\gamma: \Gamma_{2}}
\end{array}
$$

1.2 Admissible rules

In this section, we prove a number of critical admissible rules which will be exploited throughout the rest of this report. In what follows we use \mathcal{J} to stand for any of the judgments of MLTT $_{\Omega}$.

Proposition 1.2.1 (Lock-variable exchange). Supposing that $\Gamma . \mathrm{O}_{\vdash} \vdash T$ type holds if $\Gamma_{0} . T . \mathrm{O}_{\mathrm{a}} \Gamma_{1} \vdash \mathcal{J}$ then

Proof. Proven in Theorem 1.2.7.
Proposition 1.2.2 (Lock strengthening). If Γ_{0}. . $\Gamma_{1} \vdash \mathcal{J}$ then $\Gamma_{0} . \Gamma_{1} \vdash \mathcal{J}$.
Proof. Proven in Theorem 1.2.4.
Proposition 1.2.3 (Presuppositions).

1. If $\Gamma \vdash T$ type then Γ ctx.
2. If $\Gamma \vdash t: T$ then $\Gamma \vdash T$ type.
3. If $\Gamma_{0} \vdash \delta: \Gamma_{1}$ then Γ_{i} ctx.
4. If $\Gamma \vdash T_{0}=T_{1}$ type then $\Gamma \vdash T_{i}$ type.
5. If $\Gamma \vdash t_{0}=t_{1}: T$ then $\Gamma \vdash t_{i}: T$.
6. If $\Gamma \vdash \delta_{0}=\delta_{1}: \Delta$ then $\Gamma \vdash \delta_{i}: \Delta$.

Proof. Proven in Theorem 1.2.16.
Theorem 1.2.4 (Lock Strengthening).

1. If Γ_{0}. ㅇ. Γ_{1} ctx then $\Gamma_{0} \cdot \Gamma_{1}$ ctx.
2. If Γ_{0}. . $\Gamma_{1} \vdash T$ type then $\Gamma_{0} \cdot \Gamma_{1} \vdash T$ type.
3. If Γ_{0}. . $\Gamma_{1} \vdash T_{0}=T_{1}$ type then $\Gamma_{0} \cdot \Gamma_{1} \vdash T_{0}=T_{1}$ type.
4. If $\Gamma_{0} \cdot \Gamma_{1} \vdash t: T$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash t: T$.
5. If Γ_{0}. ㅇ. $\Gamma_{1} \vdash t_{0}=t_{1}: T$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash t_{0}=t_{1}: T$.
6. If Γ_{0}. $\Gamma_{1} \vdash \delta: \Delta$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash \delta: \Delta$.
7. If Γ_{0}. ㅇ. $\Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$.

Proof. These facts must be proved mutually as these judgments are all mutual. They are all proven by induction on the derivation; for brevity, we present only a few representative cases involving locks.

1. If Γ_{0}. . ${ }^{\text {. }} \Gamma_{1} c t x$ then $\Gamma_{0} \cdot \Gamma_{1} c t x$.

Case.

$$
\frac{\Gamma_{0} \cdot \boldsymbol{Q} \cdot \Gamma_{1} c t x \quad \Gamma_{0} \cdot \mathbf{Q} \cdot \Gamma_{1}+T \text { type }}{\Gamma_{0} \cdot \mathbf{\Omega} \cdot \Gamma_{1} \cdot T c t x}
$$

In this case, our induction hypothesis tells us that both $\Gamma_{0} \cdot \Gamma_{1}$ ctx and $\Gamma_{0} \cdot \Gamma_{1} \vdash T$ type hold. Therefore, we may apply the same rule to conclude that $\Gamma_{0} \cdot \Gamma_{1} \cdot T$ ctx holds as required.

Case.

$$
\frac{\Gamma_{0} \cdot \Gamma_{1} c t x}{\Gamma_{0} \cdot \Gamma_{1} \cdot \mathrm{O} c t x}
$$

In this case, our induction hypothesis tells us that $\Gamma_{0} \cdot \Gamma_{1} c t x$ and we wish to show that $\Gamma_{0} \cdot \Gamma_{1}$. atx. However, this is immediate from our rules.
2. If $\Gamma_{0} . . \Gamma_{1} \vdash T$ type then $\Gamma_{0} \cdot \Gamma_{1} \vdash T$ type.

Case.

$$
\frac{\Gamma_{0} \cdot \text {. } \Gamma_{1} \vdash A \text { type } \quad \Gamma_{0} \cdot \text {.. } \Gamma_{1} \cdot A \vdash B \text { type }}{\Gamma_{0} \cdot \text {. } \cdot \Gamma_{1} \vdash \Pi(A, B) \text { type }}
$$

In this case, we have by induction hypothesis that $\Gamma_{0} \cdot \Gamma_{1} \vdash A$ type and $\Gamma_{0} \cdot \Gamma_{1} \cdot A \vdash B$ type. We wish to show that $\Gamma_{0} \cdot \Gamma_{1} \vdash \Pi(A, B)$ type. This, however, is again just rule.
3. If Γ_{0}. .. $\Gamma_{1} \vdash T_{0}=T_{1}$ type then $\Gamma_{0} \cdot \Gamma_{1} \vdash T_{0}=T_{1}$ type.

Case.

$$
\frac{\Gamma_{0} \cdot \boldsymbol{\Omega} \cdot \Gamma_{1} \cdot \boldsymbol{\Omega}+T_{0}=T_{1} \text { type }}{\Gamma_{0} \cdot \boldsymbol{\Omega} \cdot \Gamma_{1} \vdash \square T_{0}=\square T_{1} \text { type }}
$$

We have, then, by induction hypothesis $\Gamma_{0} \cdot \Gamma_{1}$. . $\vdash T_{0}=T_{1}$ type. We wish to show that $\Gamma_{0} . \Gamma_{1} \vdash \square T_{0}=\square T_{1}$ type. This, again, immediately follows from our rule applied to our induction hypothesis.

4．If Γ_{0}. ．$\Gamma_{1} \vdash t: T$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash t: T$ ．
Case．

By induction hypothesis，we have $\Gamma_{0} \cdot \Gamma_{1} \stackrel{\perp}{ } \stackrel{t}{ }: \square T$ and $\Gamma_{0} \cdot \Gamma_{1} \vdash T$ type．We wish to show that $\Gamma_{0} . \Gamma_{1} \vdash[t]_{\Omega}: T$ ，but this is immediate from our rules．

5．If Γ_{0}. ．$\Gamma_{1} \vdash t_{0}=t_{1}: T$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash t_{0}=t_{1}: T$ ．
Case．

$$
\frac{\Gamma_{0} \cdot \text {.. } \Gamma_{1} \vdash t: \square A}{\Gamma_{0} \cdot \text { A. } \Gamma_{1} \vdash\left[[t]_{\mathrm{n}}\right]_{\mathbf{a}}=t: \square A}
$$

In this case，we have by induction hypothesis that $\Gamma_{0} \cdot \Gamma_{1} \vdash t: \square A$ ．We wish to show that $\Gamma_{0} \cdot \Gamma_{1} \vdash\left[[t]_{\kappa}\right]_{\Omega}=t: \square A$ ．We will do this by applying the same rule．However，our induction hypotheses are precisely the premises we need，so this is immediate．

6．If $\Gamma_{0} . \Gamma_{1} \vdash \delta: \Delta$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash \delta: \Delta$ ．

Case．

$$
\frac{\Gamma_{0} \cdot \Omega . \Gamma_{1} c t x \quad \Gamma_{2} c t x \quad \Gamma_{0} \cdot \text {. } \cdot \Gamma_{1} \triangleright_{\mathbf{Q}} \Gamma_{2}}{\Gamma_{0} \cdot \mathbf{\Omega} \cdot \Gamma_{1} \vdash \mathrm{id}: \Gamma_{2}}
$$

In this case we have by induction hypothesis that $\Gamma_{0} \cdot \Gamma_{1} c t x$ holds．Since $\Gamma_{0} . \Omega . \Gamma_{1} \triangleright_{Q} \Gamma_{2}$ holds we must then have $\Gamma_{0} \cdot \Gamma_{1} \triangleright_{\varrho} \Gamma_{2}$ and so we can apply same rule to conclude $\Gamma_{0} \cdot \Gamma_{1} \vdash \mathrm{id}: \Gamma_{2}$ as required．
Case．

$$
\frac{\Gamma_{0} \cdot \text {. } \cdot \Gamma_{0}^{\prime} \cdot \Gamma_{1} c t x \quad \Delta c t x \quad \Gamma_{0} \cdot \text { 日. } \Gamma_{0}^{\prime} \triangleright_{\mathbf{@}} \Delta \quad \text { 日 } \notin \Gamma_{1} \quad k=\left\|\Gamma_{1}\right\|}{\Gamma_{0} \cdot \text { 回 } \Gamma_{1}+\mathrm{p}^{k}: \Gamma_{0} . \text { 日. } \Gamma_{1}}
$$

In this case we have by induction hypothesis that $\Gamma_{0} \cdot \Gamma_{0}^{\prime} \cdot \Gamma_{1} \mathrm{ctx}$ holds．Since $\Gamma_{0} \cdot \mathrm{O}_{0} . \Gamma_{0}^{\prime} \triangleright_{\mathrm{g}} \Delta$ holds we must then have $\Gamma_{0} \cdot \Gamma_{0}^{\prime} \triangleright_{Q} \Delta$ and so we can apply same rule to conclude $\Gamma_{0} \cdot \Gamma_{0}^{\prime} \cdot \Gamma_{1} \vdash \mathrm{p}^{k}: \Delta$ as required．

Case．

$$
\frac{\Gamma_{0} \cdot \boldsymbol{\Delta} \cdot \Gamma_{1} c t x \quad \Gamma_{0} \cdot \boldsymbol{\Omega} \cdot \Gamma_{1}{ }^{\boldsymbol{n}}+\delta: \Delta}{\Gamma_{0} \cdot \boldsymbol{\Omega} \cdot \Gamma_{1}+\delta: \Delta . \boldsymbol{\Omega}}
$$

In this case we have by induction hypothesis that $\Gamma_{0} \cdot \Gamma_{1}$ ctx holds．Since $\Gamma_{0} \cdot \Omega \cdot \Gamma_{1} \curvearrowleft=\Gamma_{0} \cdot \Gamma_{1} \curvearrowleft$ we then have $\Gamma_{0} \cdot \Gamma_{1} \curvearrowleft \vdash: \Delta$ ．We then obtain the desired conclusion by applying the same rule．

7．If Γ_{0}. ．$\Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$ then $\Gamma_{0} \cdot \Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$ ．
All cases follow immediately from our induction hypotheses．
Lemma 1．2．5．If $\Gamma \vdash \mathcal{J}$ then $\Gamma^{\curvearrowleft} \vdash \mathcal{J}$ ．
Proof．This follows by induction on the number of locks in Γ and by applying Theorem 1．2．4 at each step．

Lemma 1．2．6．

1. If Γ_{0}. . Γ_{1} ctx then Γ_{0}....... $\Gamma_{1} c t x$.
2. If Γ_{0}. A. $\Gamma_{1} \vdash T$ type then Γ_{0}.日. . . $\Gamma_{1} \vdash T$ type.
3. If Γ_{0}.으. $\Gamma_{1} \vdash T_{0}=T_{1}$ type then Γ_{0}.ㅇ․․․․ $\Gamma_{1} \vdash T_{0}=T_{1}$ type.
4. If Γ_{0}. $\Gamma_{1} \vdash t: T$ then Γ_{0}. . . . $\Gamma_{1} \vdash t: T$.
5. If Γ_{0}. . $\Gamma_{1} \vdash t_{0}=t_{1}: T$ then Γ_{0}....... $\Gamma_{1} \vdash t_{0}=t_{1}: T$.
6. If Γ_{0}.a. $\Gamma_{1} \vdash \delta: \Delta$ then Γ_{0}. . . $\Gamma_{1} \vdash \delta: \Delta$.
7. If Γ_{0}.(… $\Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$ then Γ_{0}....... $\Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$.

Proof. We proceed by mutual induction on the size of the input derivation. Every case of this follows immediately by the induction hypothesis.

Theorem 1.2.7. Supposing that $\Gamma_{0} . \boldsymbol{\square}+$ A type holds, the following facts are true.

1. If Γ_{0}.A. . Γ_{1} ctx then Γ_{0}. . $A \cdot \Gamma_{1} c t x$.
2. If Γ_{0}.A.A. $\Gamma_{1} \vdash T$ type then Γ_{0}. . $A . \Gamma_{1} \vdash T$ type.
3. If Γ_{0}.A. . $\Gamma_{1} \vdash T_{0}=T_{1}$ type then Γ_{0}. . . $A \cdot \Gamma_{1} \vdash T_{0}=T_{1}$ type.
4. If $\Gamma_{0} . A$. . $\Gamma_{1} \vdash t: T$ then Γ_{0}. . $A . \Gamma_{1} \vdash t: T$.
5. If Γ_{0}.A.A. $\Gamma_{1} \vdash t_{0}=t_{1}: T$ then Γ_{0}. . $A \cdot \Gamma_{1} \vdash t_{0}=t_{1}: T$.
6. If Γ_{0}.A.@. $\Gamma_{1} \vdash \delta: \Delta$ then Γ_{0}. A. $\Gamma_{1} \vdash \delta: \Delta$.
7. If Γ_{0}.A.@. $\Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$ then Γ_{0}.日. $A \cdot \Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$.

Proof. This proof mirrors the one of Theorem 1.2.4. It is done by simultaneous induction on all the judgments.

1. If Γ_{0}.A. . $\Gamma_{1} c t x$ then Γ_{0}. . $A \cdot \Gamma_{1} c t x$.

For this branch, there is only one case that does not follow by induction: namely when $\Gamma_{1}=\cdot$ and so we are considering Γ_{0}.A.O $c t x$. In this case, we have $\Gamma_{0} c t x$ and $\Gamma_{0} \vdash A$ type. We wish to show that Γ_{0}. . A ctx. First, we have Γ_{0}. ctx immediately. In order to show that Γ_{0}. . . A ctx holds, however, we must show that $\Gamma_{0} \cdot A$ type holds. This does not a-priori hold from what we have so far, however, we assumed it in the statement of this theorem and so we may conclude Γ_{0}. . A ctx.
2. If Γ_{0}.A. . $\Gamma_{1} \vdash T$ type then Γ_{0}. . $A \cdot \Gamma_{1} \vdash T$ type.

Every single case of this part of the theorem is merely induction. To save time, therefore, I have presented only one case.

Case.

$$
\frac{\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} \cdot \Omega+T \text { type }}{\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} \vdash \square T \text { type }}
$$

In this case, we have by induction hypothesis that $\Gamma_{0} . \boldsymbol{\Omega} \cdot A \cdot \Gamma_{1} . \boldsymbol{\Omega} \vdash T$ type. We wish to show Γ_{0}. A. A. $\Gamma_{1} \vdash \square T$ type. This follows immediately by application of rule.
3. If Γ_{0}.A.A. $\Gamma_{1} \vdash T_{0}=T_{1}$ type then Γ_{0}. . . A. $\Gamma_{1} \vdash T_{0}=T_{1}$ type.

This part of the theorem is identical to the case for $\Gamma_{0} \cdot A . Q . \Gamma_{1} \vdash T$ type.
4. If $\Gamma_{0} . A$. . $\Gamma_{1} \vdash t: T$ then Γ_{0}. . $A \cdot \Gamma_{1} \vdash t: T$.

Case.

$$
\frac{\Gamma_{0} \cdot A \cdot \boldsymbol{\Omega} \cdot \Gamma_{1} \cdot \boldsymbol{\Omega}+t: T}{\Gamma_{0} \cdot A \cdot \boldsymbol{\Omega} \cdot \Gamma_{1} \vdash[t]_{\mathbf{\Omega}}: \square T}
$$

In this case, we have by induction hypothesis that Γ_{0}. . $A \cdot \Gamma_{1}$. . $+t: T$. We wish to show that $\Gamma_{0} \cdot A \cdot \Gamma_{1} \vdash[t]_{\boldsymbol{\Omega}}: \square T$ holds. This follows immediately from the rule for $[-]_{\mathbf{\Omega}}$.

Case.

$$
\frac{\text { Г.A.Q. } \Gamma_{1} \vdash T \text { type } \quad\left(\Gamma_{0} \cdot A \cdot \mathbf{Q} \cdot \Gamma_{1}\right)^{\mathfrak{f}} \vdash t: \square T}{\Gamma_{0} \cdot A \cdot \mathbf{Q} \cdot \Gamma_{1} \vdash[t]_{\Omega}: T}
$$

In this case, we have by induction hypothesis that $\left(\Gamma_{0} \cdot \text {. A. } \Gamma_{1}\right)^{\curvearrowleft} \vdash t: \square T$ and $\Gamma_{0} \cdot \boldsymbol{@} \cdot A \cdot \Gamma_{1} \vdash$ T type. We wish to show that Γ_{0}. . $A \cdot \Gamma_{1} \vdash[t]_{\mathrm{n}}: T$ holds. This follows immediately from the rule for $[-]_{\text {م }}$.
5. If $\Gamma_{0} . A$. . $\Gamma_{1} \vdash t_{0}=t_{1}: T$ then Γ_{0}. $A . \Gamma_{1} \vdash t_{0}=t_{1}: T$.

Case.

$$
\frac{\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} \vdash t: \square A}{\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} \vdash\left[[t]_{\mathbf{n}}\right]_{\mathbf{\Omega}}=t: \square A}
$$

In this case we have by induction hypothesis that Γ_{0}. . $. A . \Gamma_{1} \vdash t: \square A$. Therefore, by application of our rules we have Γ_{0}. . $A \cdot A \cdot \Gamma_{1} \vdash\left[[t]_{\boldsymbol{\circ}}\right]_{\boldsymbol{@}}=t: \square A$
Case.

$$
\frac{\left(\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1}\right)^{\infty} \cdot \boldsymbol{\Omega} \vdash t: A}{\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} \vdash\left[[t]_{\mathbf{\Omega}}\right]_{\Omega}=t: A}
$$

We need to show $\Gamma_{0} \cdot A \cdot \Gamma_{1}+\left[[t]_{\boldsymbol{@}}\right]_{\boldsymbol{\rho}}=t: A$; applying the same rule, it suffices to show that
 use our existing premise.
6. If $\Gamma_{0} \cdot A \cdot \Omega . \Gamma_{1} \vdash \delta: \Delta$ then $\Gamma_{0} \cdot A \cdot A \cdot \Gamma_{1} \vdash \delta: \Delta$.

Case.

$$
\frac{\Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} c t x \quad \Delta c t x \quad \Gamma_{0} \cdot A \cdot \Omega \cdot \Gamma_{1} \triangleright \mathbf{Q} \Delta}{\Gamma_{0} \vdash \mathrm{id}: \Delta}
$$

In this case we have Γ_{0}. . A. $\Gamma_{1} c t x$ and $\Delta c t x$. It therefore suffices to show that Γ_{0}. .@. $A . \Gamma_{1} \triangleright_{\Omega} \Delta$. However, this follows from the fact that $\Gamma_{0} \cdot A . Q_{\text {. }} \Gamma_{1} \triangleright_{\Omega} \Delta$ holds. Therefore, we are done by applying the rule for id.
7. If $\Gamma_{0} . A$. . $\Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$ then $\Gamma_{0} \cdot$. $A \cdot \Gamma_{1} \vdash \delta_{0}=\delta_{1}: \Delta$.

All cases here follow from the induction hypotheses.
Lemma 1.2.8. If Γ ctx and Γ^{\curvearrowleft}.
Proof. This follows by induction on Γ and by applying Theorems 1.2.4 and 1.2.7 and Lemma 1.2.6 at each step.

In order to prove the remaining facts, we first need the following "lifting theorem" regarding substitutions.

Lemma 1.2.9. If $\Gamma \vdash \delta: \Delta$ then $\Gamma^{\boldsymbol{\curvearrowleft}} \vdash \delta: \Delta^{\curvearrowleft}$
Proof. We proceed by induction on the derivation of $\Gamma \vdash \delta: \Delta$.
Case.

$$
\frac{\Gamma_{0} c t x}{} \quad \Gamma_{1} c t x \quad \Gamma_{0} \triangleright_{\Omega} \Gamma_{1} .
$$

It is simple to see by induction that if $\Gamma_{0} \triangleright_{0} \Gamma_{1}$ holds then $\Gamma_{0}{ }^{\curvearrowleft}=\Gamma_{1}{ }^{\complement}$. Since, by Lemma 1.2.5, we have $\Gamma_{0}{ }^{\curvearrowleft} c t x$ we then have $\Gamma_{0}{ }^{\curvearrowleft} \vdash \mathrm{id}: \Gamma_{1}{ }^{\curvearrowleft}$ immediately by applying this rule.

Case.

$$
\frac{\Gamma c t x \quad \Delta c t x \quad \cdot \triangleright_{\Omega} \Delta}{\Gamma \vdash \cdot: \Delta}
$$

In this case, we have no induction hypothesis and our goal is to show that $\Gamma^{\curvearrowleft} \vdash \cdot: \Delta^{\curvearrowleft}$. Simple induction tells us that $\Delta^{\curvearrowleft}=\cdot$. Therefore, we merely need to show $\Gamma^{\curvearrowleft} \vdash \cdot: \cdot$ and this follows from immediately from our rule together with Lemma 1.2.5.

Case.

$$
\frac{\Delta \vdash \text { T type } \quad \Gamma \vdash \delta: \Delta \quad \Gamma \vdash t: T[\delta]}{\Gamma \vdash \delta . t: \Delta . T}
$$

In this case, our induction hypothesis states that $\Gamma^{\circledR} \vdash \delta: \Delta^{\circledR}$ and we wish to show that $\Gamma^{\circledR} \vdash$ $\delta . t: \Delta . T^{\curvearrowleft}$. First, we note that $\Delta . T^{\curvearrowleft}=\Delta^{\curvearrowleft} . T$. Thus, we apply the rule for adjoining a term to a substitution. We must show that the following hold:

- $\Gamma^{\mathfrak{n}} \stackrel{t}{ }: T[\delta]$
- $\Gamma^{\curvearrowleft} \vdash t: \Delta^{\curvearrowleft}$
- $(\Delta . T)^{\curvearrowleft} c t x$ (which is equivalent to $\Delta^{\curvearrowleft} . T c t x$)

However, we have the first by assumption and Lemma 1.2.5, the next is our induction hypothesis and the last follows again from Lemma 1.2.5 and our assumption that $\Delta . T c t x$.

Case.

$$
\frac{\Gamma_{0} \vdash \delta_{0}: \Gamma_{1} \quad \Gamma_{1} \vdash \delta_{1}: \Gamma_{2}}{\Gamma_{0} \vdash \delta_{1} \circ \delta_{0}: \Gamma_{2}}
$$

By induction hypothesis we have $\Gamma_{0}{ }^{\curvearrowleft} \vdash \delta_{0}: \Gamma_{1}{ }^{\curvearrowleft}$ and $\Gamma_{1}{ }^{\curvearrowleft} \vdash \delta_{1}: \Gamma_{2}{ }^{£}$. However, we then just apply the composition rule again to obtain $\Gamma_{0}{ }^{\aleph} \vdash \delta_{1} \circ \delta_{0}: \Gamma_{2}{ }^{\aleph}$ as required.

Case.

$$
\frac{\Gamma_{0} c t x \quad \Gamma_{0}^{£} \vdash \delta: \Gamma_{1}}{\Gamma_{0} \vdash \delta: \Gamma_{1} \cdot \mathbf{0}}
$$

 gives us the desired conclusion when Lemma 1.2.5 is applied to $\Gamma_{0} c t x$.

Case.

$$
\begin{array}{cccc}
\Gamma_{0} \cdot \Gamma_{1} c t x \quad \Delta c t x & k=\left\|\Gamma_{1}\right\| & \Gamma_{0} \triangleright_{\mathbf{2}} \Delta & \mathbf{Q} \notin \Gamma_{1} \\
\hline \Gamma_{0} \cdot \Gamma_{1} \vdash \mathrm{p}^{k}: \Delta
\end{array}
$$

In this case, we have no induction hypothesis but we will show that $\Gamma_{0} \cdot \Gamma_{1}{ }^{\curvearrowleft} \vdash \mathrm{p}^{k}: \Delta^{\curvearrowleft}$ by application of the same rule. We have that $\boldsymbol{Q} \notin \Gamma_{1}{ }^{〔}$ and $\left\|\Gamma_{1}\right\|=k$ immediately. All we need to show is that
 The second follows from the fact that we must have $\Gamma_{0}{ }^{\curvearrowleft}=\Delta^{\curvearrowleft}$ as $\Gamma_{0} \triangleright_{@} \Delta$ holds.

Lemma 1.2.10. If $\Gamma \vdash \delta_{0}=\delta_{1}: \Delta$ then $\Gamma^{\curvearrowleft} \vdash \delta_{0}=\delta_{1}: \Delta^{\curvearrowleft}$
Proof. Proceeds by induction on the derivation and follows directly from Lemmas 1.2.5 and 1.2.9.
Lemma 1.2.11. If $\Gamma \vdash \delta: \Delta$. then $\Gamma^{\Gamma} \vdash \delta: \Delta$.
Proof. We proceed by induction on $\Gamma \vdash \delta: \Delta$. 으. Only a few cases apply:
Case.

In this case we wish to show $\Delta^{\curvearrowleft} \vdash$ id $: \Gamma$ but this is immediate by Lemma 1.2.5.
Case.

$$
\frac{\Delta c t x \quad \Gamma . \mathbf{\Omega} c t x \quad \cdot \triangleright_{\mathbf{a}} \Gamma . \boldsymbol{\Omega}}{\Delta \vdash \cdot: \Gamma . \mathbf{0}}
$$

In this case we wish to show $\Delta^{\curvearrowleft} \vdash \cdot: \Gamma$. However, it must be that $\triangleright_{\varrho} \Gamma$ by simple induction. Therefore, we have our goal by applying the same rule and using Lemma 1.2.5.

Case.

$$
\frac{\Gamma_{0} \vdash \delta_{0}: \Gamma_{1} \quad \Gamma_{1} \vdash \delta_{1}: \Gamma_{2} . \boldsymbol{a}}{\Gamma_{0} \vdash \delta_{1} \circ \delta_{0}: \Gamma_{2} . \text { a }}
$$

In this case we wish to show $\Gamma_{0}{ }^{\curvearrowleft} \vdash \delta_{1} \circ \delta_{0}: \Gamma_{2}$. We have $\Gamma_{1} \curvearrowleft \vdash \delta_{1}: \Gamma_{2}$ by induction hypothesis. By Lemma 1.2.8 and $\Gamma_{0} \vdash \delta_{0}: \Gamma_{1}$ we have $\Gamma_{0}{ }^{\curvearrowleft} \vdash \delta_{0}: \Gamma_{1}{ }^{\curvearrowleft}$. Therefore, by the rule for composition we have $\Gamma_{0} \curvearrowleft \vdash \delta_{1} \circ \delta_{0}: \Gamma_{2}$ as required.

Case.

$$
\frac{\Gamma_{0} c t x \quad \Gamma_{0}{ }^{\mathfrak{n}} \vdash \delta: \Gamma_{1}}{\Gamma_{0} \vdash \delta: \Gamma_{1} . \boldsymbol{O}}
$$

In this case we wish to show $\Gamma_{0}{ }^{\curvearrowleft} \vdash \delta: \Gamma_{1}$ but this is immediate by assumption.
Case.

$$
\frac{\Gamma_{0} \cdot \Gamma_{1} c t x \quad k=\left\|\Gamma_{1}\right\| \quad \Gamma_{0} \triangleright_{\mathbf{Q}} \Gamma_{0}^{\prime} \quad \text { 日 } \notin \Gamma_{1}}{\Gamma_{0} \cdot \Gamma_{1} \vdash \mathrm{p}^{k}: \Gamma_{0}^{\prime} . \text {. }}
$$

In this case we wish to show to show $\Gamma_{0} \cdot \Gamma_{1}{ }^{£} \vdash \mathrm{p}^{k}: \Gamma_{0}^{\prime}$. . . However, we have that $\Gamma_{0} \cdot \Gamma_{1}{ }^{£}$ ctx by Lemma 1.2.5 and $\Gamma_{0}{ }^{\curvearrowleft} \triangleright_{\Omega} \Gamma_{0}^{\prime}$ by definition. Finally, $\left\|\Gamma_{1}{ }^{\circ}\right\|=\left\|\Gamma_{1}\right\|$ so the goal is immediate.

Lemma 1.2.12. Suppose $\Delta \vdash \delta: \Gamma_{0}$.a.T. Γ_{1} and $\Gamma_{0} \cdot T$. . $\Gamma_{1} c t x$, then $\Delta \vdash \delta: \Gamma_{0} \cdot T$. .a. Γ_{1}
Proof. We proceed by induction over the input derivation.
Subcase.

In this case we have a contradiction: $\cdot \triangleright_{0} \Delta_{0} \cdot$. $^{\text {at }} \Delta_{1}$ cannot hold.
Subcase.

$$
\frac{\Gamma_{0} c t x \quad \Delta_{0} . \text {.a. } T . \Delta_{1} c t x \quad \Gamma_{0} \triangleright_{0} \Delta_{0} \text {.回. } T . \Delta_{1}}{\Gamma_{0} \vdash \mathrm{id}: \Delta_{0} . \text {.a.T. } \Delta_{1}}
$$

We wish to show $\Gamma_{0} \vdash \mathrm{id}: \Delta_{0} \cdot T$. . Δ_{1}. We have $\Delta_{0} \cdot T$. . $\Delta_{1} c t x$ by assumption. Furthermore we have Δ_{0}. A.T. $\Delta_{1} \triangleright_{\mathrm{a}} \Delta_{0} \cdot T$. .. Δ_{1}. Therefore our goal follows immediately from the same rule and the fact that $-\triangleright_{Q}-$ is transitive.

Subcase．

$$
\frac{\Delta \vdash T \text { type }}{c} \begin{array}{cc}
\Gamma \vdash \delta: \Delta & \Gamma \vdash t: T[\delta] \\
\hline & \Gamma \vdash \delta . t: \Delta . T
\end{array}
$$

Now there are two cases to consider here，either $\Delta=\Delta^{\prime}$ ．and we wish to prove $\Gamma \vdash \delta . t: \Delta^{\prime} . T$ ． or $\Delta=\Delta_{0}$. ．$T^{\prime} . \Delta_{1}$ and we wish to prove $\Gamma \vdash \delta . t: \Delta_{0} \cdot T^{\prime}$. ． $\boldsymbol{D}_{1} \cdot T$ ．
Recall that we also have $\Delta^{\prime} . T .0 \operatorname{ctx}$ in the first case and $\Delta_{0} \cdot T^{\prime} \cdot \Delta_{1} \cdot T$ ctx in the second case．
In the first case，we observe that it suffices to show $\Gamma^{\boldsymbol{}^{\curvearrowleft}} \vdash \delta . t: \Delta^{\prime} . T$ ．For this，we observe that we have by assumption that $\Delta^{\prime} . \boldsymbol{Q}_{\vdash}+T$ type and so $\Delta^{\prime} \vdash T$ type must hold by Theorem 1．2．4．We have that $\Gamma^{\boldsymbol{\sim}} \vdash t: T[\delta]$ from our assumption and Lemma 1．2．5．Finally，we must show $\Gamma^{\boldsymbol{\Gamma}} \vdash \delta: \Delta^{\prime}$ but this follows from Lemma 1．2．11．

For the second case，we have by induction hypothesis $\Gamma \vdash \delta: \Delta_{0} \cdot T^{\prime}$. ．$_{\text {．}}^{1}$ ．We also have that $\Delta_{0} \cdot T^{\prime}$ ．月．$\Delta_{1} \vdash T$ type from $\Delta_{0} \cdot T^{\prime}$ ．日．$\Delta_{1} \cdot T \mathrm{ctx}$ ．Therefore，we may apply the same rule to obtain the desired goal．

Subcase．

$$
\frac{\Gamma_{0} \vdash \delta_{0}: \Gamma_{1} \quad \Gamma_{1} \vdash \delta_{1}: \Gamma_{2}}{\Gamma_{0} \vdash \delta_{1} \circ \delta_{0}: \Gamma_{2}}
$$

This is immediate by induction hypothesis．
Subcase．

$$
\frac{\Gamma_{0} c t x \quad \Gamma_{0}{ }^{\curvearrowleft} \vdash \delta: \Gamma_{1}}{\Gamma_{0} \vdash \delta: \Gamma_{1} \cdot \boldsymbol{Q}}
$$

This is immediate by induction hypothesis．

Subcase．

We wish to show $\Gamma_{0} \cdot \Gamma_{1} \vdash \mathrm{p}^{k}: \Delta_{0} \cdot T$ ．⿱日一 Δ_{1} ．We have by assumption that $\Gamma_{0} \cdot \Gamma_{1}$ ctx and $\Delta_{0} \cdot T$. ．a．$\Delta_{1} c t x$ hold．Furthermore，we know that Δ_{0} ．回．T．$\Delta_{1} \triangleright_{\varrho} \Delta_{0}$ ．T．O．Δ_{1} holds by definition．The goal then follows immediately from the same rule and the fact that－\triangleright_{Ω}－is transitive．

Lemma 1．2．13．Suppose $\Delta \vdash \delta: \Gamma_{0}$ ．．．．Γ_{1} and Γ_{0} ．Γ_{1} ctx then $\Delta \vdash \delta: \Gamma_{0}$ ．A．Γ_{1}
Proof．This is immediate by induction on the input derivation from the fact that the $-\infty$ is idempotent．
Lemma 1．2．14．Suppose $\Delta \vdash \delta: \Gamma_{0} \cdot \Gamma_{1}$ and Γ_{0} ．．Γ_{1} ctx，then $\Delta \vdash \delta: \Gamma_{0}$. ．．$\Gamma_{1}$
Proof．This is immediate by induction on the input derivation and from Lemma 1．2．5．
Lemma 1．2．15．If $\Gamma_{1} \vdash \mathrm{id}: \Gamma_{2}$ then the following facts hold．
1．If Γ_{0} ctx and $\Gamma_{0} \vdash \delta: \Gamma_{1}$ then $\Gamma_{0} \vdash \delta: \Gamma_{2}$ ．
2．For any Γ if $\Gamma_{i} . \Gamma$ ctx and $\Gamma_{2} . \Gamma \vdash \mathcal{J}$ then $\Gamma_{1} . \Gamma \vdash \mathcal{J}$ ．
Proof．This proof proceeds by induction on the derivation of $\Gamma_{1} \vdash$ id $: \Gamma_{2}$ ．
Case．

$$
\frac{\Gamma_{1} c t x}{c c} \Gamma_{2} c t x \quad \Gamma_{1} \triangleright_{\Omega} \Gamma_{2} .
$$

1. This is just an application of Lemmas 1.2.12 to 1.2.14.
2. This is just an application of Theorems 1.2.4 and 1.2.7 and Lemma 1.2.6.

Case.

$$
\frac{\Gamma_{1} c t x \quad \Gamma_{1}^{\curvearrowleft}+\mathrm{id}: \Gamma_{2}^{\prime}}{\Gamma_{1}+\mathrm{id}: \Gamma_{2}^{\prime} \cdot \varrho}
$$

In this case we have by induction hypothesis that the following facts hold:

- If $\Gamma_{0} c t x$ and $\Gamma_{0} \vdash \delta: \Gamma_{1}{ }^{\curvearrowleft}$ then $\Gamma_{0} \vdash \delta: \Gamma_{2}^{\prime}$.
- For any Γ if $\Gamma_{2}^{\prime} \cdot \Gamma \vdash \mathcal{J}, \Gamma_{1} \cdot \Gamma c t x$, and $\Gamma_{2}^{\prime} \cdot \Gamma c t x$, then $\Gamma_{1}{ }^{\curvearrowleft} \cdot \Gamma \vdash \mathcal{J}$.

We wish to show the following:

- If $\Gamma_{0} c t x$ and $\Gamma_{0} \vdash \delta: \Gamma_{1}$ then $\Gamma_{0} \vdash \delta: \Gamma_{2}^{\prime}$. .
- For any Γ if Γ_{2}^{\prime}. . $\Gamma \vdash \mathcal{J} \Gamma_{1} \cdot \Gamma c t x$, and Γ_{2}^{\prime}.昷. $\Gamma c t x$, then $\Gamma_{1} \cdot \Gamma \vdash \mathcal{J}$.

For the first item, we observe that if $\Gamma_{0} \vdash \delta: \Gamma_{1}$ then $\Gamma_{0}{ }^{\curvearrowleft} \vdash \delta: \Gamma_{1}^{\prime \prime}$ from Lemma 1.2.9. Next, we then have by our induction hypothesis that $\Gamma_{0}{ }^{\boldsymbol{\curvearrowleft}} \vdash \delta: \Gamma_{2}^{\prime}$ since $\Gamma_{0}{ }^{\boldsymbol{\rho}}$ ctx by Lemma 1.2.5. Next, from straightforward application of our rules we have $\Gamma_{0} \vdash \delta: \Gamma_{2}^{\prime}$. as required.

For the second item, suppose that Γ_{2}^{\prime}.日. $\Gamma \vdash \mathcal{J}$ for some Γ. We wish to show that $\Gamma_{1} \cdot \Gamma \vdash \mathcal{J}$. In
 Lemma 1.2.8 and Theorem 1.2.4 we then have $\Gamma_{1} \cdot \Gamma \vdash \mathcal{J}$.

Theorem 1.2.16.

1. If $\Gamma \vdash T$ type then Γ ctx.
2. If $\Gamma \vdash t: T$ then $\Gamma \vdash T$ type.
3. If $\Gamma_{1} \vdash \delta: \Gamma_{2}$ then $\Gamma_{i} c t x$.
4. If $\Gamma \vdash T_{1}=T_{2}$ type then $\Gamma \vdash T_{i}$ type.
5. If $\Gamma \vdash t_{1}=t_{2}: T$ then $\Gamma \vdash t_{i}: T$.
6. If $\Gamma \vdash \delta_{1}=\delta_{2}: \Delta$ then $\Gamma \vdash \delta_{i}: \Delta$.

Proof. This theorem is largely standard except for the cases concerning substitutions and \square. We therefore only show these cases.

1. If $\Gamma \vdash T$ type then $\Gamma c t x$.

Case.

$$
\frac{\Gamma . \Omega \vdash A \text { type }}{\Gamma \vdash \square A \text { type }}
$$

In this case we have by induction hypothesis that Γ. O ctx. We wish to show that Γ ctx however this follows by induction on the derivation of Γ. atx .
2. If $\Gamma \vdash t: T$ then $\Gamma \vdash T$ type.

Case.

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma^{\curvearrowleft} \vdash t: \square A}{\Gamma \vdash[t]_{\curvearrowleft}: A}
$$

In this case we have by assumption that $\Gamma \vdash A$ type. Notice that this assumption is necessary here because we only have by induction hypothesis that $\Gamma^{\Gamma^{\circledR}} \vdash \square A$ type. Since this could have come from the universe rule, it is difficult to obtain Γ^{\curvearrowleft}. $\stackrel{\text { a type which would give us the }}{ }$ conclusion.
Case.

$$
\frac{\Gamma . \Omega \vdash t: A}{\Gamma \vdash[t]_{\boldsymbol{\varrho}}: \square A}
$$

In this case we have by induction hypothesis that Γ. - A type. Therefore, by rule we have the goal: $\Gamma \vdash \square A$ type.
3. If $\Gamma_{1} \vdash \delta: \Gamma_{2}$ then $\Gamma_{i} c t x$.

Case.

$$
\frac{\Gamma c t x \quad \Delta c t x \quad \cdot \unrhd_{\mathrm{g}} \Delta}{\Gamma \vdash \cdot \Delta}
$$

In this case we have $\Gamma c t x$ and $\Delta c t x$ and we wish to show that $\Gamma c t x$ and $\Delta c t x$. Immediate. Case.

$$
\begin{array}{ll}
\Delta c t x T \quad & \Gamma \vdash \delta: \Delta \quad \Gamma \vdash t: T[\delta] \\
\hline & \Gamma \vdash \delta . t: \Delta . T
\end{array}
$$

In this case we have $\Gamma c t x$ by induction hypothesis and $\Delta . T c t x$ by assumption. We wish to show that $\Gamma c t x$ and $\Delta . T c t x$. Immediate.

Case.

$$
\frac{\Gamma_{1} \vdash \delta_{1}: \Gamma_{2} \quad \Gamma_{2} \vdash \delta_{2}: \Gamma_{3}}{\Gamma_{1} \vdash \delta_{2} \circ \delta_{1}: \Gamma_{3}}
$$

In this case we have $\Gamma_{1} c t x$ by induction hypothesis and $\Gamma_{3} c t x$ by assumption. We wish to show that $\Gamma_{1} c t x$ and $\Gamma_{3} c t x$. Immediate.

Case.

$$
\frac{\Gamma_{1} c t x \quad \Gamma_{1}{ }^{£} \vdash \delta: \Gamma_{2}}{\Gamma_{1} \vdash \delta: \Gamma_{2} . \Omega}
$$

In this case we have $\Gamma_{2} c t x$ by induction hypothesis and $\Gamma_{1} c t x$ by assumption. This is precisely the goal however.

Case.

$$
\begin{array}{cccc}
\Gamma_{1} \cdot \Gamma_{2} c t x \quad \Delta c t x \quad & \Gamma_{1} \triangleright_{\mathbf{a}} \Delta \quad k=\left\|\Gamma_{2}\right\| \quad \mathbf{Q} \notin \Gamma_{2} \\
\hline \Gamma_{1} \cdot \Gamma_{2} \vdash \mathrm{p}^{k}: \Delta
\end{array}
$$

In this case we have $\Gamma_{1} . \Gamma_{2} c t x$ and $\Delta c t x$ by assumption.
4. If $\Gamma \vdash T_{1}=T_{2}$ type then $\Gamma \vdash T_{i}$ type.

Case.

$$
\frac{\Gamma \vdash \delta: \Delta \quad \Delta . \Delta \vdash A \text { type }}{\Gamma \vdash(\square A)[\delta]=\square(A[\delta]) \text { type }}
$$

In this case we must show that $\Gamma \vdash(\square A)[\delta]$ type and $\Gamma \vdash \square(A[\delta])$ type. The first one follows immediately by application of rules since $\Delta \vdash \square A$ type follows directly from our assumptions. For the second, first observe that Γ. $\vdash \delta: \Delta$. by application of rule and Lemma 1.2.5 Therefore, Γ. . $\vdash A[\delta]$ type and so $\Gamma \vdash \square(A[\delta])$ type
5. If $\Gamma \vdash t_{1}=t_{2}: T$ then $\Gamma \vdash t_{i}: T$.

Case.

$$
\frac{\Gamma^{\boldsymbol{\Gamma}} \boldsymbol{\Omega} \vdash t: A}{\Gamma \vdash\left[[t]_{\boldsymbol{\Omega}}\right]_{\boldsymbol{n}}=t: A}
$$

In this case, we wish to show that $\Gamma \vdash t: A$ and $\Gamma \vdash\left[[t]_{\mathrm{\rho}}\right]_{\rho}: A$. In order to do this, first observe that by Lemma 1.2 .8 we have Γ. . $\vdash t: A$. Therefore, by Theorem 1.2.4 there is a proof that $\Gamma \vdash t: A$. For the second goal, we apply the intro rule for $[-]_{م}$ so we must show $\Gamma^{\boldsymbol{\Gamma}} \vdash[t]_{\mathbf{\Omega}}: \square A$. However, this follows from $\Gamma^{\boldsymbol{\Gamma}} \boldsymbol{\square}+t: A$ which is precisely our assumption.
Case.

$$
\frac{\Gamma . \Omega \vdash A t y p e \quad \Gamma \vdash t: \square A}{\Gamma \vdash\left[[t]_{\mathbf{@}}\right]_{\mathbf{\Omega}}=t: \square A}
$$

In this case we wish to show that $\Gamma \vdash t: \square A$ and $\Gamma \vdash\left[[t]^{\circ}\right]_{\square}: \square A$. The first is immediate by assumption. For the second, we must show that $\Gamma \vdash\left[[t]_{\Omega}\right]_{\Omega}: \square A$. By application of the introduction rules, it suffices to show that $\Gamma^{\mathfrak{\infty}} \vdash t: A$. However, this follows from Lemma 1.2.5 applied to $\Gamma \vdash t: A$.
Case.

$$
\frac{\Gamma \vdash \delta: \Delta \quad \Delta . \boldsymbol{Q}+t: T}{\Gamma \vdash[t]_{\boldsymbol{@}}[\delta]=[t[\delta]]_{\boldsymbol{\Omega}}:(\square T)[\delta]}
$$

In this case, we wish to show that $\Gamma \vdash[t]_{\rho}[\delta]:(\square T)[\delta]$ and $\Gamma \vdash[t[\delta]]_{\varrho}:(\square T)[\delta]$.
For the first one, we see by the application of the $[-]_{\Omega}$ rule that $\Delta \vdash[t]_{\varrho}: \square T$. Next, we have by the explicit substitution rule that $\Gamma \vdash[t]_{0}[\delta]:(\square T)[\delta]$.
For the second goal, we note that we have by Lemma 1.2 .5 that $\Gamma^{\boldsymbol{\kappa}} \vdash \delta: \Delta$. Therefore, we have $\Gamma . \boldsymbol{O}_{\vdash} \vdash$: Δ. immediately. We can then apply the explicit substitution rule to conclude that $\Gamma . \boldsymbol{Q}^{\circ}+t: T[\delta]$. Next, we apply the rule for $[-]_{\boldsymbol{\rho}}$ to get $\Gamma \vdash[t]_{\boldsymbol{\Omega}}: \square(T[\delta])$. Finally, we observe that by the conversion rule we then have $\Gamma \vdash[t]_{\boldsymbol{\varrho}}:(\square T)[\delta]$.
Case.

$$
\frac{\Gamma \vdash \delta: \Delta \quad \Delta^{\curvearrowleft} \vdash t: \square T}{\Gamma \vdash[t]_{\Omega}[\delta]=[t[\delta]]_{\curvearrowleft}: T[\delta]}
$$

In this case, we wish to show that $\Gamma \vdash[t]_{\Omega}[\delta]: T[\delta]$ and $\Gamma \vdash[t[\delta]]_{\Omega}: T[\delta]$.
For the first one, we see by the application of the $[-]_{\Omega}$ rule that $\Delta \vdash[t]_{\curvearrowleft}: T$. Next, we have by the explicit substitution rule that $\Gamma \vdash[t]_{\infty}[\delta]: T[\delta]$.
For the second goal, we note that we have by Lemma 1.2 .9 that $\Gamma^{\curvearrowleft} \vdash \delta: \Delta^{\curvearrowleft}$. We can then apply the explicit substitution rule to conclude the following: $\Gamma^{\boldsymbol{\kappa}} \vdash t: T[\delta]$. Next, we apply the rule for $[-]_{\mathrm{n}}$ to get $\Gamma \vdash[t]_{\mathrm{m}}: T[\delta]$.
6. If $\Gamma \vdash \delta_{1}=\delta_{2}: \Delta$ then $\Gamma \vdash \delta_{i}: \Delta$.

Case.

$$
\frac{\Gamma_{1} \vdash \delta_{1}: \Gamma_{2} \quad \Gamma_{2} \vdash \delta_{2}: \Gamma_{3} \quad \Gamma_{3} \vdash \delta_{3}: \Gamma_{4}}{\Gamma_{1} \vdash \delta_{3} \circ\left(\delta_{2} \circ \delta_{1}\right)=\left(\delta_{3} \circ \delta_{2}\right) \circ \delta_{1}: \Gamma_{4}}
$$

In this case we must show that $\Gamma_{1} \vdash \delta_{3} \circ\left(\delta_{2} \circ \delta_{1}\right): \Gamma_{4}$ and $\Gamma_{1} \vdash\left(\delta_{3} \circ \delta_{2}\right) \circ \delta_{1}: \Gamma_{4}$. We have by assumption that $\Gamma_{i} \vdash \delta_{i}: \Gamma_{i+1}$, so both of these cases are immediate by the rule for composition.

Case.

$$
\frac{\Gamma_{1} \vdash \delta: \Gamma_{2} \quad \Gamma_{2} \vdash \mathrm{id}: \Gamma_{3}}{\Gamma_{1} \vdash \mathrm{id} \circ \delta=\delta: \Gamma_{3}}
$$

In this case, we wish to show $\Gamma_{1} \vdash \mathrm{id} \circ \delta: \Gamma_{3}$ and $\Gamma_{1} \vdash \delta: \Gamma_{3}$. We have by assumption that $\Gamma_{1} \vdash \delta: \Gamma_{2}$ and $\Gamma_{2} \vdash \mathrm{id}: \Gamma_{3}$. The first goal is immediate by the rule for composition. For the second goal, we use Lemma 1.2.15 to conclude that $\Gamma_{1} \vdash \delta: \Gamma_{3}$.
Case.

$$
\frac{\Gamma_{1} \vdash \mathrm{id}: \Gamma_{2} \quad \Gamma_{2} \vdash \delta: \Gamma_{3}}{\Gamma_{1} \vdash \delta \circ \mathrm{id}=\delta: \Gamma_{3}}
$$

In this case, we wish to show $\Gamma_{1} \vdash \delta \circ$ id $: \Gamma_{3}$ and $\Gamma_{1} \vdash \delta: \Gamma_{3}$. We have by assumption that $\Gamma_{2} \vdash \delta: \Gamma_{3}$ and $\Gamma_{1} \vdash \mathrm{id}: \Gamma_{2}$. The first goal is immediate by the rule for composition. For the second goal, we use Lemma 1.2.15 to conclude that $\Gamma_{1} \vdash \delta: \Gamma_{3}$.
Case.

$$
\frac{\Gamma_{1} \vdash \delta_{1}: \Gamma_{2} \quad \Gamma_{2} \vdash \delta_{2} . t: \Gamma_{3}}{\Gamma_{1} \vdash\left(\delta_{2} . t\right) \circ \delta_{1}=\left(\delta_{2} \circ \delta_{1}\right) \cdot\left(t\left[\delta_{1}\right]\right): \Gamma_{3}}
$$

We have by assumption that $\Gamma_{1} \vdash \delta_{1}: \Gamma_{2}$ and $\Gamma_{2} \vdash \delta_{2} . t: \Gamma_{3}$. We wish to show $\Gamma_{1} \vdash\left(\delta_{2} . t\right) \circ \delta_{1}: \Gamma_{3}$ and $\Gamma_{1} \vdash\left(\delta_{2} \circ \delta_{1}\right) .\left(t\left[\delta_{1}\right]\right): \Gamma_{3}$. The first goal is immediate from our assumptions and the rule for composition. We focus then on the second goal.
In order to show this, we proceed by induction on $\Gamma_{2} \vdash \delta_{2} . t: \Gamma_{3}$.
Case.

$$
\begin{array}{ll}
\Gamma_{3}^{\prime} . T c t x \quad & \Gamma_{2} \vdash \delta_{2}: \Gamma_{3}^{\prime} \quad \Gamma_{2} \vdash t: T\left[\delta_{2}\right] \\
\Gamma_{2} \vdash \delta_{2} . t: \Gamma_{3}^{\prime} \cdot T
\end{array}
$$

In this case, we wish to show the following:

$$
\Gamma_{1} \vdash\left(\delta_{2} \circ \delta_{1}\right) \cdot\left(t\left[\delta_{1}\right]\right): \Gamma_{3}^{\prime} \cdot T
$$

First, observe that by the rule for composition we have $\Gamma_{1} \vdash \delta_{2} \circ \delta_{1}: \Gamma_{3}^{\prime}$. Next, by the rule for explicit substitutions, we have $\Gamma_{2} \vdash t\left[\delta_{1}\right]: T\left[\delta_{2}\right]\left[\delta_{1}\right]$ and so by conversion, $\Gamma_{2} \vdash t\left[\delta_{1}\right]: T\left[\delta_{2} \circ \delta_{1}\right]$. Therefore, by the rule for extension: $\Gamma_{1} \vdash\left(\delta_{2} \circ \delta_{1}\right) \cdot\left(t\left[\delta_{1}\right]\right): \Gamma_{3}^{\prime} \cdot T$ as required.
Case.

$$
\frac{\Gamma_{2} c t x \quad \Gamma_{2}{ }^{\curvearrowleft} \vdash \delta_{2} . t: \Gamma_{3}^{\prime}}{\Gamma_{2} \vdash \delta_{2} . t: \Gamma_{3}^{\prime} .0}
$$

In this case, we have by induction hypothesis that the following holds:

$$
\Gamma_{2} \stackrel{\sim}{f} \vdash\left(\delta_{2} \circ \delta_{1}\right) \cdot t\left[\delta_{1}\right]: \Gamma_{3}^{\prime}
$$

Therefore, we have $\Gamma_{2} \vdash\left(\delta_{2} \circ \delta_{1}\right) \cdot t\left[\delta_{1}\right]: \Gamma_{3}^{\prime}$. from application of our rules.
Case.

$$
\frac{\Gamma_{1} \vdash \mathrm{p}^{n+1}: \Gamma_{2}}{\Gamma_{1} \vdash \mathrm{p}^{n+1}=\mathrm{p}^{n} \circ \mathrm{p}^{1}: \Gamma_{2}}
$$

In this case we have by assumption that $\Gamma_{1} \vdash \mathrm{p}^{n+1}: \Gamma_{2}$ and we wish to show $\Gamma_{1} \vdash \mathrm{p}^{n+1}: \Gamma_{2}$ and $\Gamma_{1} \vdash p^{n} \circ p^{1}: \Gamma_{2}$. The first of these conclusions is immediate. For the second goal, we proceed by induction on $\Gamma_{1} \vdash \mathrm{p}^{n+1}: \Gamma_{2}$.

Case.

$$
\begin{array}{llll}
\Gamma_{1}^{\prime} \cdot \Gamma_{1}^{\prime \prime} c t x \quad \Delta c t x & \Gamma_{1}^{\prime} \triangleright \Delta \Delta \quad n+1=\left\|\Gamma_{1}^{\prime \prime}\right\| \quad \text { 日 } \notin \Gamma_{1}^{\prime \prime} \\
\hline & \Gamma_{1}^{\prime} \cdot \Gamma_{1}^{\prime \prime} \vdash \mathrm{p}^{n+1}: \Delta
\end{array}
$$

Note that here $\Delta=\Gamma_{2}$.
In this case, note that $\Gamma_{1}^{\prime \prime}=\Xi . T$ for some Ξ of length n. We can therefore derive that $\Gamma_{1}^{\prime} \cdot \Gamma_{1}^{\prime \prime} \vdash \mathrm{p}^{1}: \Gamma_{1}^{\prime} \cdot \Xi$ and $\Gamma_{1}^{\prime} \cdot \Xi \vdash \mathrm{p}^{n}: \Delta$. By the rules for composition we have the desired goal.
Case.

$$
\frac{\Gamma_{1} c t x \quad \Gamma_{1}^{\text {® }} \vdash \mathrm{p}^{n+1}: \Gamma_{2}^{\prime}}{\Gamma_{1} \vdash \mathrm{p}^{n+1}: \Gamma_{2}^{\prime} . \mathrm{O}}
$$

In this case, we have by induction hypothesis that $\Gamma_{1}{ }^{£} \vdash \mathrm{p}^{n} \circ \mathrm{p}^{1}: \Gamma_{2}^{\prime}$. . . We then have $\Gamma_{1} \vdash \mathrm{p}^{n} \circ \mathrm{p}^{1}: \Gamma_{2}^{\prime}$. . by applying a rule.
Case.

$$
\frac{\Gamma_{1} \vdash \delta . t: \Gamma_{2} \quad \Gamma_{2} \vdash \mathrm{p}^{1}: \Gamma_{3}}{\Gamma_{1} \vdash \mathrm{p}^{1} \circ(\delta . t)=\delta: \Gamma_{3}}
$$

In this case, we have by $\Gamma_{1} \vdash \delta . t: \Gamma_{2}$ and $\Gamma_{2} \vdash \mathrm{p}^{1}: \Gamma_{3}$. We wish to show $\Gamma_{1} \vdash \mathrm{p}^{1} \circ(\delta . t): \Gamma_{3}$ and $\Gamma_{1} \vdash \delta: \Gamma_{3}$. The first goal is immediate from our assumptions. We merely need to show the latter.
In order to show this, we will show by induction on the size of the derivation $\Gamma_{2} \vdash \mathrm{p}^{1}: \Gamma_{3}$ that if $\Gamma_{1} \vdash \delta . t: \Gamma_{2}$ then $\Gamma_{1} \vdash \delta: \Gamma_{3}$.
We proceed by case on the derivation of $\Gamma_{1} \vdash \delta . t: \Gamma_{2}$.
Subcase.

$$
\begin{array}{lll}
\Gamma_{2}^{\prime} . T c t x & \Gamma_{1} \vdash \delta: \Gamma_{2}^{\prime} \quad \Gamma_{1} \vdash t: T[\delta] \\
& \Gamma_{1} \vdash \delta . t: \Gamma_{2}^{\prime} . T
\end{array}
$$

In this case, we have $\Gamma_{1} \vdash \delta: \Gamma_{2}^{\prime}$. We now need to show that $\Gamma_{1} \vdash \delta: \Gamma_{3}$. In order to do this, we will prove that $\Gamma_{2}^{\prime} \vdash \mathrm{id}: \Gamma_{3}$ by induction on $\Gamma_{2}^{\prime} . T \vdash \mathrm{p}^{1}: \Gamma_{3}$. The result will then Lemma 1.2.15.
Subsubcase.

$$
\frac{\Gamma_{2}^{\prime} \cdot T c t x \quad \Delta c t x \quad \Gamma_{2}^{\prime} \triangleright_{\mathrm{a}} \Delta}{\Gamma_{2}^{\prime} \cdot T \vdash \mathrm{p}^{1}: \Delta}
$$

In this case, we observe that we are trying to show $\Gamma_{2}^{\prime} \vdash \mathrm{id}: \Delta$ but this is immediate from the assumptions we have and the rule for id.
Subsubcase.

$$
\frac{\Gamma_{2} c t x \quad \Gamma_{2}^{\prime \varkappa ீ} \cdot T \vdash \mathrm{p}^{1}: \Gamma_{3}^{\prime}}{\Gamma_{2}^{\prime} \cdot T \vdash \mathrm{p}^{1}: \Gamma_{3}^{\prime} \cdot \boldsymbol{\Omega}}
$$

In this case, we have $\Gamma_{2}{ }^{\curvearrowleft} \vdash \mathrm{id}: \Gamma_{3}^{\prime}$ and so we have $\Gamma_{2} \vdash \mathrm{id}: \Gamma_{3}^{\prime}$. from our assumption of $\Gamma_{2} c t x$ and the same rule.
Subcase.

$$
\frac{\Gamma_{1} c t x \quad \Gamma_{1}^{\aleph} \vdash \delta . t: \Gamma_{2}^{\prime}}{\Gamma_{1} \vdash \delta . t: \Gamma_{2}^{\prime} . \boldsymbol{a}}
$$

In this case we have Γ_{2}^{\prime}. $\stackrel{\mathrm{p}}{ }{ }^{1}: \Gamma_{3}$ and we wish to show $\Gamma_{1} \vdash \delta: \Gamma_{3}$. Inversion on the former tells us that it must be that $\Gamma_{3}=\Gamma_{3}^{\prime} .0$ and that there is a strictly smaller derivation $\Gamma_{2}{ }^{\boldsymbol{n}} \vdash \mathrm{p}^{1}: \Gamma_{3}^{\prime}$.
Therefore, it suffices to show $\Gamma_{1}{ }^{\complement} \vdash \delta: \Gamma_{3}^{\prime}$ in order to establish our goal. We know that $\Gamma_{1} \curvearrowleft \vdash \delta . t: \Gamma_{2}^{\prime \boldsymbol{\sim}}$ by Lemma 1.2.9. We then apply our induction hypothesis we our strictly smaller derivation of $\Gamma_{2}{ }^{\curvearrowleft} \vdash \mathrm{p}^{1}: \Gamma_{3}^{\prime}$.

2 Computing in MLTT.

2.1 Semantic domain

We now define the semantic domains in which MLTT $_{0}$ programs compute. We diverge from the standard presentation of normalization by evaluation in terms of partial applicative structures by actively distinguishing between closure instantiation and the partial application operation. Colors are used to distinguish between all the different domains; the color of an identifier is part of its lexical meaning, making A, A distinct metavariables.

```
(values) \(\quad A, u:=\uparrow^{A} e|\lambda(f)| \Pi(A, B) \mid\) zero \(|\operatorname{succ}(v)|\) nat \(\left|\left\langle v_{1}, v_{2}\right\rangle\right| \Sigma(A, B)\)
    \(\square A|\operatorname{shut}(v)| \mathrm{U}_{i}\left|\operatorname{Id}\left(A, v_{1}, v_{2}\right)\right| \operatorname{refl}(v)\)
(neutrals) \(\quad e \quad:==\operatorname{var}_{k}|e . \operatorname{app}(d)| e\). fst \(\mid e\). snd \(\mid\) e.open \(\mid e\). natrec \((A, v, f)\)
    \(e . J\left(C, f, A, v_{1}, v_{2}\right)\)
(environments) \(\quad \rho \quad:=\quad \mid \rho . v\)
(closures) \(\quad A, f \quad:=t \triangleleft \rho\)
(normals) \(\quad d:=\downarrow^{A} v\)
```


2.2 Semantic partial operations

Elements of the semantic domains are animated through partial operations, such as evaluation of terms, application of values, etc. In this section, we define the graphs of these partial operations inductively.

$$
\llbracket t \rrbracket_{\rho}=v
$$

EVAL/VAR $\rho(i)=v$	EVAL/NAT	EVAL/ZERO	Eval/SUCC $\llbracket t \rrbracket_{\rho}=u$
$\llbracket \operatorname{var}_{i} \rrbracket_{\rho}=v$	$\llbracket \mathrm{nat} \rrbracket_{\rho}=$ nat	\llbracket zero】 ${ }_{\rho}=$ zero	$\llbracket \operatorname{succ}(t) \rrbracket_{\rho}=\operatorname{succ}(u)$

EVAL/PI

$$
\frac{\llbracket A \rrbracket_{\rho}=A}{\llbracket \Pi(A, B) \rrbracket_{\rho}=\Pi(A, B \triangleleft \rho)}
$$

Eval/sig

$$
\frac{\llbracket A \rrbracket_{\rho}=A}{\llbracket \Sigma(A, B) \rrbracket_{\rho}=\Sigma(A, B \triangleleft \rho)}
$$

Eval/snd

/SHu	Eval/op		${ }^{\text {EVAL/ESUBST }}$		
$\llbracket t \rrbracket_{\rho}=v$	$\mathbb{\\|} t \rrbracket_{\rho}=v$	$\underline{\operatorname{open}}(v)=v^{\prime}$	$\llbracket \delta \rrbracket_{\rho}=\rho^{\prime}$	$\llbracket t \rrbracket_{\rho^{\prime}}=v$	
$\mathbb{[L t}]_{\bullet} \rrbracket_{\rho}=\operatorname{shut}(v)$		${ }_{\rho}=v^{\prime}$	$\llbracket t[\delta]$		

$$
\begin{array}{ll}
\frac{\llbracket T \rrbracket_{\rho}=A}{\llbracket \operatorname{dd}\left(T, t_{0}, t_{1}\right) \rrbracket_{\rho} \rrbracket_{\rho}=v_{0}} \quad \llbracket t_{i} \rrbracket_{\rho}=v_{i} & \left.\llbracket t v_{0}, v_{1}\right)
\end{array} \frac{\llbracket t \rrbracket_{\rho}=v}{\llbracket \operatorname{refl}(t) \rrbracket_{\rho}=\operatorname{refl}(v)}
$$

$$
\frac{\llbracket t_{2} \rrbracket_{\rho}=u \quad \mathbf{J}\left(C \triangleleft \rho, t_{1} \triangleleft \rho, u\right)=v}{\llbracket J\left(C, t_{1}, t_{2}\right) \rrbracket_{\rho}=v}
$$

$$
f\left[w_{1}, \ldots, w_{n}\right]=v
$$

inst/clo

$$
\frac{\llbracket t \rrbracket_{\rho . w_{1} \ldots w_{n}}=v}{(t \triangleleft \rho)\left[w_{1}, \ldots, w_{n}\right]=v}
$$

$$
\llbracket \delta \rrbracket_{\rho_{1}}=\rho_{2}
$$

EVAL/ID
$\overline{\llbracket i d \rrbracket_{\rho}=\rho}$

EVAL/EMP
$\mathbb{\|} \cdot \mathbb{I}_{\rho}=$
EVAL/EXT
$\llbracket \delta \rrbracket_{\rho_{1}}=\rho_{2} \quad \llbracket t \rrbracket_{\rho_{1}}=v \quad$ EVAL/PROJ
$\overline{\llbracket p^{n} \rrbracket_{\rho . v_{1} \ldots v_{n}}=\rho}$
eval/compose

$$
\frac{\llbracket \delta_{1} \prod_{\rho_{1}}=\rho_{2} \quad \llbracket \delta_{2} \rrbracket_{\rho_{2}}=\rho_{3}}{\llbracket \delta_{2} \circ \delta_{1} \rrbracket_{\rho_{1}}=\rho_{3}}
$$

$$
\operatorname{app}(u, v)=w
$$

APP/LAM
$\frac{f[v]=w}{\operatorname{app}(\lambda(f), v)=w}$

APP/SHIFT
$\frac{B[v]=B_{v}}{\underline{\operatorname{app}\left(\uparrow^{\Pi(A, B)} e, v\right)=\uparrow^{B_{v}} e \cdot \operatorname{app}\left(\downarrow^{A} v\right)}}$

$$
\mathbf{J}(C, f, v)=u
$$

J/REFL
$\frac{f[v]=u}{\mathbf{J}(C, f, \operatorname{refl}(v))=u}$
J/SHIFT
$\frac{C\left[u_{1}, u_{2}, \uparrow^{\operatorname{Id}\left(A, u_{1}, u_{2}\right)} e\right]=B}{\mathbf{J}\left(C, f, \uparrow^{\operatorname{Id}\left(A, u_{1}, u_{2}\right)} e\right)=\uparrow^{B} e \cdot \mathbf{J}\left(C, f, A, u_{1}, u_{2}\right)}$

$$
\underline{\operatorname{fst}}(v)=v_{1}
$$

$$
\overline{\underline{\operatorname{fst}}\left(\left\langle v_{1}, v_{2}\right\rangle\right)=v_{1}}
$$

$$
\overline{\mathbf{f s t}}\left(\uparrow^{\Sigma(A, B)} e\right)=\uparrow^{A} e . \mathrm{fst}
$$

$$
\underline{\operatorname{snd}}(v)=v_{2}
$$

$$
\frac{B\left[\uparrow^{A} e . f s t\right]=B^{\prime}}{\underline{\mathbf{s n d}}\left(\uparrow^{\Sigma(A, B)} e\right)=\uparrow^{B^{\prime}} e . \text { snd }}
$$

$\underline{\operatorname{natrec}}\left(A, v_{z}, f_{s}, n\right)=v$

$\frac{\underline{\operatorname{natrec}}\left(A, v_{z}, f_{s}, \text { zero }\right)=v_{z}}{\underline{\operatorname{natrec}}\left(A, v_{z}, f_{s}, n\right)=v_{p} \quad f_{s}\left[n, v_{p}\right]=v} \underset{\underline{\operatorname{natrec}}\left(A, v_{z}, f_{s}, \operatorname{succ}(n)\right)=v}{l}$

$$
\frac{A[n]=A^{\prime}}{\underline{\operatorname{natrec}}\left(A, v_{z}, f_{s}, \uparrow^{\text {nat }} e\right)=\uparrow^{A^{\prime}} e . \operatorname{natrec}\left(A, v_{z}, f_{s}\right)}
$$

$$
\text { open }\left(v_{1}\right)=v_{2}
$$

$\underline{\operatorname{open}}(\operatorname{shut}(v))=v$

$$
\overline{\text { open }\left(\uparrow^{\square A} e\right)=\uparrow^{A} e . \text { open }}
$$

$$
\lceil d\rceil_{n}=t
$$

RB/FUN

$$
B\left[\operatorname{var}_{n}\right]=B^{\prime}
$$

$$
\frac{\underline{\operatorname{app}}\left(v, \uparrow^{A} \operatorname{var}_{n}\right)=b \quad\left\lceil\downarrow^{B^{\prime}} b\right\rceil_{n+1}=t}{\left\lceil\downarrow^{\Pi(A, B)} v\right\rceil_{n}=\lambda(t)}
$$

$\underline{\mathrm{RB} / \mathrm{PAIR}} \mathbf{\underline { \mathrm { fst } } (v) = l} \quad \underline{\underline{\mathbf{n d}}(v)=r \quad B[l]=B^{\prime} \quad\left\lceil\downarrow^{A} l\right\rceil_{n}=t_{1} \quad\left\lceil\downarrow^{B^{\prime}} r\right\rceil_{n}=t_{2}}$
$\left\lceil\downarrow^{\Sigma(A, B)} v\right\rceil_{n}=\left(t_{1}, t_{2}\right)$

RB/REFL		RB/SUCC
$\left\lceil\downarrow^{A} u\right\rceil_{n}=t$	RB/ZERO	$\left\lceil\downarrow^{\text {nat }} v\right\rceil_{n}=t$
$\overline{\left\lceil\downarrow^{\text {dd }\left(A, v_{1}, v_{2}\right)} \operatorname{refl}(u)\right]_{n}=\operatorname{refl}(t)}$	$\overline{\left\lceil\downarrow^{\text {nat }} \text { zero }\right]_{n}=\text { zero }}$	$\left[\downarrow^{\text {nat }} \operatorname{succ}(v)\right]_{n}=\operatorname{succ}(t)$

RB/SHUT
$\frac{\text { open }(v)=v^{\prime} \quad\left\lceil\downarrow^{A} v^{\prime}\right\rceil_{n}=t}{\left\lceil\downarrow^{\square A} v\right\rceil_{n}=[t]_{\boldsymbol{@}}}$

RB/NAT/NE
RB/ID/NE
$\frac{\lceil e\rceil_{n}=t}{\left\lceil\downarrow^{\mathrm{Id}\left(A, u_{0}, u_{1}\right)} \uparrow^{B} e\right\rceil_{n}=t}$
$\frac{\lceil e\rceil_{n}=t}{\left\lceil\downarrow^{\text {nat }} \uparrow^{B} e\right\rceil_{n}=t}$

RB/TP
$\frac{\lceil v\rceil_{n}^{\text {ty }}=A}{\left\lceil\downarrow^{U_{i}} v\right\rceil_{n}=A}$

$$
\lceil e\rceil_{n}=t
$$

| $\mathrm{RB} / \mathrm{APP}$
 $\lceil e\rceil_{n}=s$
 $\lceil e . \operatorname{app}(d)\rceil_{n}=s(t)$ | $\mathrm{RB}\rceil_{n}=t \mathrm{vAR}$ | $\mathrm{RB} / \mathrm{FST}$
 $\left\lceil\operatorname{var}_{k}\right\rceil_{n}=\operatorname{var}_{n-(k+1)}$ | $\frac{\lceil e\rceil_{n}=t}{\lceil e . \mathrm{fst}\rceil_{n}=\mathrm{fst}(t)}$ |
| :--- | :--- | :--- | :--- |\quad| $\lceil\mathrm{RB} / \mathrm{SND}$ |
| :--- |
| $\lceil e . \operatorname{snd}\rceil_{n}=\operatorname{snd}(t)$ |

RB/J
$C\left[\operatorname{var}_{n}, \operatorname{var}_{n+1}, \operatorname{var}_{n+2}\right]=C_{g}$
$\left\lceil C_{g}\right\rceil_{n+3}^{\text {ty }}=C \quad C\left[\operatorname{var}_{n}, \operatorname{var}_{n}, \operatorname{refl}(n)\right]=C_{r} \quad f\left[\operatorname{var}_{n}\right]=v \quad\left\lceil\downarrow^{C_{r}} v\right\rceil_{n+1}=t_{1} \quad\lceil e\rceil_{n}=t_{2}$
$\left\lceil e . J\left(C, f, A, u_{1}, u_{2}\right)\right\rceil_{n}=\mathrm{J}\left(C, t_{1}, t_{2}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { RB/OPEN } \\
\lceil e\rceil_{n}=t \\
\lceil e . \text { open }\rceil_{n}=[t]_{n}
\end{array}
\end{aligned}
$$

RB/NATREC

$$
\begin{array}{lccc}
A\left[\uparrow^{\text {nat }} \operatorname{var}_{n}\right]=A^{\prime} & \left\lceil A^{\prime}\right\rceil_{n+1}^{\text {ty }}=A & A[\text { zero }]=A_{z} & \left\lceil\downarrow^{A_{z}} v_{z}\right\rceil_{n}=z \\
A\left[\operatorname{succ}\left(\operatorname{var}_{n}\right)\right]=A_{s} & f_{s}\left[\uparrow^{\text {nat }} \operatorname{var}_{n}, \uparrow^{A^{\prime}} \operatorname{var}_{n+1}\right]=v_{s} & \left\lceil\downarrow^{A_{s}} v_{s}\right\rceil_{n+2}=s & \lceil e\rceil_{n}=m \\
& \left\lceil e . \operatorname{natrec}\left(A, v_{z}, f_{s}\right)\right\rceil_{n}=\operatorname{natrec}(A, z, s, m)
\end{array}
$$

$$
\lceil v\rceil_{n}^{\text {ty }}=t
$$

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{RB} / \mathrm{VAL} / \mathrm{NE} \\
\lceil e\rceil_{n}=t
\end{array} & \left.\overline{{ }^{\mathrm{RB}} / \mathrm{NAT}}\right\rceil_{n}^{\mathrm{ty}}=t
\end{array} \quad \overline{\text { nat }\rceil_{n}^{\mathrm{ty}}=\mathrm{nat}}
$$

$$
\frac{\begin{array}{l}
\mathrm{RB} / \mathrm{PI} \\
\lceil A\rceil_{n}^{\mathrm{ty}}=A
\end{array} \quad B\left[\uparrow^{A} \operatorname{var}_{n}\right]=B^{\prime} \quad\left\lceil B^{\prime}\right\rceil_{n+1}^{\mathrm{ty}}=B}{\lceil\Pi(A, B)\rceil_{n}^{\mathrm{ty}}=\Pi(A, B)}
$$

$$
\begin{aligned}
& \text { RB/ID } \\
& \frac{\lceil A\rceil_{n}^{\text {ty }}=T \quad\left\lceil\downarrow^{A} v_{1}\right\rceil_{n}=t_{1} \quad\left\lceil\downarrow^{A} v_{2}\right\rceil_{n}=t_{2}}{\left\lceil\operatorname{Id}\left(A, v_{1}, v_{2}\right)\right\rceil_{n}^{\mathrm{ty}}=\operatorname{Id}\left(T, t_{1}, t_{2}\right)} \\
& \text { RB/BOX } \\
& \frac{\lceil A\rceil_{n}^{\text {ty }}=A}{\lceil\square A\rceil_{n}^{\text {ty }}=\square A} \\
& \frac{\lceil A\rceil_{n}^{\text {ty }}=A \quad B\left[\uparrow^{A} \operatorname{var}_{n}\right]=B^{\prime} \quad\left\lceil B^{\prime}\right\rceil_{n+1}^{\text {ty }}=B}{\lceil\Sigma(A, B)\rceil_{n}^{\text {ty }}=\Sigma(A, B)} \\
& \text { RB/UNI } \\
& \overline{\left\lceil\mathrm{U}_{i}\right\rceil_{n}=\mathrm{U}_{i}}
\end{aligned}
$$

Reflecting contexts

Context length $\|\Gamma\|$ is the number of cells in the context, not including locks. A context is reflected as follows:

The full normalization algorithm

The full algorithm is then defined as follows:

$$
\frac{\uparrow \Gamma=\rho \quad \llbracket A \rrbracket_{\rho}=A \quad \llbracket t \rrbracket_{\rho}=v \quad\left\lceil\downarrow^{A} v\right\rceil_{\|\Gamma\|}=t^{\prime}}{\underline{\mathbf{n b e}}_{\Gamma}^{A}(t)=t^{\prime}}
$$

Miscellaneous lemmas

Lemma 2.2.1. Suppose $\llbracket M \rrbracket_{\rho}=v$, and ρ^{\prime} is an extension of the environment ρ such that $\left|\rho^{\prime}\right|-|\rho|=m$. Then also $\llbracket M\left[\mathrm{p}^{m}\right] \rrbracket_{\rho^{\prime}}=v$.

Proof. $\llbracket M\left[\mathrm{p}^{m}\right] \rrbracket_{\rho^{\prime}}=v$ holds if $\llbracket \mathrm{p}^{m} \rrbracket_{\rho^{\prime}}=\rho^{\prime \prime}$ and $\llbracket M \rrbracket_{\rho^{\prime \prime}}=v$. Observe that $\llbracket \mathrm{p}^{m} \rrbracket_{\rho^{\prime}}=\rho$ because $\rho^{\prime}=\rho \cdot v_{1} \ldots v_{m}$. Next, we have by assumption $\llbracket M \rrbracket_{\rho}=v$ we therefore may conclude $\llbracket M\left[\mathbf{p}^{m}\right] \rrbracket_{\rho^{\prime}}=v$ as required.

2.3 Determinism

At this point it is possible to prove determinism of the judgments by simple induction. In all situations there should only be one applicable rule. This does not guarantee termination or that the algorithm is in any way correct, but it justifies the abuse of notation we shall adopt from now on. Henceforth we will write partial functions for several of the judgments. For instance, we fix the following notations:

- open (u) for the unique v such that $\underline{\operatorname{open}}(u)=v$ when such a v exists;
- $f[v]$ for the unique u such that $f[v]=u$;
- $\underline{\operatorname{fst}}(v)$ for the unique u such that $\underline{\operatorname{fst}}(v)=u$;
- $\underline{\text { snd }}(v)$ for the unique u such that $\underline{\text { snd }}(v)=u$;
- $\underline{\operatorname{app}}\left(v_{0}, v_{1}\right)$ for the unique u such that $\underline{\operatorname{app}}\left(v_{1}, v_{2}\right)=u$;

We will also write $\llbracket t \rrbracket_{\rho}$ for the unique result, v, of $\llbracket t \rrbracket_{\rho}=v$ and likewise $\llbracket \delta \rrbracket_{\rho}=\rho^{\prime}$ when $\llbracket \delta \rrbracket_{\rho}=\rho^{\prime}$.

3 Completeness of Normalization

The correctness of the normalization algorithm defined in Chapter 2 is split into two main parts: completeness and soundness. Completeness is proved by constructing a model of MLTT $\mathbf{R}_{\mathbf{a}}$ in partial equivalence relations (PERs), and soundness is proved using a logical relations argument that glues the PER model together with the syntax of MLTT $_{\Omega}$.

3.1 PER model

Neutrals and normals

The main lemma used to establish completeness is that every type specifies a PER which lies between the PERs of neutrals and normals, which we define below.

$$
\frac{\forall n . \exists t .\left\lceil e_{0}\right\rceil_{n}=t \wedge\left\lceil e_{1}\right\rceil_{n}=t}{e_{0} \sim e_{1} \in \mathcal{N e}} \quad \frac{\forall n . \exists t .\left\lceil d_{0}\right\rceil_{n}=t \wedge\left\lceil d_{1}\right\rceil_{n}=t}{d_{0} \sim d_{1} \in \mathcal{N} f} \quad \frac{\forall n . \exists A .\left\lceil A_{0}\right\rceil_{n}^{\text {ty }}=A \wedge\left\lceil A_{1}\right\rceil_{n}^{\text {ty }}=A}{A_{0} \sim A_{1} \in \mathcal{T} y}
$$

PERs for types

We construct a model of type theory in Kripke partial equivalence relations over an arbitrary non-empty poset \mathbb{P}; the main part of the construction is to develop a countable hierarchy of type universes, which we do in a style which first appeared in in Allen [All87], and has been used in three successful formalization efforts [AR14; WB18; SH18a].

The construction of the type hierarchy can be seen as an instance of induction-recursion ${ }^{1}$, but we find it more clear to work concretely in terms of fixed-points on the complete lattice of subsets of the product of values (types) and binary relations on values in our domain indexed over \mathbb{P}. The indexing allows us to model \square in an interesting and nontrivial way. We begin by defining a few of the critical domains for our construction:

$$
\begin{aligned}
\text { Rel } & =\mathcal{P}(\mathbb{P} \times \text { Val } \times \text { Val }) \\
\text { SFam } & =\mathbb{P} \rightarrow \text { Rel } \\
\text { Fam } & =\text { Val } \times \text { Val } \rightarrow \text { Rel } \\
\text { Sys } & =\mathcal{P}(\mathbb{P} \times \text { Val } \times \text { Val } \times \text { Rel })
\end{aligned}
$$

(step-indexed relation)
(indexed relations)
(family of relations)
(type system)
Next, we define some notation for working with these domains:

$$
\begin{aligned}
& \underset{\tau F_{n} A_{0} \sim A_{1} \downarrow R}{\tau\left(n, A_{0}, A_{1}, R\right)} \xlongequal[\tau \vDash_{n} A_{0} \sim A_{1}]{\exists R . \tau F_{n} A_{0} \sim A_{1} \downarrow R} \quad \xlongequal[n \Vdash v_{0} \sim v_{1} \in R]{R\left(n, v_{0}, v_{1}\right)} \\
& \xlongequal{\forall m \leq n . \forall v_{0}, v_{1} .\left.m \Vdash v_{0} \sim v_{1} \in R \Longrightarrow \tau\right|_{m} B_{0}\left[v_{0}\right] \sim B_{1}\left[v_{1}\right] \downarrow S}
\end{aligned}
$$

[^0]Notation 3.1.1 (Fiber of a relation). For an indexed relation $R \in$ Rel, we will often write R_{n} for its fiber $\left\{\left(u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in R\right\}$.

Definition 3.1.2 (Partial equivalence relation). An indexed relation $R \in \operatorname{Rel}$ is called symmetric when each fiber R_{n} is a symmetric relation on $\mathrm{Val} \times \mathrm{Val}$; likewise, it is called transitive when each fiber is transitive. R is called a partial equivalence relation (PER) when it is both symmetric and transitive.

Definition 3.1.3 (Monotonicity). A relation $R \in$ Rel is called monotone iff whenever $m \leq n$, then $R_{n} \subseteq R_{m}$.

Definition 3.1.4 (Compatibility). A relation $R \in \operatorname{Rel}$ is compatible for $\left(A_{0}, A_{1}\right)$ if the following two properties hold:

1. If $e_{0} \sim e_{1} \in \mathcal{N} e$ then $n \Vdash \uparrow^{A_{0}} e_{0} \sim \uparrow^{A_{1}} e_{1} \in R$ for all n.
2. If $n \Vdash v_{0} \sim v_{1} \in R$ then $\downarrow^{A_{0}} v_{0} \sim \downarrow^{A_{1}} v_{1} \in \mathcal{N} f$.

We shall say a relation $R \in \operatorname{Rel}$ is compatible for types if the following two conditions hold:

1. If $e_{0} \sim e_{1} \in \mathcal{N} e$ then $n \Vdash \uparrow^{U_{i}} e_{0} \sim \uparrow^{U_{i}} e_{1} \in R$ for all n and i.
2. If $n \Vdash v_{0} \sim v_{1} \in R$ then $v_{0} \sim v_{1} \in \mathcal{T} y$.

Constructions on relations

We begin by separately developing some constructions on indexed binary relations; we define these for arbitrary indexed relations and families of relations, rather than requiring beforehand that we have a monotone PER.

$$
\begin{aligned}
& \llbracket \Pi \rrbracket \in \operatorname{Rel} \rightarrow \text { Fam } \rightarrow \text { Rel } \\
& \llbracket \Sigma \rrbracket \in \operatorname{Rel} \rightarrow \text { Fam } \rightarrow \text { Rel } \\
& \llbracket \square \rrbracket \in \operatorname{Rel} \rightarrow \text { Rel } \\
& \llbracket I d \rrbracket \in \operatorname{Rel} \rightarrow \text { Val } \rightarrow \text { Val } \rightarrow \text { Rel } \\
& \llbracket \mathbb{N} \rrbracket
\end{aligned} \in \operatorname{Rel} .4
$$

These are defined as the least relations closed under the following rules:

$$
\frac{S: \text { Fam } \quad \forall m \leq n \cdot \forall v_{0}, v_{1} . m \Vdash v_{0} \sim v_{1} \in R \Longrightarrow m \Vdash \underline{\operatorname{app}}\left(u_{0}, v_{0}\right) \sim \underline{\operatorname{app}}\left(u_{1}, v_{1}\right) \in S\left(v_{0}, v_{1}\right)}{n \Vdash u_{0} \sim u_{1} \in \llbracket \Pi \rrbracket(R, S)}
$$

$$
\frac{S: \text { Fam } \quad n \Vdash \underline{\mathbf{f s t}}\left(u_{0}\right) \sim \underline{\text { fst }}\left(u_{1}\right) \in R \quad n \Vdash \underline{\operatorname{snd}}\left(u_{0}\right) \sim \underline{\operatorname{snd}}\left(u_{1}\right) \in S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\text { fst }}\left(u_{1}\right)\right)}{n \Vdash u_{0} \sim u_{1} \in \llbracket \Sigma \rrbracket(R, S)}
$$

$$
\begin{gathered}
\begin{array}{c}
\forall m . m \Vdash \text { open }\left(u_{0}\right) \sim \mathbf{o p e n}\left(u_{1}\right) \in R \\
n \Vdash u_{0} \sim u_{1} \in \llbracket \square \rrbracket(R)
\end{array} \frac{m \Vdash u_{0} \sim v_{0} \in R \quad m \Vdash v_{0} \sim v_{1} \in R \quad m \Vdash v_{1} \sim u_{1} \in R}{n \Vdash \operatorname{refl}\left(v_{0}\right) \sim \operatorname{refl}\left(v_{1}\right) \in \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)} \\
\frac{e_{0} \sim e_{1} \in \mathcal{N e}}{n \Vdash \uparrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} e_{0} \sim \uparrow^{\operatorname{Id}\left(A_{1}, w_{0}, w_{1}\right)} e_{1} \in \llbracket \operatorname{ld} \rrbracket\left(R, u_{0}, u_{1}\right)} \quad \overline{n \Vdash \text { zero } \sim \operatorname{zero} \in \llbracket \mathbb{N} \rrbracket} \\
\frac{n \Vdash u_{0} \sim u_{1} \in \llbracket \mathbb{N} \rrbracket}{n \Vdash \operatorname{succ}\left(u_{0}\right) \sim \operatorname{succ}\left(u_{1}\right) \in \llbracket \mathbb{N} \rrbracket} \quad \frac{e_{0} \sim e_{1} \in \mathcal{N e}}{n \Vdash \uparrow^{\text {nat }} e_{0} \sim \uparrow^{\text {nat }} e_{1} \in \llbracket \mathbb{N} \rrbracket}
\end{gathered}
$$

Lemma 3.1.5. For any $R \in \operatorname{Rel}$ and $S \in \mathrm{Fam}$, the relation $\llbracket \Pi \rrbracket(R, S)$ is monotone.
Proof. Suppose $n \Vdash u_{0} \sim u_{1} \in \llbracket \Pi \rrbracket(R, S)$ and $n^{\prime} \leq n$: we need to show that $n^{\prime} \Vdash u_{0} \sim u_{1} \in \llbracket \Pi \rrbracket(R, S)$. Fixing $m \leq n^{\prime}$ and v_{0}, v_{1} which are in R at stage m, we have to observe that $\underline{\operatorname{app}}\left(u_{0}, v_{0}\right)$ and $\underline{\operatorname{app}}\left(u_{1}, v_{1}\right)$ are related at stage m in $S\left(v_{0}, v_{1}\right)$. This is immediate from our assumption, because $m \leq n^{\prime} \leq n$.

Lemma 3.1.6. If $R \in \operatorname{Rel}$ is monotone and each fiber $S\left(v_{0}, v_{1}\right)$ of a family $S \in \operatorname{Fam}$ is monotone for $n \Vdash v_{0} \sim v_{1} \in R$, then $\llbracket \Sigma \rrbracket(R, S)$ is monotone.

Proof. Suppose $n \Vdash u_{0} \sim u_{1} \in \llbracket \Sigma \rrbracket(R, S)$ and $m \leq n$: we need to show that $m \Vdash u_{0} \sim u_{1} \in \llbracket \Sigma \rrbracket(R, S)$.

1. To see that $m \Vdash \underline{\operatorname{fst}}\left(u_{0}\right) \sim \underline{\operatorname{fst}}\left(u_{1}\right) \in R$, observe that $n \Vdash \underline{\mathrm{fst}}\left(u_{0}\right) \sim \underline{\mathrm{fst}}\left(u_{1}\right) \in R$ and use the monotonicity of S.
2. To see that $m \Vdash \underline{\mathbf{f s t}}\left(u_{0}\right) \sim \underline{\operatorname{fst}}\left(u_{1}\right) \in S\left(\underline{\operatorname{fst}}\left(u_{0}\right), \underline{\mathbf{f s t}}\left(u_{1}\right)\right)$, observe that $n \Vdash \underline{\operatorname{fst}}\left(u_{0}\right) \sim \underline{\mathrm{fst}}\left(u_{1}\right) \in$ $S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\mathrm{fst}}\left(u_{1}\right)\right)$ and use the monotonicity of $S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\mathrm{fst}}\left(u_{1}\right)\right)$.

Lemma 3.1.7. If $R \in \operatorname{Rel}$ is a $P E R$, then $\llbracket \square \rrbracket(R)$ is a monotone $P E R$.
Proof. $\llbracket \square \rrbracket(R)$ is clearly monotone, because its definition discards the index.

1. Symmetry. Suppose that $n \Vdash u_{0} \sim u_{1} \in \llbracket \square \rrbracket(R)$; we need to see that $n \Vdash u_{1} \sim u_{0} \in \llbracket \square \rrbracket(R)$, which is to say that for all $m, m \Vdash$ open $\left(u_{1}\right) \sim \underline{\text { open }}\left(u_{0}\right) \in R$. By symmetry of R, it suffices to show that $m \Vdash \underline{\text { open }}\left(u_{0}\right) \sim \underline{\text { open }}\left(u_{1}\right) \in R$, which we have already assumed.
2. Transitivity. Analogous to symmetry.

Lemma 3.1.8. If $R \in \operatorname{Rel}$ is a monotone PER and $v_{0}, v_{1} \in \operatorname{Val}$, then $\llbracket \mathrm{Id} \rrbracket\left(R, v_{0}, v_{1}\right)$ is a monotone PER.
Proof. $\llbracket I d \rrbracket\left(R, v_{0}, v_{1}\right)$ is clearly monotone as we have assumed that R is monotone.

1. Symmetry. There are two cases to consider here.
a) Suppose that $n \Vdash \operatorname{refl}\left(u_{0}\right) \sim \operatorname{refl}\left(u_{1}\right) \in \llbracket \operatorname{Id} \rrbracket\left(R, v_{0}, v_{1}\right)$; we need to see that $n \Vdash \operatorname{refl}\left(u_{1}\right) \sim$ $\operatorname{refl}\left(u_{0}\right) \in \llbracket \mid \mathrm{d} \rrbracket\left(R, v_{0}, v_{1}\right)$, which is to say $m \Vdash v_{0} \sim u_{0} \in R, m \Vdash u_{1} \sim u_{0} \in R$, and $m \Vdash u_{1} \sim v_{1} \in R$.
We have by assumption $m \Vdash v_{0} \sim u_{0} \in R, m \Vdash u_{0} \sim u_{1} \in R$, and $m \Vdash u_{1} \sim v_{1} \in R$ so the result is immediate from the symmetry of R.
b) Suppose instead that $n \Vdash \uparrow^{\operatorname{Id}(-,-,-)} e_{0} \sim \uparrow{ }^{\operatorname{Id}(-,-,-)} e_{1} \in \llbracket \operatorname{Id} \rrbracket\left(R, v_{0}, v_{1}\right)$ and so $e_{0} \sim e_{1} \in \mathcal{N}$. We wish to show that $n \Vdash \uparrow^{\operatorname{Id}(-,-,-)} e_{1} \sim \uparrow^{\operatorname{Id}(-,-,-)} e_{0} \in \llbracket \operatorname{Id} \rrbracket\left(R, v_{0}, v_{1}\right)$ holds but this is immediate as $\mathcal{N e}$ is a PER.
2. Transitivity. Analogous to symmetry.

Defining the type hierarchy

We begin by defining the individual closure of a type system $\sigma \in$ Sys under each of the connectives of our type theory, as well as under the neutral types. We present these definitions as inference rules.

Each rule defines the closure of a type-system under a particular connective.

$$
\begin{aligned}
& \frac{\sigma \mid F_{n} A_{0} \sim A_{1} \downarrow R \quad \sigma \not \vDash_{n} R \gg B_{0} \sim B_{1} \downarrow S}{\operatorname{Pi}[\sigma]=_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(R, S)} \quad \frac{\sigma \vDash_{n} A_{0} \sim A_{1} \downarrow R \quad \sigma \vDash_{n} R \gg B_{0} \sim B_{1} \downarrow S}{\operatorname{Sg}[\sigma]=_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow \llbracket \Sigma \rrbracket(R, S)} \\
& \frac{R: \text { SFam } \quad \forall m . \sigma \vDash_{m} A_{0} \sim A_{1} \downarrow R(m) \quad S=\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in R(n)\right\}}{\operatorname{Box}[\sigma] \vDash_{n} \square A_{0} \sim \square A_{1} \downarrow \llbracket \square \rrbracket(S)} \\
& \frac{\sigma \neq_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim u_{0} \in R \quad n \Vdash v_{1} \sim u_{1} \in R}{\operatorname{Id}[\sigma] \mid={ }_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)} \\
& \frac{e_{0} \sim e_{1} \in \mathcal{N e} \quad R=\left\{\left(m, \uparrow^{B_{0}} e_{0}, \uparrow^{B_{1}} e_{1}\right) \mid e_{0} \sim e_{1} \in \mathcal{N e}\right\}}{\mathrm{Ne} \mid={ }_{n} \uparrow^{A_{0}} e_{0} \sim \uparrow^{A_{1}} e_{1} \downarrow R} \quad \frac{\text { Nat }\left.\right|_{n} \text { nat } \sim \text { nat } \downarrow \llbracket \mathbb{N} \rrbracket}{}
\end{aligned}
$$

Next, we define the hierarchy of universes by iterating the closure of a type system under connectives up to the infinite ordinal ω, letting α range over $\mathbb{N} \cup\{\omega\}$:

$$
\frac{j<\alpha}{\operatorname{Univ}_{\alpha}=_{n} \mathrm{U}_{j} \sim \mathrm{U}_{j} \downarrow\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{j}\right|={ }_{m} A_{0} \sim A_{1}\right\}}
$$

$$
\operatorname{Types}_{\alpha}[\sigma]=\operatorname{Pi}[\sigma] \vee \operatorname{Sg}[\sigma] \vee \operatorname{Box}[\sigma] \vee \operatorname{Id}[\sigma] \vee \operatorname{Nat} \vee \operatorname{Univ}_{\alpha} \vee \mathrm{Ne} \quad \tau_{\alpha}=\mu \sigma . \operatorname{Types}_{\alpha}[\sigma]
$$

The ultimate type system τ_{ω} has types at every level, including all universes U_{i} of finite level.

3.2 Properties of the PER model

For clarity, and because we shall so frequently make use of this fact in the following proofs, let us now take a moment to state the universal property of μ.

Theorem 3.2.1 (Universal Property of a Least Fixed Point). If μF is the least fixed point of $F: L \rightarrow L$ then for any $x: L$ such that $F(x) \leq x$ we must have $\mu F \leq x$.

Remark 3.2.2. If $F(x) \leq x$ we shall call x a pre-fixed point of F.
Remark 3.2.3. In what follows we will use α, β, γ, to denote either some natural number n or ω. Recall that τ_{α} is defined for all of these values and all the properties we wish to show must be proven for both n and ω.

Lemma 3.2.4 (Determinism). For any α, τ_{α} is deterministic. That is, if $\tau_{\alpha}=_{n} A \sim B \downarrow R$ and $\tau_{\alpha}=_{n} A \sim$ $B \downarrow R^{\prime}$, then $R=R^{\prime}$.

Proof. This proof proceeds by showing that the following σ is pre-fixed point of Types ${ }_{\alpha}[-]$:

$$
\frac{\tau_{\alpha}\left|={ }_{n} A \sim B \downarrow R \quad \forall R^{\prime} . \tau_{\alpha}\right|={ }_{n} A \sim B \downarrow R^{\prime} \Longrightarrow R=R^{\prime}}{\sigma \mid={ }_{n} A \sim B \downarrow R}
$$

Once this has been established, we then conclude that $\tau_{\alpha} \leq \sigma$ which in turn implies that τ_{α} must be deterministic. As usual, we exhibit only the cases pertaining to non-standard extensions of Martin-Löf Type Theory.

Supposing that we have $\operatorname{Types}_{\alpha}[\sigma] \mid={ }_{n} A \sim B \downarrow R$, we wish to show that $\sigma \mid=_{n} A \sim B \downarrow R$ holds as well. We proceed by case:

Case.

$$
\operatorname{Univ}_{\alpha} \mid={ }_{n} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow R \text { where } i<\alpha \text { and } R=\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{i}\right|={ }_{m} A_{0} \sim A_{1}\right\}
$$

First, we need to show that $\tau_{\alpha}=_{n} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow R$, but this follows immediately from our assumption, which is one of the generators of the type system closure. Next, supposing that $\tau_{\alpha}=_{n} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow S$, we need to verify that $R=S$. But by inverting the type system closure, we must have Univ $\left.{ }_{\alpha}\right|_{n}$ $\mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow S$, from which we conclude $R=S$.

Case.

$$
\frac{\forall m . \sigma \neq{ }_{m} A_{0} \sim A_{1} \downarrow R(m) \quad S=\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in R(n)\right\}}{\operatorname{Box}[\sigma]=_{n} \square A_{0} \sim \square A_{1} \downarrow \llbracket \square \rrbracket(S)}
$$

Because $\sigma \leq \tau_{\alpha}$, we can see that $\operatorname{Box}\left[\tau_{\alpha}\right]=_{n} \square A_{0} \sim \square A_{1} \downarrow \llbracket \square \rrbracket(S)$ and therefore $\tau_{\alpha}=_{n} \square A_{0} \sim$ $\square A_{1} \downarrow \llbracket \square \rrbracket(S)$. Fixing $T \in$ Rel such that $\tau_{\alpha} \vDash=_{n} \square A_{0} \sim \square A_{1} \downarrow T$, we need to verify that $T=\llbracket \square \rrbracket(S)$. By inverting the type system closure, we have $\operatorname{Box}\left[\tau_{\alpha}\right] \mid={ }_{n} \square A_{0} \sim \square B_{0} \downarrow T$; by definition, this means that we have some family of relations $R^{\prime} \in \operatorname{Rel}^{\mathbb{P}}$ where $\tau_{\alpha} \mid={ }_{m} A_{0} \sim A_{1} \downarrow R^{\prime}(m)$ for each m, and moreover $T=\llbracket \square \rrbracket\left(\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in R^{\prime}(n)\right\}\right)$.
Therefore, it remains to see that $R^{\prime}=R$; but this is immediate from the fact that both are contained in the type system σ : unfolding, we have both $\tau_{\alpha}=_{m} A_{0} \sim A_{1} \downarrow R(m)$ and for all $R^{\prime \prime} \in$ Rel, if $\tau_{\alpha} \mid={ }_{m} A_{0} \sim A_{1} \downarrow R^{\prime \prime}$ then $R(m)=R^{\prime \prime}$. Therefore, to see that $R^{\prime}(m)=R(m)$, we choose $R^{\prime \prime}=R^{\prime}(m)$ and use the fact that $\tau_{\alpha} \mid={ }_{m} A_{0} \sim A_{1} \downarrow R^{\prime}(m)$.

A number of properties of this type system must be established simultaneously because of interdependency.

Lemma 3.2.5. For any α, the following properties hold.

1. If $\tau_{\alpha} \mid={ }_{n} A \sim B \downarrow R$ then $\tau_{\alpha} \models_{n} B \sim A \downarrow R$.
2. If $\tau_{\alpha} \mid={ }_{n} A \sim B \downarrow R$ and $\tau_{\alpha} \mid={ }_{n} B \sim C \downarrow R$, then $\tau_{\alpha} \mid={ }_{n} A \sim C \downarrow R$.
3. If $\tau_{\alpha} \mid{ }_{n} A \sim B \downarrow R$ and $m \leq n$, then $\tau_{\alpha} \models_{m} A \sim B \downarrow R$.
4. If $\tau_{\alpha} \mid={ }_{n} A \sim B \downarrow R$ then R is a monotone PER.

Proof. We prove these statements by strong induction on α. This induction on the level is necessary in the case of $\operatorname{Univ}_{\alpha}$. Here, for instance, in order to show that the relation on terms is monotone we need to know that the relation on types is monotone for all $i<\alpha$. Similarly with symmetry and transitivity.

Let us assume therefore that for any $i<\alpha$ the following facts hold:

1. If $\tau_{i} \mid={ }_{n} A \sim B \downarrow R$ then $\tau_{i} \mid{ }_{n} B \sim A \downarrow R$.
2. If $\tau_{i} \mid={ }_{n} A \sim B \downarrow R$ and $\tau_{i} \mid={ }_{n} B \sim C \downarrow R$, then $\tau_{i} \mid={ }_{n} A \sim C \downarrow R$.
3. If $\tau_{i} \mid={ }_{n} A \sim B \downarrow R$ and $m \leq n$, then $\tau_{i} \mid={ }_{m} A \sim B \downarrow R$.
4. If $\tau_{i} \mid={ }_{n} A \sim B \downarrow R$ then R is a monotone PER.

We note that the above makes $\left(\left.\tau_{i}\right|_{(-)}-\sim-\right)$ a monotone PER.

We now turn to showing that these facts hold for α, all of which must be established simultaneously. This is done by showing the following $\sigma \in$ Sys to be a pre-fixed point:

$$
\begin{aligned}
& R \text { is a monotone PER } \\
& \forall m \leq n . \tau_{\alpha}=_{m} A \sim B \downarrow R \\
& \tau_{\alpha} \mid=_{n} B \sim A \downarrow R \\
& \forall C, S . \tau_{\alpha} \mid=_{n} B \sim C \downarrow S \Longrightarrow \tau_{\alpha}=_{n} A \sim C \downarrow S \wedge(R=S) \\
& \forall C, S . \tau_{\alpha}\left|=_{n} C \sim A \downarrow S \Longrightarrow \tau_{\alpha}\right|=_{n} C \sim B \downarrow S \wedge(R=S) \\
& \hline \hline \sigma \mid={ }_{n} A \sim B \downarrow R
\end{aligned}
$$

Supposing that $\operatorname{Types}_{\alpha}[\sigma] \mid={ }_{n} A \sim B \downarrow R$, we must show that $\sigma \mid={ }_{n} A \sim B \downarrow R$. We proceed by case. Case.

$$
\operatorname{Univ}_{\alpha} \mid={ }_{n} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow R \text { where } i<\alpha \text { and } R=\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{i}\right|==_{m} A_{0} \sim A_{1}\right\}
$$

First, we observe that for any $m \leq n$, we also have $\operatorname{Univ}_{\alpha} \mid={ }_{m} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow R$ and thence $\tau_{\alpha}=_{m}$ $\mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow R$. Symmetry is trivial, because we have the same type on both sides. We need to show both directions of the generalized transitivity.

- Suppose that $\tau_{\alpha} \mid=_{n} \mathrm{U}_{i} \sim C \downarrow S$; we need to verify that $R=S$. By inversion, we must have $C=\mathrm{U}_{i}$ and moreover $R=S$.
- Suppose that $\tau_{\alpha} \mid={ }_{n} C \sim \mathrm{U}_{i} \downarrow S$; we need to verify that $R=S$. By inversion, we must have $C=\mathrm{U}_{i}$ and moreover $R=S$.

Finally, we must show that R is a monotone PER; by the definition of R above, it it suffices to recall that $\left(\left.\tau_{i}\right|_{(-)}-\sim-\right)$ is a monotone PER.

Case.

$$
\frac{\sigma=_{n} A_{0} \sim A_{1} \downarrow R \quad \sigma \mid={ }_{n} R \gg B_{0} \sim B_{1} \downarrow S}{\operatorname{Pi}[\sigma] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(R, S)}
$$

Before establishing the main properties of the dependent function connective, we first observe that for any $m \Vdash a_{0} \sim a_{1} \in R$, the relations $S\left(a_{0}, a_{1}\right), S\left(a_{1}, a_{1}\right)$ and $S\left(a_{1}, a_{0}\right)$ are equal fibers of S. To achieve this, we execute a brutal power move described in Angiuli [Ang19]. Because R is a PER, we can conclude the following:

$$
\begin{align*}
& \sigma \mid==_{m^{\prime}} B_{0}\left[a_{0}\right] \sim B_{1}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right) \tag{3.1}\\
& \sigma \mid=m_{m^{\prime}} B_{0}\left[a_{1}\right] \sim B_{1}\left[a_{0}\right] \downarrow S\left(a_{1}, a_{0}\right) \tag{3.2}\\
& \sigma \mid={ }_{m^{\prime}} B_{0}\left[a_{1}\right] \sim B_{1}\left[a_{1}\right] \downarrow S\left(a_{1}, a_{1}\right) \tag{3.3}
\end{align*}
$$

Unfolding (3.1,3.2), we obtain the following symmetric instances:

$$
\begin{align*}
& \tau_{\alpha} \mid={ }_{m^{\prime}} B_{1}\left[a_{1}\right] \sim B_{0}\left[a_{0}\right] \downarrow S\left(a_{0}, a_{1}\right) \tag{3.4}\\
& \tau_{\alpha} \mid==_{m^{\prime}} B_{1}\left[a_{0}\right] \sim B_{0}\left[a_{1}\right] \downarrow S\left(a_{1}, a_{0}\right) \tag{3.5}
\end{align*}
$$

Unfolding (3.3) we have the following generalized transitivities:

$$
\begin{align*}
& \forall C, T . \tau_{\alpha} \neq{ }_{m^{\prime}} C \sim B_{0}\left[a_{1}\right] \downarrow T \Longrightarrow \tau_{\alpha} \neq{ }_{m^{\prime}} C \sim B_{1}\left[a_{1}\right] \downarrow T \wedge S\left(a_{1}, a_{1}\right)=T \tag{3.6}
\end{align*}
$$

Instantiating (3.6) with (3.4) we obtain $S\left(a_{1}, a_{1}\right)=S\left(a_{0}, a_{1}\right)$; instantiating (3.7) with (3.5) we further obtain $S\left(a_{1}, a_{1}\right)=S\left(a_{1}, a_{0}\right)$. Therefore, $S\left(a_{0}, a_{1}\right)=S\left(a_{1}, a_{0}\right)$.

1. $\llbracket \Pi \rrbracket(R, S)$ is a monotone PER. Monotonicity is given by 3.1 .5 ; but we need to show that it is symmetric and transitive.
a) Symmetry. Suppose that $m \Vdash v_{0} \sim v_{1} \in \llbracket \Pi \rrbracket(R, S)$; we need to show that $m \Vdash v_{1} \sim$ $v_{0} \in \llbracket \Pi \rrbracket(R, S)$. Fixing $m^{\prime} \leq m$ and $m^{\prime} \Vdash a_{0} \sim a_{1} \in R$, we need to show that $m^{\prime} \Vdash$ $\underline{\operatorname{app}}\left(u_{1}, a_{0}\right) \sim \underline{\operatorname{app}}\left(u_{0}, a_{1}\right) \in S\left(a_{0}, a_{1}\right)$. We note by assumption that $m^{\prime} \Vdash a_{1} \sim a_{0} \in R$ and therefore $m^{\prime} \Vdash \underline{\operatorname{app}}\left(u_{1}, a_{0}\right) \sim \underline{\operatorname{app}}\left(u_{0}, a_{1}\right) \in S\left(a_{1}, a_{0}\right)$. Therefore, it would suffice to observe that $S\left(a_{0}, a_{1}\right)_{m^{\prime}}=S\left(a_{1}, a_{0}\right)_{m^{\prime}}$, which we have above.
b) Transitivity. Suppose that $m \Vdash u_{0} \sim u_{1} \in \llbracket \Pi \rrbracket(R, S)$ and $m \Vdash u_{1} \sim u_{2} \in \llbracket \Pi \rrbracket(R, S)$; we need to show that $m \Vdash u_{0} \sim u_{2} \in \llbracket \Pi \rrbracket(R, S)$. Fixing $m^{\prime} \leq m$ and $R \Vdash a_{0} \sim a_{1} \in m^{\prime}$, we need to show that $m^{\prime} \Vdash \underline{\operatorname{app}}\left(u_{0}, a_{0}\right) \sim \underline{\operatorname{app}}\left(u_{2}, a_{1}\right) \in S\left(a_{0}, a_{1}\right)$. We obtain the following from our assumptions:

$$
\begin{align*}
& m^{\prime} \Vdash \underline{\operatorname{app}}\left(u_{0}, a_{0}\right) \sim \underline{\operatorname{app}}\left(u_{1}, a_{1}\right) \in S\left(a_{0}, a_{1}\right) \tag{3.8}\\
& m^{\prime} \Vdash \underline{\operatorname{app}}\left(u_{0}, a_{1}\right) \sim \underline{\operatorname{app}}\left(u_{1}, a_{0}\right) \in S\left(a_{1}, a_{0}\right) \tag{3.9}\\
& m^{\prime} \Vdash \underline{\operatorname{app}}\left(u_{1}, a_{0}\right) \sim \underline{\operatorname{app}}\left(u_{2}, a_{1}\right) \in S\left(a_{0}, a_{1}\right) \tag{3.10}
\end{align*}
$$

Using $(3.9,3.10)$ and the fact that S is transitive, it suffices to observe that $S\left(a_{0}, a_{1}\right)=$ $S\left(a_{1}, a_{0}\right)$, which we have already shown.
2. For all $m \leq n$, we have $\tau_{\alpha}=_{m} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(R, S)$. Fixing $m \leq n$, we need to show two things.
a) $\tau_{\alpha} \neq_{m} A_{0} \sim A_{1} \downarrow R$ can be obtained from our assumption that $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.
b) To see that $\left.\tau_{\alpha}\right|_{m} R \gg B_{0} \sim B_{1} \downarrow S$ holds, we fix $m^{\prime} \leq m$ and $m^{\prime} \Vdash a_{0} \sim a_{1} \in R$, and need to verify that $\tau_{\alpha} \mid=m_{m^{\prime}} B_{0}\left[a_{0}\right] \sim B_{1}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right)$. Instantiating our assumption $\sigma \neq_{n} R \gg B_{0} \sim B_{1} \downarrow S$ with $m^{\prime} \leq m \leq n$, we obtain $\sigma \neq_{m^{\prime}} B_{0}\left[a_{0}\right] \sim B_{1}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right)$, whence $\tau_{\alpha}==_{m^{\prime}} B_{0}\left[a_{0}\right] \sim B_{1}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right)$.
3. $\tau_{\alpha} \vDash{ }_{n} \Pi\left(A_{1}, B_{1}\right) \sim \Pi\left(A_{0}, B_{0}\right) \downarrow \llbracket \Pi \rrbracket(R, S)$.
a) $\tau_{\alpha}=_{m} A_{1} \sim A_{0} \downarrow R$ is obtained from our assumption that $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.
b) To see that $\tau_{\alpha}=_{m} R \gg B_{1} \sim B_{0} \downarrow S$ holds, we fix $m \leq n$ and $m \Vdash a_{0} \sim a_{1} \in R$, needing to verify that $\tau_{\alpha}=_{m} B_{1}\left[a_{0}\right] \sim B_{0}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right)$. We have already seen that $S\left(a_{0}, a_{1}\right)=S\left(a_{1}, a_{0}\right)$, so it suffices to show that $\tau_{\alpha}=_{m} B_{1}\left[a_{0}\right] \sim B_{0}\left[a_{1}\right] \downarrow S\left(a_{1}, a_{0}\right)$. But this is one of the symmetric instances of our assumption $\sigma \neq_{n} R>B_{0} \sim B_{1} \downarrow S$, considering $m \Vdash a_{1} \sim a_{0} \in R$.
4. If $\tau_{\alpha}=_{n} \Pi\left(A_{1}, B_{1}\right) \sim C \downarrow T$, then $\tau_{\alpha}=_{n} \Pi\left(A_{0}, B_{0}\right) \sim C \downarrow T$ and moreover $T=\llbracket \Pi \rrbracket(R, S)$. By inversion, we have $C=\Pi\left(A_{2}, B_{2}\right)$ and $T=\llbracket \Pi \rrbracket(U, V)$ such that $\tau_{\alpha}=_{n} A_{1} \sim A_{2} \downarrow U$ and $\tau_{\alpha}=_{n} U \gg B_{1} \sim B_{2} \downarrow V$. We need to verify that $\tau_{\alpha} \vDash=_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{2}, B_{2}\right) \downarrow \llbracket \Pi \rrbracket(U, V)$.
a) To see that $\tau_{\alpha} \mid={ }_{n} A_{0} \sim A_{2} \downarrow U$, we recall that our assumption $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$ contains a generalized transitivity which, when instantiated with $\tau_{\alpha} \models_{n} A_{1} \sim A_{2} \downarrow U$, obtains both our goal $\tau_{\alpha} \mid={ }_{n} A_{0} \sim A_{2} \downarrow U$ and moreover $R=U$.
b) Now we have to show that $\tau_{\alpha}=_{n} R \gg B_{0} \sim B_{2} \downarrow V$. Fixing $m \leq n$ and $m \Vdash a_{0} \sim a_{1} \in R$, we need to verify that $\tau_{\alpha} \vDash=_{m} B_{0}\left[a_{0}\right] \sim B_{2}\left[a_{1}\right] \downarrow V\left(a_{0}, a_{1}\right)$. Instantiating one of our hypotheses with $m \Vdash a_{1} \sim a_{1} \in R$, we have:

$$
\begin{equation*}
\tau_{\alpha} \mid={ }_{m} B_{1}\left[a_{1}\right] \sim B_{2}\left[a_{1}\right] \downarrow V\left(a_{1}, a_{1}\right) \tag{3.11}
\end{equation*}
$$

By assumption, we obtain $\sigma \mid={ }_{m} B_{0}\left[a_{0}\right] \sim B_{1}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right)$, and using its generalized transitivity at (3.11), we obtain $\tau_{\alpha} \mid={ }_{m} B_{0}\left[a_{0}\right] \sim B_{2}\left[a_{1}\right] \downarrow V\left(a_{1}, a_{1}\right)$ such that $V\left(a_{1}, a_{1}\right)=$ $S\left(a_{0}, a_{1}\right)$. It remains only to see that $V\left(a_{1}, a_{1}\right)=V\left(a_{0}, a_{1}\right)$, but we have already seen that this is the case.
c) It remains only to observe that $S=V$; but we had both $V\left(a_{1}, a_{1}\right)=V\left(a_{0}, a_{1}\right)$ and $V\left(a_{1}, a_{1}\right)=S\left(a_{0}, a_{1}\right)$.
5. If $\tau_{\alpha} \mid={ }_{n} C \sim \Pi\left(A_{0}, B_{0}\right) \downarrow T$, then $\tau_{\alpha} \mid={ }_{n} C \sim \Pi\left(A_{1}, B_{1}\right) \downarrow T$ and moreover $T=\llbracket \Pi \rrbracket(R, S)$. This is symmetric to the previous case.

Case.

$$
\frac{\sigma\left|{ }_{n} A_{0} \sim A_{1} \downarrow R \quad \sigma\right|={ }_{n} R \gg B_{0} \sim B_{1} \downarrow S}{\operatorname{Sg}[\sigma] \mid={ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow \llbracket \Sigma \rrbracket(R, S)}
$$

We show only that $\llbracket \Sigma \rrbracket(R, S)$ is a monotone PER; the other properties are exactly as in the case for Pi .

1. Monotonicity. By Lemma 3.1 .6 it suffices to show that both R and S are monotone, both of which are obtained by assumption.
2. Symmetry. Suppose $m \Vdash u_{0} \sim u_{1} \in \llbracket \Sigma \rrbracket(R, S)$; we need to show that $m \Vdash u_{1} \sim u_{0} \in \llbracket \Sigma \rrbracket(R, S)$.
a) We obtain $m \Vdash \underline{\mathbf{f s t}}\left(u_{1}\right) \sim \underline{\mathbf{f s t}}\left(u_{0}\right) \in R$ from $m \Vdash \underline{\mathbf{f s t}}\left(u_{0}\right) \sim \underline{\mathrm{fst}}\left(u_{1}\right) \in R$ using our induction hypothesis.
b) Next, we need to see that $m \Vdash \underline{\mathbf{n n d}}\left(u_{1}\right) \sim \underline{\operatorname{snd}}\left(u_{0}\right) \in S\left(\underline{\text { fst }}\left(u_{1}\right)\right.$, $\left.\underline{\mathbf{s t}}\left(u_{0}\right)\right)$. We obtain $m \Vdash$ $\underline{\operatorname{snd}}\left(u_{1}\right) \sim \underline{\operatorname{snd}}\left(u_{0}\right) \in S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\text { stt }}\left(u_{1}\right)\right)$ from $m \Vdash \underline{\operatorname{snd}}\left(u_{0}\right) \sim \underline{\operatorname{snd}}\left(u_{1}\right) \in S\left(\underline{\boldsymbol{f s t}}\left(u_{0}\right), \underline{\operatorname{fst}}\left(u_{1}\right)\right)$ using our induction hypothesis, so it suffices to see observe that $S\left(\underline{\operatorname{fst}}\left(u_{0}\right), \underline{\mathbf{f s t}}\left(u_{1}\right)\right)=$ $S\left(\underline{\mathbf{f s t}}\left(u_{1}\right), \underline{\mathrm{fst}}\left(u_{0}\right)\right)$, which we have already proved.
3. Transitivity. Suppose $m \Vdash u_{0} \sim u_{1} \in \llbracket \Sigma \rrbracket(R, S)$ and $m \Vdash u_{1} \sim u_{2} \in \llbracket \Sigma \rrbracket(R, S)$; we need to show that $m \Vdash u_{0} \sim u_{2} \in \llbracket \Sigma \rrbracket(R, S)$.
a) We obtain $m \Vdash \underline{\mathbf{f s}}\left(u_{0}\right) \sim \underline{\mathbf{f s t}}\left(u_{2}\right) \in R$ using the transitivity of R, which we have assumed.
b) It remains to show that $m \Vdash \underline{\text { snd }}\left(u_{0}\right) \sim \underline{\operatorname{snd}}\left(u_{2}\right) \in S\left(\underline{\text { fst }}\left(u_{0}\right)\right.$, $\left.\underline{\text { st }}\left(u_{2}\right)\right)$. By transitivity of S, it suffices to show that $S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\mathbf{f s t}}\left(u_{1}\right)\right)=S\left(\underline{\mathbf{f s t}}\left(u_{1}\right), \underline{\mathrm{fst}}\left(u_{2}\right)\right)=S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\text { fst }}\left(u_{2}\right)\right)$. But we have already observed that this is entailed by $m \Vdash \underline{f s t}\left(u_{0}\right) \sim \underline{\mathbf{f s t}}\left(u_{1}\right) \in R$ and $m \Vdash \underline{\mathrm{fst}}\left(u_{1}\right) \sim \underline{\mathrm{fst}}\left(u_{2}\right) \in R$.

Case.

$$
\frac{\sigma \vDash{ }_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim u_{0} \in R \quad n \Vdash v_{1} \sim u_{1} \in R}{\operatorname{Id}[\sigma]=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)}
$$

1. $\llbracket \mathrm{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$ is a monotone PER. By Lemma 3.1.8.
2. For $n^{\prime} \leq n$ we have $\tau_{\alpha} \mid={ }_{n^{\prime}} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$. Observe that we have $\sigma \mid=_{n} A_{0} \sim B_{0} \downarrow R$ and therefore $\tau_{\alpha} \mid=_{n^{\prime}} A_{0} \sim B_{0} \downarrow R$ along with $n \Vdash u_{0} \sim v_{0} \in R$, and $n \Vdash u_{1} \sim v_{1} \in R$. Our goal is immediate as R must be monotone.
3. We have $\tau_{\alpha}=_{n} \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \sim \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$. Observe that we have $\sigma \mid={ }_{n}$ $A_{0} \sim A_{1} \downarrow R$ and therefore we know that R is a monone PER as well as $\tau_{\alpha} \mid={ }_{n} A_{1} \sim A_{0} \downarrow R$. As noted above, we have $n \Vdash u_{0} \sim v_{0} \in R$ and $n \Vdash u_{1} \sim v_{1} \in R$ so the symmetry of R tells us that $n \Vdash v_{0} \sim u_{0} \in R$ and $n \Vdash v_{1} \sim u_{1} \in R$. Again, because R is a monotone PER we must have that $\llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)=\llbracket \operatorname{Id} \rrbracket\left(R, v_{0}, v_{1}\right)$. Therefore, we have $\tau_{\alpha}=_{n} \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \sim$ $\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$ as required.
4. If $\tau_{\alpha} \neq{ }_{n} \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \sim C \downarrow T$, then $\tau_{\alpha}=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim C \downarrow T$ and moreover $T=$ $\llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$. By inversion, we have $C=\operatorname{Id}\left(A_{2}, w_{0}, w_{1}\right)$ and $T=\llbracket \operatorname{Id} \rrbracket\left(S, w_{0}, w_{1}\right)$ for some S such that $\tau_{\alpha}=_{n} A_{1} \sim A_{2} \downarrow S, n \Vdash u_{0} \sim w_{0} \in S$ and $n \Vdash u_{1} \sim w_{1} \in S$. Let us first observe that by induction hypothesis that we have $\tau_{\alpha}=_{A_{0}} A_{2} \sim S$ and $S=R$. Therefore, we may conclude that $n \Vdash v_{0} \sim w_{0} \in R$ and $n \Vdash v_{1} \sim w_{1} \in R$ as $R=S$ and R is a monotone PER. This also tells us that $T=\llbracket\left[\mathrm{Id} \rrbracket\left(R, u_{0}, u_{1}\right)\right.$.
Therefore, we have $\tau_{\alpha} \vDash=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim C \downarrow T$ as required.
5. If $\tau_{\alpha} \mid={ }_{n} C \sim \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \downarrow T$, then $\tau_{\alpha}=_{n} C \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow T$ and moreover $T=$ $\llbracket \mathrm{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$. Identical to the above.

Case.

$$
\frac{\forall m \cdot \sigma \mid={ }_{m} A_{0} \sim A_{1} \downarrow R(m) \quad S=\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in R(n)\right\}}{\operatorname{Box}[\sigma] \mid=A_{n} \square A_{0} \sim \square A_{1} \downarrow \llbracket \square \rrbracket(S)}
$$

1. $\llbracket \square \rrbracket(S)$ is a monotone PER. By Lemma 3.1.7.
2. For $n^{\prime} \leq n$ we have $\tau_{\alpha}=_{n^{\prime}} \square A_{0} \sim \square A_{1} \downarrow \llbracket \square \rrbracket(S)$. Observe that we have $\sigma \models_{n^{\prime}} A \sim B \downarrow R\left(n^{\prime}\right)$, and thence $\sigma \neq_{n^{\prime}} A \sim B \downarrow R\left(n^{\prime}\right)$. Our goal is immediate.
3. We have $\tau_{\alpha}=_{n} \square A_{1} \sim \square A_{0} \downarrow \llbracket \square \rrbracket(S)$. Observe that we have $\sigma \neq{ }_{m} A_{0} \sim A_{1} \downarrow R(m)$ for all m, and therefore also $\tau_{\alpha} \mid={ }_{m} A_{1} \sim A_{0} \downarrow R(m)$, from which we conclude $\tau_{\alpha} \mid={ }_{n} \square A_{1} \sim \square A_{0} \downarrow$ $\llbracket \square \rrbracket(S)$.
4. If $\tau_{\alpha}=_{n} \square A_{1} \sim C \downarrow T$, then $\tau_{\alpha}=_{n} \square A_{0} \sim C \downarrow T$ and moreover $T=\llbracket \square \rrbracket(S)$. By inversion, we have $C=\square A_{2}$ and $T=\llbracket \square \rrbracket\left(\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in U(n)\right\}\right)$ for some $U \in \operatorname{Rel}^{\mathbb{P}}$, such that for all m, we have $\tau_{\alpha}=_{m} A_{1} \sim A_{2} \downarrow U(m)$.
a) We need to show that $\tau_{\alpha} \mid={ }_{n} \square A_{0} \sim \square A_{2} \downarrow \llbracket \square \rrbracket\left(\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in U(n)\right\}\right)$. It suffices to show that for all m, we have $\tau_{\alpha}=_{n} A_{0} \sim A_{2} \downarrow U(m)$. Because both $\sigma \mid={ }_{m} A_{0} \sim A_{1} \downarrow R(m)$ and $\tau_{\alpha}=_{m} A_{1} \sim A_{2} \downarrow U(m)$, we have by generalized transitivity both $\tau_{\alpha} \mid={ }_{m} A_{0} \sim A_{2} \downarrow U(m)$ and $U(m)=R(m)$ for all m.
b) We have already observed that $U=R$, so clearly $T=\llbracket \square \rrbracket(S)$.
5. If $\tau_{\alpha} \mid={ }_{n} C \sim \square A_{0} \downarrow T$, then $\tau_{\alpha} \mid={ }_{n} C \sim \square A_{1} \downarrow T$ and moreover $T=\llbracket \square \rrbracket(S)$. Identical to the above.

Lemma 3.2.6. If $e_{0} \sim e_{1} \in \mathcal{N} e$ then $\tau_{\alpha}=_{n} \uparrow^{U_{i}} e_{0} \sim \uparrow^{U_{i}} e_{1}$ for any $i<\alpha$.
Proof. We have Ne $\mid={ }_{n} \uparrow^{\mathrm{U}_{i}} e_{0} \sim \uparrow^{\mathrm{U}_{i}} e_{1}$.
Lemma 3.2.7 (Compatibility). Each τ_{α} is compatible and valued in compatible PERs (recall Definition 3.1.4). The partial equivalence relation given by $\tau_{\alpha}{==_{m}-\sim-i s ~ c o m p a t i b l e ~ f o r ~ t y p e s ~ a n d ~ i f ~}_{\tau_{\alpha}}=_{m} A_{0} \sim A_{1} \downarrow R$ then R is compatible for $\left(A_{0}, A_{1}\right)$.

Proof. We proceed by strong induction on α, and then show that the following $\sigma \in$ Sys is a pre-fixed point of each Types ${ }_{\alpha}[-]$:

$$
\frac{A_{0} \sim A_{1} \in \mathcal{T} y \quad \tau_{\alpha} \mid=_{m} A_{0} \sim A_{1} \downarrow R \quad R \text { is compatible }}{\left.\sigma\right|_{m} A_{0} \sim A_{1} \downarrow R}
$$

Supposing that $\left.\operatorname{Types}_{\alpha}[\sigma]\right|_{n} A_{0} \sim A_{1} \downarrow R$, we establish $\sigma \mid=_{n} A_{0} \sim A_{1} \downarrow R$ by case.
Case.

$$
\operatorname{Univ}_{\alpha}=_{n} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow R \text { where } i<\alpha \text { and } R=\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{i}\right|={ }_{m} A_{0} \sim A_{1}\right\}
$$

We only need to observe that R is compatible.

1. Suppose $e_{0} \sim e_{1} \in \mathcal{N} e$; by Lemma 3.2.6 we have $\tau_{i}=_{n} \uparrow^{U_{i}} e_{0} \sim \uparrow^{U_{i}} e_{1}$.
2. Suppose $\tau_{i} \mid={ }_{n} A_{0} \sim A_{1}$; we observe that $\downarrow^{\mathrm{U}_{i}} A_{0} \sim \downarrow^{\mathrm{U}_{i}} A_{1} \in \mathcal{N} f$ follows from $A_{0} \sim A_{1} \in \mathcal{T} y$, which we obtain from our induction hypothesis at $i<\alpha$.

Case.

$$
\frac{\sigma=_{n} A_{0} \sim A_{1} \downarrow R \quad \sigma \mid={ }_{n} R \gg B_{0} \sim B_{1} \downarrow S}{\operatorname{Pi}[\sigma]=_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(R, S)}
$$

1. First, we check that $\Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \in \mathcal{T} y$. It suffices to check the following:
a) $A_{0} \sim A_{1} \in \mathcal{T} y$, which is obtained $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.
b) $\tau_{\alpha}=_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right)$ follows from our induction hypotheses.
c) For all $k, B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{k}\right] \sim B_{1}\left[\uparrow{ }^{A_{1}} \operatorname{var}_{k}\right] \in \mathcal{T} y$. To see that this holds, we observe because R is compatible with $\left(A_{0}, A_{1}\right)$, we have $n \Vdash \uparrow^{A_{0}} \operatorname{var}_{k} \sim \uparrow^{A_{1}} \operatorname{var}_{k} \in R$ and therefore $\sigma \mid={ }_{n}$ $B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{k}\right] \sim B_{1}\left[\uparrow^{A_{1}} \operatorname{var}_{k}\right]$; from this, we obtain $B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{k}\right] \sim B_{1}\left[\uparrow^{A_{1}} \operatorname{var}_{k}\right] \in \mathcal{T} y$.
2. Next, we check that $\llbracket \Pi \rrbracket(R, S)$ is compatible with $\left(\Pi\left(A_{0}, B_{0}\right), \Pi\left(A_{1}, B_{1}\right)\right)$.
a) Suppose $e_{0} \sim e_{1} \in \mathcal{N}$ e; we need to show that $n \Vdash \uparrow \Pi\left(A_{0}, B_{0}\right) e_{0} \sim \uparrow \Pi\left(A_{1}, B_{1}\right) e_{1} \in \llbracket \Pi \rrbracket(R, S)$. Fixing $m \leq n$ and $m \Vdash v_{0} \sim v_{1} \in R$, we must verify that $m \Vdash \operatorname{app}\left(\uparrow^{\Pi\left(A_{0}, B_{0}\right)} e_{0}, v_{0}\right) \sim$ $\underline{\operatorname{app}}\left(\uparrow^{\Pi\left(A_{1}, B_{1}\right)} e_{1}, v_{1}\right) \in S\left(v_{0}, v_{1}\right)$, which reduces to showing $m \Vdash \uparrow^{\overrightarrow{B_{0}}\left[v_{0}\right]} e_{0} \cdot \operatorname{app}\left(\downarrow^{A_{0}} v_{0}\right) \sim$ $\uparrow^{B_{1}\left[v_{1}\right]} e_{1} \cdot \operatorname{app}\left(\downarrow^{A_{1}} v_{1}\right) \in S\left(v_{0}, v_{1}\right)$. By induction, the fiber $S\left(v_{0}, v_{1}\right)$ is compatible with $\left(B_{0}\left[v_{0}\right], B_{1}\left[v_{1}\right]\right)$, so it would suffice to know that $e_{0} \cdot \operatorname{app}\left(\downarrow^{A_{0}} v_{0}\right) \sim e_{1} \cdot \operatorname{app}\left(\downarrow^{A_{1}} v_{0}\right) \in \mathcal{N} e$. This in turn follows from $e_{0} \sim e_{1} \in \mathcal{N} e$ (which we have assumed), and $\downarrow^{A_{0}} v_{0} \sim \downarrow^{A_{1}} v_{1} \in$ $\mathcal{N} f$, which we obtain from the compatibility of R with $\left(A_{0}, a_{1}\right)$ and our assumption $n \Vdash v_{0} \sim v_{1} \in R$.
b) Suppose $n \Vdash u_{0} \sim u_{1} \in \llbracket \Pi \rrbracket(R, S)$; we need to show that $\downarrow^{\Pi\left(A_{0}, B_{0}\right)} u_{0} \sim \downarrow^{\Pi\left(A_{1}, B_{1}\right)} u_{1} \in \mathcal{N} f$. It suffices to show that for all $k, \downarrow^{B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{k}\right]} \underline{\operatorname{app}}\left(u_{0}, \uparrow^{A_{0}} \operatorname{var}_{k}\right) \sim \downarrow^{B_{1}\left[\uparrow^{A_{1}} \operatorname{var}_{k}\right]} \underline{\operatorname{app}}\left(u_{1}, \uparrow^{A_{1}} \operatorname{var}_{k}\right) \in$ $\mathcal{N} f$. First, observe that this would follow if we could show that $S\left(\uparrow^{A_{0}} \operatorname{var}_{k}, \uparrow^{A_{1}} \operatorname{var}_{k}\right)$ were compatible with ($B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{k}\right], B_{1}\left[\uparrow^{A_{1}} \operatorname{var}_{k}\right]$); this we can obtain from $n \Vdash \uparrow^{A_{0}} \operatorname{var}_{k} \sim$ $\uparrow^{A_{1}} \operatorname{var}_{k} \in R$, which follows from the compatiblity of R with $\left(A_{0}, A_{1}\right)$, and the fact that $\operatorname{var}_{k} \sim \operatorname{var}_{k} \in \mathcal{N}$.

Case.

$$
\frac{\sigma=_{n} A_{0} \sim A_{1} \downarrow R \quad \sigma=_{n} R \gg B_{0} \sim B_{1} \downarrow S}{\operatorname{Sg}[\sigma]=_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow \llbracket \Sigma \rrbracket(R, S)}
$$

1. We observe that $\Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \in \mathcal{T} y$ in the exact same way that we did for dependent function types above.
2. $\tau_{\alpha}=_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right)$ follows from our induction hypotheses.
3. We check that $\llbracket \Sigma \rrbracket(R, S)$ is compatible with $\left(\Sigma\left(A_{0}, B_{0}\right), \Sigma\left(A_{1}, B_{1}\right)\right)$:
a) Suppose that $e_{0} \sim e_{1} \in \mathcal{N}$ e we need to show that $n \Vdash \uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e_{0} \sim \uparrow^{\Sigma\left(A_{1}, B_{1}\right)} e_{1} \in$ $\llbracket \Sigma \rrbracket(R, S)$.
i. We have to check $n \Vdash \underline{\operatorname{fst}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e_{0}\right) \sim \underline{\operatorname{fst}}\left(\uparrow^{\Sigma\left(A_{1}, B_{1}\right)} e_{1}\right) \in R$, which is the same as to say, $n \Vdash \uparrow^{A_{0}} e_{0}$.fst $\sim{\widehat{\uparrow^{A}}}^{A_{1}} e_{1}$.fst $\in R$. This follows from the compatibility of R with (A_{0}, A_{1}) and the fact that e_{0}.fst $\sim e_{1}$.fst $\in \mathcal{N e}$.
ii. We check $n \Vdash \underline{\operatorname{snd}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e_{0}\right) \sim \underline{\operatorname{snd}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e_{1}\right) \in S\left(\uparrow^{A_{0}} e_{0}\right.$.fst, $\uparrow^{A_{1}} e_{1}$.fst), which is the same as to say:

$$
n \Vdash \uparrow^{B_{0}\left[\uparrow^{A_{0}} e_{0} . \mathrm{fst}\right]} e_{0} . \mathrm{snd} \sim \uparrow^{B_{1}\left[\uparrow^{A_{1}} e_{1} . f \mathrm{fst}\right]} e_{1} . \text { snd } \in S\left(\uparrow^{A_{0}} e_{0} . \mathrm{fst}, \uparrow^{A_{1}} e_{1} . \mathrm{fst}\right)
$$

Observing that e_{0}.snd $\sim e_{1}$.snd $\in \mathcal{N}$ e, it would suffice to show that the fiber $S\left(\uparrow^{A_{0}} e_{0} . \mathrm{fst}, \uparrow^{A_{1}} e_{1} . \mathrm{fst}\right)$ is compatible with ($\left.B_{0}\left[\uparrow^{A_{0}} e_{0} . \mathrm{fst}\right], B_{1}\left[\uparrow^{A_{1}} e_{1} . f s t\right]\right)$. This would follow from our induction hypothesis, if we could show that $n \Vdash \uparrow^{A_{0}} e_{0}$.fst \sim $\uparrow^{A_{1}} e_{1}$.fst $\in R$; this follows from the compatibility of R with $\left(A_{0}, A_{1}\right)$ and the fact that e_{0}.fst $\sim e_{1}$.fst $\in \mathcal{N e}$.
b) Suppose that $n \Vdash u_{0} \sim u_{1} \in \llbracket \Sigma \rrbracket(R, S)$; we need to show that $\downarrow^{\Sigma\left(A_{0}, B_{0}\right)} u_{0} \sim \downarrow^{\Sigma\left(A_{1}, B_{1}\right)} u_{1} \in$ $\mathcal{N} f$. This reduces to two subproblems:
i. First, we need to show that $\downarrow^{A_{0}} \underline{\mathbf{f s t}}\left(u_{0}\right) \sim \downarrow^{A_{1}} \underline{\mathbf{f s t}}\left(u_{1}\right) \in \mathcal{N} f$. By assumption, we have $n \Vdash \underline{\mathbf{f s t}}\left(u_{0}\right) \sim \underline{\mathrm{fst}}\left(u_{1}\right) \in R$, and so our goal follows from the compatibility of R with $\left(A_{0}, A_{1}\right)$.
ii. Second, we need to show that $\downarrow^{B_{0}} \underline{\left.\underline{f s t}\left(u_{0}\right)\right]} \underline{\operatorname{snd}}\left(u_{0}\right) \sim \downarrow^{B_{1}\left[\underline{f s t}\left(u_{1}\right)\right]} \underline{\operatorname{snd}}\left(u_{1}\right) \in \boldsymbol{N} f$. First, observe that $S\left(\underline{\mathbf{f s t}}\left(u_{0}\right), \underline{\mathbf{f s t}}\left(u_{1}\right)\right)$ is compatible with $\left(B_{0}\left[\underline{\mathbf{f s t}}\left(u_{0}\right)\right], B_{1}\left[\underline{\mathbf{f s t}}\left(u_{1}\right)\right]\right)$, following from the fact that $n \Vdash \underline{\mathrm{fst}}\left(u_{0}\right) \sim \underline{\mathrm{fst}}\left(u_{1}\right) \in R$. Therefore, our goal follows from our assumption that $n \Vdash \underline{\mathbf{s n d}}\left(u_{0}\right) \sim \underline{\operatorname{snd}}\left(u_{1}\right) \in S\left(\underline{\mathbf{f s t}}\left(u_{0}\right)\right.$, $\left.\underline{\mathbf{s t}}\left(u_{1}\right)\right)$.

Case.

$$
\frac{\sigma \neq_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim u_{0} \in R \quad n \Vdash v_{1} \sim u_{1} \in R}{\operatorname{Id}[\sigma]=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)}
$$

1. We observe that $\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \in \mathcal{T} y$ follows from $A_{0} \sim A_{1} \in \mathcal{T} y, \downarrow^{A_{0}} u_{i} \sim$ $\downarrow^{A_{0}} u_{i} \in \mathcal{N} f$, which are all obtained from the induction hypothesis.
2. $\tau_{\alpha}=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)$ follows from the induction hypothesis.
3. Finally, we check that $\llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$ is compatible with $\left(\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right), \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)\right)$.
a) Suppose that $e_{0} \sim e_{1} \in \mathcal{N} e$; we need to show that $n \Vdash \uparrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} e_{0} \sim \uparrow^{\operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)} e_{1} \in$ $\llbracket I d \rrbracket\left(R, u_{0}, u_{1}\right)$. This is immediate from the definition of $\llbracket I \mathrm{~d} \rrbracket \rrbracket\left(R, u_{0}, u_{1}\right)$.
b) Suppose that $n \Vdash v_{0} \sim v_{1} \in \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$; we need to show that $\downarrow \mathrm{Id}\left(A_{0}, v_{0}, v_{1}\right) v_{0} \sim$ $\downarrow^{\operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)} v_{1} \in \mathcal{N} f$. We shall show this by cases on $n \Vdash v_{0} \sim v_{1} \in \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$.
i. For the first suppose that $u_{i}=\operatorname{refl}\left(w_{i}\right)$ such that $n \Vdash u_{0} \sim w_{0} \in R, n \Vdash w_{0} \sim w_{1} \in R$, and $n \Vdash w_{1} \sim u_{1} \in R$. We wish to show that $\downarrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} v_{0} \sim \downarrow^{\operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)} v_{1} \in \mathcal{N} f$ holds. By inspection on the definition of quotation we see that it is sufficient to show that $\downarrow^{A_{0}} w_{0} \sim \downarrow^{A_{1}} w_{1} \in \mathcal{N} f$. This, however, is immediate from our induction hypothesis.
ii. For the second case we suppose that $u_{i}=\uparrow^{\operatorname{Id}(-,-,-)} e_{i}$ such that $e_{0} \sim e_{1} \in \mathcal{N} e$. We see by inspection that it suffices to show $e_{0} \sim e_{1} \in \mathcal{N} e$ so this case is immediately satisfied.

Case.

$$
\frac{\forall m . \sigma \mid=A_{m} A_{0} \sim A_{1} \downarrow R(m) \quad S=\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in R(n)\right\}}{\operatorname{Box}[\sigma]=_{n} \square A_{0} \sim \square A_{1} \downarrow \llbracket \square \rrbracket(S)}
$$

1. We observe that $\square A_{0} \sim \square A_{1} \in \mathcal{T} y$ follows from $A_{0} \sim A_{1} \in \mathcal{T} y$, which is obtained from the induction hypothesis.
2. $\tau_{\alpha}=_{n} \square A_{0} \sim \square A_{1}$ follows from the induction hypothesis.
3. Finally, we check that $\llbracket \square \rrbracket(S)$ is compatible with ($\left.\square A_{0}, \square A_{1}\right)$.
a) Suppose that $e_{0} \sim e_{1} \in \mathcal{N} e$; we need to show that $n \Vdash \uparrow^{\square A_{0}} e_{0} \sim \uparrow \square A_{1} e_{1} \in \llbracket \square \rrbracket(S)$. Unfolding definitions, this means that for all m, we need to show that $m \Vdash \underline{\text { open }}\left(\uparrow^{\square A_{0}} e_{0}\right) \sim$ $\underline{\operatorname{open}}\left(\uparrow^{\square A_{1}} e_{1}\right) \in R(m)$, which is the same as to say $m \Vdash \uparrow^{A_{0}} e_{0}$.open $\overline{\sim \uparrow^{A_{1}}} e_{1}$.open \in $R(m)$. By the induction hypothesis, we know that each $R(m)$ is compatible with $\left(A_{0}, A_{1}\right)$, so it suffices to observe that e_{0}.open $\sim e_{1}$.open $\in \mathcal{N} e$.
b) Suppose that $n \Vdash v_{0} \sim v_{1} \in \llbracket \square \rrbracket(S)$; we need to show that $\downarrow^{\square A_{0}} v_{0} \sim \downarrow^{\square A_{1}} v_{1} \in \mathcal{N} f$. It suffices to verify that $\downarrow^{A_{0}}$ open $\left(v_{0}\right) \sim \downarrow^{A_{1}}$ open $\left(v_{1}\right) \in \mathcal{N} f$. Because each $R(n)$ is compatible with $\left(A_{0}, A_{1}\right)$, we just need to show that $n \Vdash \underline{\text { open }}\left(v_{0}\right) \sim \underline{\text { open }}\left(v_{1}\right) \in R(n)$. But this follows from our assumption that $n \Vdash v_{0} \sim v_{1} \in \llbracket \square \rrbracket(S)$.

Case.

$$
\text { Nat } \mid={ }_{n} \text { nat } \sim \text { nat } \downarrow \llbracket \mathbb{N} \rrbracket
$$

We only need to show that $\llbracket \mathbb{N} \rrbracket$ is compatible with (nat, nat).

1. Suppose that $e_{0} \sim e_{1} \in \mathcal{N e}$; it is immediate that $n \Vdash \uparrow^{\text {nat }} e_{0} \sim \uparrow^{\text {nat }} e_{1} \in \llbracket \mathbb{N} \rrbracket$ for all n.
2. Suppose that $n \Vdash v_{0} \sim v_{1} \in$ nat; we need to show that $\downarrow^{\text {nat }} v_{0} \sim \downarrow^{\text {nat }} v_{1} \in \mathcal{N} f$. We proceed by induction on $n \Vdash v_{0} \sim v_{1} \in$ nat.
a) Trivially, we have $\downarrow^{\text {nat }}$ zero $\sim \downarrow^{\text {nat }}$ zero $\in \mathcal{N} f$.
b) Assuming $\downarrow^{\text {nat }} u_{0} \sim \downarrow^{\text {nat }} u_{1} \in \mathcal{N} f$, we observe that $\downarrow^{\text {nat }} \operatorname{succ}\left(u_{0}\right) \sim \downarrow^{\text {nat }} \operatorname{succ}\left(u_{1}\right) \in \mathcal{N} f$.
c) Finally, assuming $e_{0} \sim e_{1} \in \mathcal{N} e$ we verify that $\downarrow^{\text {nat }} \uparrow^{\text {nat }} e_{0} \sim \downarrow^{\text {nat }} \uparrow^{\text {nat }} e_{1} \in \mathcal{N} f$.

Lemma 3.2.8. $\tau_{(-)}$is cumulative.
Proof. In order to show this, first recall that $\mu:(L \rightarrow L) \rightarrow L$, the least fixed-point operator, is a monotone function. In order to show that if $i \leq \alpha$ then $\tau_{i} \leq \tau_{\alpha}$, therefore, it suffices to show that Types $_{i}[\sigma] \leq$ Types $_{\alpha}[\sigma]$ for all σ. Examination of the definition of Types ${ }_{i}$ and Types ${ }_{\alpha}$ shows us that we merely need to show $\operatorname{Univ}_{i} \leq \operatorname{Univ}_{\alpha}$ as the rest of the definition is identical.

Suppose that $\operatorname{Univ}_{i} \mid={ }_{n} A \sim B \downarrow R$, we wish to show $\operatorname{Univ}_{\alpha} \mid={ }_{n} A \sim B \downarrow R$. Inversion on our premise tells us that we must have some $j<i$ such that $\mathrm{U}_{j}=A=B$. We must also have that $m \Vdash v_{0} \sim v_{1} \in R$ if and only if $\tau_{j}=_{m} v_{0} \sim v_{0}$. Since $i \leq \alpha$ we then have that $j \leq \alpha$ and so $\operatorname{Univ}_{\alpha}=_{n} A \sim B \downarrow R$ holds as required.

3.3 Completeness

In order to prove the fundamental theorem for this logical relation, we must first define a notion of closing substitution. This is somewhat subtle because of the richer notion of context, the indexing, and the dependency.

$$
\begin{aligned}
& \overline{n \Vdash \cdot=\cdot:} \quad \frac{n \Vdash \rho_{0}=\rho_{1}: \Gamma \quad n \Vdash v_{0}=v_{1}: A\left[\rho_{0} ; \rho_{1}\right]}{n \Vdash \rho_{0} \cdot v_{0}=\rho_{1} \cdot v_{1}: \Gamma . A} \quad \frac{\exists m . m \Vdash \rho_{0}=\rho_{1}: \Gamma}{n \Vdash \rho_{0}=\rho_{1}: \Gamma . \boldsymbol{0}} \\
& \frac{\llbracket A \rrbracket_{\rho_{0}}=A_{0} \quad \llbracket A \rrbracket_{\rho_{1}}=A_{1} \quad \tau_{\omega}=_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim v_{1} \in R}{n \Vdash v_{0}=v_{1}: A\left[\rho_{1} ; \rho_{2}\right]}
\end{aligned}
$$

Lemma 3.3.1. For all n and $\Gamma, n \Vdash-=-: \Gamma$ is a PER on environments.
Proof. Immediate by induction on Γ with Lemma 3.2.5.
Lemma 3.3.2. For $\Gamma,-\Vdash-=-: \Gamma$ is monotone.
Proof. Immediate by induction on Γ with Lemma 3.2.5.
Lemma 3.3.3. If $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ then there is some $m \leq n$ such that $m \Vdash \rho_{0}=\rho_{1}: \Gamma^{\Gamma}$.
Proof. This follows by induction on Γ using Lemma 3.3.2.
Lemma 3.3.4. If $\Gamma_{0} \triangleright^{2} \Gamma_{1}$ and $n \Vdash \rho_{0}=\rho_{1}: \Gamma_{0}$ then $n \Vdash \rho_{0}=\rho_{1}: \Gamma_{1}$.
Proof. This follows by induction on $\Gamma_{0} \triangleright \Gamma_{1}$. We show the non-congruence cases.

Case．

$\overline{\square \unrhd}$ Г．

In this case，suppose we have $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ ．We wish to show $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ ．．It suffices to find an m such that $m \Vdash \rho_{0}=\rho_{1}: \Gamma$ but picking $m=n$ gives this immediately．

Case．

In this case，suppose we have $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ ．요．We wish to show $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ ．ㅇ．It suffices to find an m such that $m \Vdash \rho_{0}=\rho_{1}: \Gamma$ ．This is immediate，however，by inverting upon $n \Vdash \rho_{0}=\rho_{1}: \Gamma$

Case．

$\overline{\text { Г．＠．T } \triangleright_{\mathrm{g}} \text { Г．Т．ロ }}$

In this case，suppose we have $n \Vdash \rho_{0} \cdot v_{0}=\rho_{1} \cdot v_{1}: \Gamma$. ．$T$ ．We wish to show $n \Vdash \rho_{0}=\rho_{1}:$ Г．T．＠． It suffices to find an o such that $o \Vdash \rho_{0} . v_{0}=\rho_{1} \cdot v_{1}:$ Г．T．By inversion on $n \Vdash \rho_{0}=\rho_{1}:$ Г．⿱㇒日．T we know that there is some m such that $m \Vdash \rho_{0}=\rho_{1}: \Gamma$ and that $n \Vdash v_{0}=v_{1}: T\left[\rho_{1} ; \rho_{2}\right]$ ．By Lemma 3．3．2 we then have that $\min (m, n) \Vdash \rho_{0} \cdot v_{0}=\rho_{1} \cdot v_{0}: \Gamma . T$ ．Choosing $o=\min (m, n)$ gives the desired conclusion．

Theorem 3．3．5（Completeness）．The following 6 statements hold．
1．If $\Gamma \vdash A$ type and $n \Vdash \rho_{0}=\rho_{1}$ ：Γ then there exists A_{0}, A_{1} such that $\llbracket A \rrbracket_{\rho_{0}}=A_{0}$ and $\llbracket A \rrbracket_{\rho_{1}}=A_{1}$ and $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1}$.

2．If $\Gamma \vdash t: A$ and $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ then there exists A_{0}, A_{1} and v_{0}, v_{1} such that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}, \llbracket t \rrbracket_{\rho_{i}}=v_{i}$ ， and there is an R such that $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ ．

3．If $\Gamma \vdash \delta: \Delta$ and $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ then there exists $\rho_{0}^{\prime}, \rho_{1}^{\prime}$ such that $\llbracket \delta \rrbracket_{\rho_{i}}=\rho_{i}^{\prime}$ and $n \Vdash \rho_{0}^{\prime}=\rho_{1}^{\prime}: \Delta$
4．If $\Gamma \vdash A_{0}=A_{1}$ type and $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ then there exists A_{0}, A_{1} such that $\llbracket A_{i} \rrbracket \rho_{i}=A_{i}$ and $\tau_{\omega} \neq{ }_{n} A_{0} \sim A_{1}$.

5．If $\Gamma \vdash t_{0}=t_{1}: A$ and $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ then there exists A_{0}, A_{1} and v_{0}, v_{1} such that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ ， $\llbracket t_{i} \rrbracket_{\rho_{i}}=v_{i}$ ，and there is an R such that $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ ．

6．If $\Gamma \vdash \delta_{0}=\delta_{1}: \Delta$ and $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ then there exists $\rho_{0}^{\prime}, \rho_{1}^{\prime}$ such that $\llbracket \delta_{i} \rrbracket_{\rho_{i}}=\rho_{i}^{\prime}$ and $n \Vdash \rho_{0}^{\prime}=\rho_{1}^{\prime}: \Delta$

Proof．Completeness is obtained by mutual induction on the derivations；we illustrate the cases of substance．Since all the unary cases are identical to the congruence cases we have elided these．

Case．

$$
\frac{\Gamma . \Omega \vdash A_{0}=A_{1} \text { type }}{\Gamma \vdash \square A_{0}=\square A_{1} \text { type }}
$$

Suppose that $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ ；we need to show that for some C_{i} we have $\llbracket \square A_{i} \rrbracket \rho_{\rho_{i}}=C_{i}$ and some R such that $\tau_{\omega} \mid={ }_{n} C_{0} \sim C_{1} \downarrow R$ ．

By our induction hypothesis，for all stages m ，we have some A_{m}^{i}, S_{m} such that $\llbracket A_{i} \rrbracket_{\rho_{i}}=A_{m}^{i}$ and $\tau_{\omega} \mid={ }_{m} A_{m}^{0} \sim A_{m}^{i} \downarrow S_{m}$ ．By the determinacy of evaluation，we can that A_{m}^{i} do not vary in m ，so we are justified in calling them A_{i} ．Using the determinacy of the type system and the constructive
axiom of unique choice, we furthermore obtain in fact a family of relations $S \in \operatorname{Rel}^{\mathbb{P}}$ from the individual relations S_{m}.

Inspecting the definition of the evaluation relation, we are free to choose $C_{i}=\square A_{i}$, choosing a suitable R as follows:

$$
R=\llbracket \square \rrbracket\left(\left\{\left(m, v_{0}, v_{1}\right) \mid m \Vdash v_{0} \sim v_{1} \in S(m)\right\}\right)
$$

It remains to show that $\tau_{\omega}=_{n} \square A_{0} \sim \square A_{1} \downarrow R$; using the closure of the type system under the Box operator, we just need to see that $\tau_{\omega} \mid=m_{m^{\prime}} A_{0} \sim A_{1} \downarrow S\left(m^{\prime}\right)$ for all stages m^{\prime}. But this is already contained in the induction hypothesis.

Case.

$$
\frac{\Delta . \boldsymbol{Q} \vdash A \text { type } \quad \Gamma \vdash \delta: \Delta}{\Gamma \vdash(\square A)[\delta]=\square A[\delta] \text { type }}
$$

Suppose that $n \Vdash \rho_{0}=\rho_{1}: \Gamma$; we need to show that for some B_{i} we have $\llbracket(\square A)[\delta] \rrbracket_{\rho_{i}}=B_{i}$ and some R such that $\tau_{\omega} \mid={ }_{n} B_{0} \sim B_{1} \downarrow R$.

By our induction hypothesis, we have that there are some σ_{i} such that $\llbracket \delta \rrbracket_{\rho_{i}}=\sigma_{i}$ and $n \Vdash \sigma_{0}=$ $\sigma_{1}: \Delta$. We may use these new environments to instantiate our other induction hypothesis. This tells us that for all stages m we have some A_{m}^{i} such that $\llbracket A \rrbracket_{\sigma_{i}}=A_{m}^{i}$ and $\left.\tau_{\omega}\right|_{m} A_{m}^{0} \sim B_{m}^{1} \downarrow S_{m}$ for some S_{m}. By determinacy of evaluation we know that all A_{m}^{i} s do not vary in m, so we will henceforth write them as A_{i}. Likewise, by determinacy we obtain a relation $S \in \operatorname{Rel}^{\mathbb{P}}$ from S_{m}.
We observe that by calculation $\llbracket(\square A)[\delta] \rrbracket_{\rho_{i}}=\square A_{i}$, leading us to chose $B_{i}=\square A_{i}$. Finally, observe that because τ_{ω} is closed under Box we have $\tau_{\omega}=_{n} \square A_{0} \sim \square A_{1} \downarrow T$ where we have defined T as follows:

$$
T=\llbracket \square \rrbracket\left(\left\{\left(-, v_{0}, v_{1}\right) \mid \forall m . m \Vdash v_{0} \sim v_{1} \in S(m)\right\}\right)
$$

Case.

$$
\frac{\stackrel{\text { PI }}{\Gamma \vdash A_{0}=A_{1} \text { type } \quad \Gamma \cdot A_{0}+B_{0}=B_{1} \text { type }}}{\Gamma \vdash \Pi\left(A_{0}, B_{0}\right)=\Pi\left(A_{1}, B_{1}\right) \text { type }}
$$

Fix $n \Vdash \rho_{0}=\rho_{1}: \Gamma$. We need to show that $\llbracket \Pi\left(A_{i}, B_{i}\right) \rrbracket_{\rho_{i}}=F_{i}$ for some F_{i} such that $\tau_{\omega} \neq{ }_{n} F_{0} \sim F_{1}$. Unpacking our first induction hypothesis, we have $\llbracket A_{i} \rrbracket_{\rho_{i}}=A_{i}$ such that $\tau_{\omega}=_{n} A_{0} \sim A_{1} \downarrow R$ for some R. We choose $F_{i}=\Pi\left(A_{i}, B_{i} \triangleleft \rho_{i}\right)$; to verify $\tau_{\omega} \mid={ }_{n} F_{0} \sim F_{1}$, we will show that $\operatorname{Pi}\left[\tau_{\omega}\right] \mid={ }_{n} F_{0} \sim$ F_{1}.

1. We have already seen that $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.
2. To exhibit $\tau_{\omega} \mid={ }_{n} R \gg B_{0} \triangleleft \rho_{0} \sim B_{1} \triangleleft \rho_{1}$, we fix $m \leq n$ and $m \Vdash a_{0} \sim a_{1} \in R$, to verify that $\tau_{\omega} \mid={ }_{m} B_{0} \triangleleft \rho_{0}\left[a_{0}\right] \sim B_{1} \triangleleft \rho_{1}\left[a_{1}\right] \downarrow S\left(a_{0}, a_{1}\right)$ for some $S \in$ Fam.
a) First, we observe that $m \Vdash \rho_{0} \cdot a_{0}=\rho_{1} \cdot a_{1}: \Gamma . A$ from $m \Vdash a_{0}=a_{1}: A\left[\rho_{0} ; \rho_{1}\right]$, which follows from $m \Vdash a_{0} \sim a_{1} \in R, \tau_{\omega}=_{m} A_{0} \sim A_{1} \downarrow R$ (by Lemma 3.2.5), and $m \Vdash \rho_{0}=\rho_{1}$: Γ (by Lemma 3.3.2).
b) Therefore, by instantiating our second induction hypothesis, there exists some $S_{\left(a_{0}, a_{1}\right)}$ such that $\tau_{\omega} \quad=_{m} \llbracket B_{0} \rrbracket_{\rho_{0} . a_{0}} \sim \llbracket B_{1} \rrbracket_{\rho_{1} . a 1} \downarrow S_{\left(a_{0}, a_{1}\right)}$, which is the same as $\tau_{\omega} \quad=_{m}$ $B_{0} \triangleleft \rho_{0}\left[a_{0}\right] \sim B_{1} \triangleleft \rho_{1}\left[a_{1}\right] \downarrow S_{\left(a_{0}, a_{1}\right)}$. By the determinacy of the type system, this actually defines a family $S \in$ Fam.

Case.

$$
\frac{\Gamma \vdash A_{0}=A_{1}: \mathrm{U}_{j}}{\Gamma \vdash A_{0}=A_{1} \text { type }}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket A_{i} \rrbracket_{\rho_{i}}=A_{i}$ and $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1}$ for some A_{i}. By the induction hypothesis, we already have $\llbracket A_{i} \rrbracket_{\rho_{i}}=A_{i}$ and $\llbracket U_{j} \rrbracket_{\rho_{i}}=U_{i}$ with $\left.\tau_{\omega}\right|_{n} U_{0} \sim U_{1} \downarrow S$ for some S and moreover $n \Vdash A_{0} \sim A_{1} \in S$. By inversion, we observe that $U_{i}=U_{j}$ and $S=\left(\tau_{i} \mid={ }_{(-)}-\sim-\right)$. Therefore, we have $\tau_{i} \mid=_{n} A_{0} \sim A_{1}$, and we obtain $\tau_{\omega}=_{n} A_{0} \sim A_{1}$ from Lemma 3.2.8.

Case.

$$
\frac{\Gamma=\Gamma_{1} \cdot A \cdot \Gamma_{2} \quad\left\|\Gamma_{2}\right\|=m \quad \text { 昷 } \notin \Gamma_{2}}{\Gamma \vdash \operatorname{var}_{m}=\operatorname{var}_{m}: A\left[\mathrm{p}^{m}\right]}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket A\left[\mathrm{p}^{m}\right] \rrbracket_{\rho_{i}}=A_{i}$ for some A_{i} such that $\tau_{\omega} \mid={ }_{n} A_{0} \sim$ $A_{1} \downarrow R$ for some R, and moreover, that $\llbracket \operatorname{var}_{m} \rrbracket_{\rho_{i}}=v_{i}$ for some v_{i} such that $n \Vdash v_{0} \sim v_{1} \in R$. Setting $v_{i}=\rho_{i}(m)$, we invert our assumption $n \Vdash \rho_{0}=\rho_{1}: \Gamma$ to obtain $n \Vdash \rho_{0}^{\prime} \cdot v_{0}=\rho_{1}^{\prime} \cdot v_{1}: \Gamma_{1} \cdot A$ for some ρ_{i}^{\prime}, whence again by inversion, we have A_{i} and R with the desired property (using Lemma 2.2.1).

Case.

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket \square A \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket\left[t_{i}\right]_{\boldsymbol{@}} \rrbracket_{\rho_{i}}=v_{i}$ such that $\tau_{\omega} \vDash{ }_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R.
Observing that we have $m \Vdash \rho_{0}=\rho_{1}: \Gamma$. for all m, we obtain by determinacy a family $S \in \operatorname{Re} \mathbf{l}^{\mathbb{P}}$ and values A_{i}, w_{i} such that $\tau_{\omega}=_{m} A_{0} \sim A_{1} \downarrow S(m)$ and $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ and $\llbracket t_{i} \rrbracket_{\rho_{i}}=w_{i}$ and $m \Vdash w_{0} \sim w_{1} \in S(m)$.
Moreover, by the definition of the evaluation relation, we are constrained to choose $C_{i}=\square A_{i}$ and $v_{i}=\operatorname{shut}\left(w_{i}\right)$. By the closure of the type system under Box, we see that R is likewise constrained, and it remains only to show that for all m, we have $m \Vdash \underline{\text { open }}\left(\operatorname{shut}\left(w_{0}\right)\right) \sim \underline{\text { open}}\left(\operatorname{shut}\left(w_{1}\right)\right) \in S(m)$. But open $\left(\operatorname{shut}\left(w_{i}\right)\right)=w_{i}$, so we are already done.

Case.

$$
\begin{aligned}
& \text { open } \\
& \frac{\Gamma^{\boldsymbol{\sim}} \vdash t_{0}=t_{1}: \square A}{\Gamma \vdash\left[t_{0}\right]_{م}=\left[t_{1}\right]_{\Omega}: A}
\end{aligned}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ and $\llbracket\left[t_{i}\right]_{n} \rrbracket_{\rho_{i}}=v_{i}$ for some A_{i}, v_{i} such that $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R n \Vdash v_{0} \sim v_{1} \in R$ for some R.

Observe that must exist some m such that $m \Vdash \rho_{0}=\rho_{1}: \Gamma^{\curvearrowleft}$. Then, by the induction hypothesis we have $\llbracket \square A \rrbracket_{\rho_{i}}=\square A_{i}$ and some R such that $\tau_{\omega}=_{m} \square A_{0} \sim \square A_{1} \downarrow R$. Moreover, $\llbracket t_{i} \rrbracket_{\rho_{i}}=v_{i}$ for some v_{i} such that $m \Vdash v_{0} \sim v_{1} \in R$.

Now, by inversion we must have that $\operatorname{Box}\left[\tau_{\omega}\right] \mid=_{m} \square A_{0} \sim \square A_{1} \downarrow R$ and therefore $\operatorname{Box}\left[\tau_{\omega}\right] \mid={ }_{n}$ $\square A_{0} \sim \square A_{1} \downarrow R$. This tells us that there is some $S\left(m^{\prime}\right)$ such that $\tau_{\omega} \|_{m^{\prime}} A_{0} \sim A_{1} \downarrow S\left(m^{\prime}\right)$ for every m^{\prime} and, moreover, that $m^{\prime} \Vdash \underline{o p e n}\left(v_{0}\right) \sim \underline{\operatorname{open}}\left(v_{1}\right) \in S\left(m^{\prime}\right)$. Further inversion tells us that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$. Therefore, setting $m^{\prime}=n$, we obtain the desired conclusion.

Case.

$$
\frac{\Gamma^{\curvearrowleft} \Omega \vdash t: A}{\Gamma \vdash\left[[t]_{\boldsymbol{\Omega}}\right]_{\rho}=t: A}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ and $\llbracket t \rrbracket_{\rho_{1}}=v_{1}$ and $\llbracket\left[[t]_{\boldsymbol{@}}\right]_{\rho_{\rho}} \rrbracket_{\rho_{0}}=v_{0}$ for some A_{i}, v_{i} such that $\tau_{\omega} \mid=_{n} A_{0} \sim A_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R.

First, we observe that $n \Vdash \rho_{0}=\rho_{1}: \Gamma^{\curvearrowleft}$. using Lemma 3.3.3. Therefore, we may use our induction hypothesis to conclude that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ and $\llbracket t \rrbracket_{\rho_{i}}=v_{i}$ and for some A_{i}, v_{i} such that $\tau_{\omega} \neq{ }_{n} A_{0} \sim A_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$. Finally, we observe by calculation $\llbracket\left[[t]_{\boldsymbol{\Omega}}\right]_{\Omega} \|_{\rho_{1}}=v_{1}$.

Case.

$$
\frac{\Gamma \vdash t: \square A}{\Gamma \vdash\left[[t]_{\mathrm{n}}\right]_{\varrho}=t: \square A}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket \square A \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket t \rrbracket_{\rho_{1}}=v_{1}$ and $\left.\llbracket\left[[t]_{\rho}\right]\right]_{\rho_{0}}=v_{0}$ for some C_{i}, v_{i} such that $\tau_{\omega} \mid=_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ some R.

We use our induction hypothesis to conclude that $\llbracket \square A \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket t \rrbracket_{\rho_{i}}=w_{i}$ and for some C_{i}, w_{i} such that $\tau_{\omega} \mid={ }_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash w_{0} \sim w_{1} \in R$. We therefore set $v_{1}=w_{1}$, but still need to obtain an appropriate v_{0}.

We observe by inversion that $C_{i}=\square A_{i}$ where $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$. By inversion again, we obtain $\operatorname{Box}\left[\tau_{\omega}\right] \mid={ }_{n} \square A_{0} \sim \square A_{1} \downarrow R$ and $R=\llbracket \square \rrbracket\left(\left\{\left(n, u_{0}, u_{1}\right) \mid n \Vdash u_{0} \sim u_{1} \in S(n)\right\}\right)$ for some $S \in \operatorname{Rel}^{\mathbb{P}}$ such that $\tau_{\omega}==_{m} A_{0} \sim A_{1} \downarrow S(m)$ for all m. What remains is the following:
 and $m \Vdash \underline{\text { open }}\left(w_{0}\right) \sim \underline{\text { open}}\left(w_{1}\right) \in S(m)$ for all m. Therefore, we set $v_{0}=\operatorname{shut}\left(\underline{\text { open }}\left(w_{0}\right)\right)$.
2. Next, we need to see that $n \Vdash v_{0} \sim v_{1} \in R$; fixing m, this means to show that $m \Vdash \underline{\text { open }}\left(v_{0}\right) \sim$ $\underline{\operatorname{open}}\left(v_{1}\right) \in S(m)$. Calculating, we have open $\left(v_{0}\right)=\underline{\operatorname{open}}\left(\operatorname{shut}\left(\underline{\text { open }}\left(w_{0}\right)\right)\right)=\underline{\text { open }}\left(w_{0}\right)$; but we have already observed that $m \Vdash \underline{\text { open }}\left(w_{0}\right) \sim \underline{\text { open }}\left(w_{1}\right) \in S(m)$.

Case.

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma . A \vdash t_{0}=t_{1}: B}{\Gamma \vdash \lambda\left(t_{0}\right)=\lambda\left(t_{1}\right): \Pi(A, B)}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket \Pi(A, B) \rrbracket_{\rho_{i}}=C_{i}$ and some C_{i} such that $\tau_{\omega} \mid={ }_{n} C_{0} \sim$ $C_{1} \downarrow R$ and $n \Vdash \lambda\left(t_{0} \triangleleft \rho_{0}\right) \sim \lambda\left(t_{1} \triangleleft \rho_{1}\right) \in R$ for some R. First, we observe that because $\Gamma \vdash A$ type, we have $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ such that $\left.\tau_{\omega}\right|_{n} A_{0} \sim A_{1} \downarrow S$ for some S. Hence we set $C_{i}=\Pi\left(A_{i}, B \triangleleft \rho_{i}\right)$, since $\llbracket \Pi(A, B) \rrbracket_{\rho_{i}}=\Pi\left(A_{i}, B \triangleleft \rho_{i}\right)$. What remains is to show the following:

1. $\operatorname{Pi}\left[\tau_{\omega}\right] \mid={ }_{n} \Pi\left(A_{0}, B \triangleleft \rho_{0}\right) \sim \Pi\left(A_{1}, B \triangleleft \rho_{1}\right) \downarrow R$ for some R. For this, it suffices to show that $\tau_{\omega} \mid={ }_{n} S \gg B \triangleleft \rho_{0} \sim B \triangleleft \rho_{1} \downarrow T$ for some family T, but this follows from our second induction hypothesis. We have resolved $R=\llbracket \Pi \rrbracket(S, T)$.
2. $n \Vdash \lambda\left(t_{0} \triangleleft \rho_{0}\right) \sim \lambda\left(t_{1} \triangleleft \rho_{1}\right) \in \llbracket \Pi \rrbracket(S, T)$. Fixing $m \Vdash u_{0} \sim u_{1} \in S$ for some $m \leq n$, we need to show that $m \Vdash \underline{\operatorname{app}}\left(\lambda\left(t_{0} \triangleleft \rho_{0}\right), u_{0}\right) \sim \operatorname{app}\left(\lambda\left(t_{1} \triangleleft \rho_{1}\right), u_{1}\right) \in S\left(u_{0}, u_{1}\right)$. Observing that $m \Vdash$ $\rho_{0} \cdot u_{0}=\rho_{1} \cdot u_{1}: \Gamma . A$, we use our second induction hypothesis to conclude that $\llbracket t_{i} \rrbracket_{\rho_{i} \cdot u_{i}}=v_{i}$ for some v_{i} such that $m \Vdash v_{0} \sim v_{1} \in S\left(u_{0}, u_{1}\right)$.

Case.

$$
\frac{\Gamma \vdash f_{0}=f_{1}: \Pi(A, B) \quad \Gamma \vdash a_{0}=a_{1}: A}{\Gamma \vdash f_{0}\left(a_{0}\right)=f_{1}\left(a_{1}\right): B\left[\mathrm{id} . a_{0}\right]}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket B\left[\right.$ id. $\left.a_{0}\right] \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket f_{i}\left(a_{i}\right) \rrbracket_{\rho_{i}}=v_{i}$ for some C_{i}, v_{i} such that $\tau_{\omega} \mid=_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R.

Using our second induction hypothesis, we observe that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ and $\llbracket a_{i} \rrbracket_{\rho_{i}}=a_{i}$ for some A_{i}, a_{i}, and $\tau_{\omega} \mid=A_{n} \sim A_{1} \downarrow S$ with $n \Vdash a_{0} \sim a_{1} \in S$. Consequently, we further observe that $\llbracket \Pi(A, B) \rrbracket_{\rho_{i}}=\Pi\left(A_{i}, B \triangleleft \rho_{i}\right)$, and from our first induction hypothesis, we can conclude that $\tau_{\omega} \mid={ }_{n} \Pi\left(A_{0}, B \triangleleft \rho_{0}\right) \sim \Pi\left(A_{1}, B \triangleleft \rho_{1}\right)$. By inversion, we have $\operatorname{Pi}\left[\tau_{\omega}\right] \mid={ }_{n} \Pi\left(A_{0}, B \triangleleft \rho_{0}\right) \sim \Pi\left(A_{1}, B \triangleleft \rho_{1}\right)$,
from which we obtain $\tau_{\omega} \mid=_{n} S \gg B \triangleleft \rho_{0} \sim B \triangleleft \rho_{1} \downarrow T$ for some family T such that $n \Vdash f_{0} \sim f_{1} \in$ $\llbracket \Pi \rrbracket(S, T)$.
By instantiating our type family assumption just obtained above with $n \Vdash a_{0} \sim a_{1} \in S$, we therefore obtain some D_{i} such that $B \triangleleft \rho_{i}\left[a_{i}\right]=D_{i}$ and $\tau_{\omega}=_{n} D_{0} \sim D_{1} \downarrow T\left(a_{0}, a_{1}\right)$. Instantiating with $n \Vdash a_{0} \sim a_{0} \in S$, we further obtain E_{i} such that $B \triangleleft \rho_{i}\left[a_{0}\right]=E_{i}$ and $\tau_{\omega} \mid=_{n} E_{0} \sim E_{1} \downarrow T\left(a_{0}, a_{0}\right)$. Setting $C_{0}=D_{0}$ and $C_{1}=E_{1}$, what remains is the following:

1. To see that $\tau_{\omega} \mid={ }_{n} D_{0} \sim E_{1}$, we recall that $D_{1}=E_{0}$ and $T\left(a_{0}, a_{1}\right)=T\left(a_{0}, a_{0}\right)$. Therefore, we set $R=T\left(a_{0}, a_{1}\right)$.
2. Because $n \Vdash f_{0} \sim f_{1} \in \llbracket \Pi \rrbracket(S, T)$, we obtain $\llbracket f_{i}\left(a_{i}\right) \rrbracket_{\rho_{i}}=v_{i}$ where $v_{i}=\underline{\operatorname{app}}\left(f_{i}, a_{i}\right)$, such that $n \Vdash v_{0} \sim v_{1} \in R$.

Case.

$$
\frac{\Gamma . A \vdash f: B \quad \Gamma \vdash a: A}{\Gamma \vdash(\lambda(f))(a)=f[\mathrm{id} . a]: B[\mathrm{id} . a]}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket B[\operatorname{id.} . a] \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket(\lambda(f))(a) \rrbracket \rrbracket_{\rho_{0}}=v_{0}$ and $\llbracket f[$ id. $a] \rrbracket_{\rho_{1}}=v_{1}$ for some C_{i}, v_{i} such that $\tau_{\omega}=_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R. From our induction hypothesis, we obtain $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ such that $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1} \downarrow S$ and $\llbracket a \rrbracket_{\rho_{i}}=a_{i}$ and $n \Vdash a_{0} \sim a_{1} \in S$.
Next, we observe that $n \Vdash \rho_{0} \cdot a_{0}=\rho_{1} \cdot a_{1}: \Gamma . A$ by definition; combining this with our second induction hypothesis, we conclude that $\llbracket B \rrbracket_{\rho_{i} . a_{i}}=B_{i}$ such that $\tau_{\omega}=_{n} B_{0} \sim B_{1} \downarrow T$ and $\llbracket f \rrbracket_{\rho_{i} . a_{i}}=r_{i}$ and $n \Vdash r_{0} \sim r_{1} \in T\left(a_{0}, a_{1}\right)$.
By calculation, we see that \llbracket id. $a \rrbracket_{\rho_{i}}=\rho_{i} . a_{i}$, so we are free to choose $C_{i}=B_{i}$ and $R=T\left(a_{0}, a_{1}\right)$. We merely need to show that $\llbracket(\lambda(f))(a) \rrbracket_{\rho_{0}}=v_{0}$ and $\llbracket f\left[\right.$ id. $a \rrbracket \rrbracket_{\rho_{1}}=v_{1}$ for some v_{i}; but by calculation we have $\llbracket(\lambda(f))(a) \rrbracket_{\rho_{0}}=r_{0}$ and $\llbracket f[\mathrm{id} . a.] \rrbracket_{\rho_{1}}=r_{1}$.

Case.

$$
\frac{\Gamma \vdash f: \Pi(A, B)}{\Gamma \vdash \lambda\left(f\left[\mathrm{p}^{1}\right]\left(\operatorname{var}_{0}\right)\right)=f: \Pi(A, B)}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket \Pi(A, B) \rrbracket \rho_{i}=C_{i}$ and $\llbracket \lambda\left(f\left[p^{1}\right]\left(\operatorname{var}_{0}\right)\right) \rrbracket \rrbracket_{\rho_{0}}=v_{0}$ and $\llbracket f \rrbracket_{\rho_{1}}=v_{1}$ for some C_{i}, v_{i} such that $\tau_{\omega}=_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R. By inverting our induction hypothesis, we obtain $\llbracket \Pi(A, B) \rrbracket_{\rho_{i}}=\Pi\left(A_{i}, B \triangleleft \rho_{i}\right)$ and $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ for some A_{i} such that $\tau_{\omega} \mid=_{n} A_{0} \sim A_{1} \downarrow S$ and $\tau_{\omega} \mid=_{n} S \gg B \triangleleft \rho_{0} \sim B \triangleleft \rho_{1} \downarrow T$ for some S, T; and moreover, $\llbracket f \rrbracket_{\rho_{i}}=f_{i}$ such that $n \Vdash f_{0} \sim f_{1} \in \llbracket \Pi \rrbracket(S, T)$. We therefore set $C_{i}=\Pi\left(A_{i}, B \triangleleft \rho_{i}\right)$ and $R=\llbracket \Pi \rrbracket(S, T)$; we need to show that $n \Vdash \lambda\left(\left(f\left[p^{1}\right]\left(\operatorname{var}_{0}\right)\right) \triangleleft \rho_{0}\right) \sim f_{1} \in \llbracket \Pi \rrbracket(S, T)$. Fixing $m \leq n$ and $m \Vdash a_{0} \sim a_{1} \in S$, we need to see that $m \Vdash \underline{\operatorname{app}}\left(\lambda\left(\left(f\left[p^{1}\right]\left(\operatorname{var}_{0}\right)\right) \triangleleft \rho_{0}\right), a_{0}\right) \sim \underline{\operatorname{app}}\left(f_{1}, a_{1}\right) \in$ $T\left(a_{0}, a_{1}\right)$. First, we observe that $\llbracket f\left[\mathbf{p}^{1}\right]\left(\operatorname{var}_{0}\right) \rrbracket_{\rho_{0} . a_{0}}=\underline{\operatorname{app}}\left(f_{0}, a_{0}\right)$ because we already have $\llbracket f \rrbracket_{\rho_{0}}=$ f_{0}; therefore $\underline{\operatorname{app} p}\left(\lambda\left(\left(f\left[\mathrm{p}^{1}\right]\left(\operatorname{var}_{0}\right)\right) \triangleleft \rho_{0}\right), a_{0}\right)=\underline{\operatorname{app}}\left(f_{0}, a_{0}\right)$. So it would suffice to verify that $m \Vdash$ $\underline{\operatorname{app}}\left(f_{0}, a_{0}\right) \sim \underline{\operatorname{app}}\left(f_{1}, a_{1}\right) \in T\left(a_{0}, a_{1}\right)$, which we obtain from the fact that $n \Vdash f_{0} \sim f_{1} \in \llbracket \Pi \rrbracket(S, T)$.

Case.

$$
\frac{\Gamma \vdash l_{0}=l_{1}: A \quad \Gamma . A \vdash B \text { type } \quad \Gamma \vdash r_{0}=r_{1}: B\left[\mathrm{id} . l_{0}\right]}{\Gamma \vdash\left\langle l_{0}, r_{0}\right\rangle=\left\langle l_{1}, r_{1}\right\rangle: \Sigma(A, B)}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket \Sigma(A, B) \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket\left\langle l_{0}, r_{0}\right\rangle \rrbracket_{\rho_{0}}=v_{0}$ and $\llbracket\left\langle l_{0}, r_{0}\right\rangle \rrbracket_{\rho_{1}}=v_{1}$ for some C_{i}, v_{i} such that $\tau_{\omega}=_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R.

First, we observe by induction hypothesis from the first premise that there is some R_{0} such that $\llbracket A \rrbracket_{\rho_{i}}=A_{i}$ and $\tau_{\omega} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R_{0}$. Furthermore, our induction hypothesis tells us that $\llbracket l_{i} \rrbracket_{\rho_{i}}=l_{i}$ such that $n \Vdash l_{1} \sim l_{2} \in R_{0}$.

The induction hypothesis for our seocnd premise to conclude that there is some R_{1} such that $\tau_{\omega} \mid={ }_{n} R_{0} \gg B \triangleleft \rho_{0} \sim B \triangleleft \rho_{1} \downarrow R_{1}$. Furthermore, we have that $\llbracket r_{i} \rrbracket_{\rho_{i}}=r_{i}$ and $n \Vdash r_{0} \sim r_{1} \in R_{1}\left(l_{0}, l_{1}\right)$ from the third induction hypothesis.

We now choose $C_{i}=\Sigma\left(A_{i}, B \triangleleft \rho_{i}\right)$ and $R=\llbracket \Sigma \rrbracket\left(R_{0}, R_{1}\right)$. The remaining goal, that $n \Vdash\left\langle l_{0}, r_{0}\right\rangle \sim$ $\left\langle l_{1}, r_{1}\right\rangle \in R$ is immediate by calculation and our assumptions.

Case.

$$
\frac{\Gamma \vdash t: \Sigma(A, B)}{\Gamma \vdash\langle\operatorname{fst}(t), \operatorname{snd}(t)\rangle=t: \Sigma(A, B)}
$$

Fixing $n \Vdash \rho_{0}=\rho_{1}: \Gamma$, we need to show that $\llbracket \Sigma(A, B) \rrbracket_{\rho_{i}}=C_{i}$ and $\llbracket t \rrbracket_{\rho_{0}}=v_{0}$ and $\llbracket\langle\operatorname{fst}(t), \operatorname{snd}(t)\rangle \rrbracket_{\rho_{1}}=$ v_{1} for some C_{i}, v_{i} such that $\tau_{\omega}=_{n} C_{0} \sim C_{1} \downarrow R$ and $n \Vdash v_{0} \sim v_{1} \in R$ for some R.
First, we observe by induction hypothesis from the first premise that there is some R such that $\llbracket \Sigma(A, B) \rrbracket_{\rho_{i}}=D_{i}$ and $\tau_{\omega}=_{n} D_{0} \sim D_{1} \downarrow R_{0}$. By inversion, we see that $\llbracket \Sigma(A, B) \rrbracket_{\rho_{i}}=\Sigma\left(A_{i}, B \triangleleft \rho_{i}\right)$. Therefore, we have that $R=\llbracket \Sigma \rrbracket\left(R_{0}, R_{1}\right)$ for some R_{0} such that $\tau_{\omega}=_{n} A_{0} \sim A_{1} \downarrow R_{0}$ and $\tau_{\omega} \mid={ }_{n} B \triangleleft \rho_{0} \gg B \triangleleft \rho_{1} \sim R_{1}$. Finally, we must have $\llbracket t \rrbracket_{\rho_{i}}=v_{i}$ such that $n \Vdash v_{0} \sim v_{1} \in R$.
We observe by definition that this last fact tells us that $n \Vdash \underline{\mathrm{fst}}\left(v_{0}\right) \sim \underline{\mathrm{fst}}\left(v_{1}\right) \in R_{0}$ and $n \Vdash$ $\underline{\operatorname{snd}}\left(v_{0}\right) \sim \underline{\operatorname{snd}}\left(v_{1}\right) \in R_{1}\left(\underline{\text { fst }}\left(v_{0}\right), \underline{\mathbf{f s t}}\left(v_{1}\right)\right)$.
We choose $C_{i}=D_{i}$. We have immediately that $\tau_{\omega} \mid={ }_{n} C_{0} \sim C_{1} \downarrow R$. It suffices to show that there is some w_{i} such that $\llbracket t \rrbracket_{\rho_{0}}=w_{0}$ and $\llbracket\langle\operatorname{fst}(t), \operatorname{snd}(t)\rangle \rrbracket_{\rho_{1}}=w_{1}$ such that $n \Vdash w_{0} \sim w_{1} \in R$. For this, we set $w_{0}=v_{0}$ and $w_{1}=\left\langle\underline{\mathbf{f s t}}\left(v_{0}\right)\right.$, $\left.\underline{\operatorname{nd}}\left(v_{1}\right)\right\rangle$. The latter is defined by assumption. We have that $n \Vdash w_{0} \sim w_{1} \in R$ holds by calculation.

Case.

$$
\frac{\Gamma \vdash l: A \quad \Gamma . A \vdash B \text { type } \quad \Gamma \vdash r: B[\mathrm{id} . l]}{\Gamma \vdash \operatorname{snd}(\langle l, r\rangle)=r: B[\mathrm{id} . l]}
$$

In this case fix $n \Vdash \rho_{0}=\rho_{1}: \Gamma$. We wish to show that $\llbracket B[$ id. $l] \rrbracket_{\rho_{i}}=C_{i}$ such that $\tau_{\omega} \mid={ }_{n} C_{0} \sim$ $C_{1} \downarrow R$ for some R. Furthermore, we must show that $\llbracket\langle l, r\rangle \rrbracket_{\rho_{0}}=v_{0}$ and $\llbracket r \rrbracket_{\rho_{0}}=v_{1}$ such that $n \Vdash v_{0} \sim v_{1} \in R$.

First, we observe by induction hypothesis that there is some R_{0} such that $\llbracket A \rrbracket_{\rho_{i}}=A_{i} R_{0}$ and $\llbracket l]_{\rho_{i}}=l_{i}$ such that $n \Vdash l_{0} \sim l_{1} \in R_{0}$. We also have by induction hypothesis that $\tau_{\omega} \mid={ }_{n} R_{0} \gg$ $B \triangleleft \rho_{0} \sim B \triangleleft \rho_{1} \downarrow R_{1}$.

We have that $\llbracket B[\mathrm{id} . l] \rrbracket_{\rho_{i}}=D_{i}$ such that $\tau_{\omega} \neq_{n} D_{0} \sim D_{1} \downarrow R_{1}\left(l_{0}, l_{1}\right)$. We also have that $\llbracket r \rrbracket_{\rho_{i}}=r_{i}$ such that $n \Vdash r_{0} \sim r_{1} \in R_{1}\left(l_{0}, l_{1}\right)$. Since we have $\underline{\operatorname{snd}}\left(\left\langle l_{0}, r_{0}\right\rangle\right)=r_{0}$ we have the desired conclusion by setting $C_{i}=D_{i}$ and $R=R_{1}\left(l_{0}, l_{1}\right)$.

Case.

$$
\frac{\Gamma \vdash A=B: \mathrm{U}_{i}}{\Gamma \vdash A=B: \mathrm{U}_{i+1}}
$$

This is immediate from Lemma 3.2.8.
Case.

$$
\frac{\Gamma^{\curvearrowleft} \vdash \delta_{0}=\delta_{1}: \Delta}{\Gamma \vdash \delta_{0}=\delta_{1}: \Delta . \boldsymbol{Q}}
$$

In this case, fix some $n \Vdash \rho_{0}=\rho_{1}: \Gamma$. We wish to show that $\llbracket \delta_{i} \rrbracket_{\rho_{i}}=\rho_{i}^{\prime}$ such that $n \Vdash \rho_{0}^{\prime}=\rho_{1}^{\prime}: \Delta$. First, we observe that there is some m such that $m \Vdash \rho_{0}=\rho_{1}: \Gamma^{\curvearrowleft}$ using Lemma 3.3.3. We may then use our induction hypothesis to conclude that $\llbracket \delta_{i} \rrbracket_{\rho_{i}}=\rho_{i}^{\prime}$ such that $m \Vdash \rho_{0}^{\prime}=\rho_{1}^{\prime}: \Delta$. By definition, we then have $n \Vdash \rho_{0}^{\prime}=\rho_{1}^{\prime}: \Delta$. $\boldsymbol{\Omega}$ as required.

Lemma 3.3.6. If Γ ctx then there is some ρ such that $\uparrow \Gamma=\rho$ then $n \Vdash \rho=\rho: \Gamma$.
Proof. This is immediate by induction on Γ using Lemma 3.2.7.
Corollary 3.3.7. If $\Gamma \vdash t_{0}=t_{1}: T$ then $\underline{n b e}_{\Gamma}^{T}\left(t_{i}\right)=t^{\prime}$ for some t^{\prime}.
Proof. If $\Gamma \vdash t_{0}=t_{1}: T$ then there is some ρ such that $\uparrow \Gamma=\rho$ and $n \Vdash \rho=\rho: \Gamma$ by Lemma 3.3.6. We therefore may apply Theorem 3.3.5 to conclude that there is some A such that $\llbracket T \rrbracket_{\rho}=A$ and $\tau_{\omega} \mid={ }_{n} A \sim A \downarrow R$. We also have that $\llbracket t_{i} \rrbracket_{\rho}=v_{i}$ such that $n \Vdash v_{0} \sim v_{1} \in R$.

Now, by Lemma 3.2.7 we have that R is compatible and so $\downarrow^{A} v_{0} \sim \downarrow^{A} v_{1} \in \mathcal{N} f$. Therefore, there is a particular t^{\prime} such that $\left\lceil\downarrow^{A} v_{i}\right\rceil_{\|\Gamma\|}=t^{\prime}$. By definition, we then have that $\underline{\mathbf{n b e}_{\Gamma}^{T}}\left(t_{i}\right)=t^{\prime}$ as required.

4 Soundness of Normalization

4.1 A well-ordering on semantic types

In Section 4.2, we will define a logical relation between syntax and semantics, proceeding by induction on the type at which we are comparing things; unfortunately, the induction is not structural, so we need to define an ordering on semantic types such that, for instance, a dependent function type is strictly greater than all instantiations of its codomain.

We define the order $\sigma \not \models_{n} A<B$ on semantic types as the least relation closed under the following rules:

$$
\begin{array}{ccc}
\frac{\sigma \mid=_{n} A \leq B}{\sigma \mid=_{n} A<\square B} & \frac{\sigma \mid{ }_{n} A \leq B}{\sigma=_{n} A<\Sigma(B, C)} & \frac{\sigma \mid=_{n} A \leq B}{\sigma=_{n} A<\Pi(B, C)} \\
\frac{\sigma=_{n} B \sim B \downarrow R}{} \quad m \leq n \quad m \Vdash a \sim a \in R & \sigma=_{m} A \leq C[a] \\
\sigma=_{n} A<\Sigma(B, C) & \frac{\left.\sigma\right|_{n} A \leq B}{\left.\sigma\right|_{n} A<\operatorname{Id}\left(B, v_{0}, v_{1}\right)}
\end{array}
$$

Lemma 4.1.1. If $\tau_{\alpha}=_{n+1} A<B$ then $\tau_{\alpha} \mid{ }_{n} A<B$.
Proof. By induction.
Theorem 4.1.2. If $\tau_{\alpha} \mid={ }_{n} A \sim A$, then there is no infinite descending chain in $\left.\alpha\right|_{n}-<-\operatorname{starting}$ with A.
Proof. This is done by showing that the following $\sigma \in$ Sys is a pre-fixed point of Types ${ }_{\alpha}$:

$$
\xlongequal{\tau_{\alpha} \mid=_{n} A_{0} \sim A_{1} \downarrow R \quad \text { there is no infinite chain starting from } A_{0} \text { with } \tau_{\alpha}=_{n}-<-}
$$

We show only the non-trivial cases. Suppose that $\operatorname{Types}_{\alpha}[\sigma] \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$ holds; we wish to show that $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.

Case.

$$
\frac{\sigma\left|={ }_{n} A_{0} \sim A_{1} \downarrow S \quad \sigma\right|={ }_{n} S \gg B_{0} \sim B_{1} \downarrow T}{\operatorname{Pi}[\sigma] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(S, T)}
$$

We now wish to show that $\sigma \neq=_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(S, T)$. We note that $\left.\tau_{\alpha}\right|_{n}$ $\Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket(S, T)$ by unfolding the definition of σ in our two assumptions. We merely need to show that there is no infinite chain starting from $\Pi\left(A_{0}, B_{0}\right)$.
Suppose such a chain exists: $\left(C_{i}\right)_{i \in \mathbb{N}}$ with $\tau_{\alpha}=_{n} C_{i+1}<C_{i}$ and $C_{0}=\Pi\left(A_{0}, B_{0}\right)$. There are two possible first links in such a chain; we proceed by case.

1. Types ${ }_{\alpha}=_{n} C_{1} \leq A_{0}$. In this case, we would then have that there is an infinite descending chain starting with A_{0}. This contradicts $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow S$.
2. There is some $m \leq n$ and $m \Vdash v_{0} \sim v_{1} \in S$ and Types ${ }_{\alpha}=_{m} C_{1} \leq B_{0}\left[v_{0}\right]$. First, we observe that in this case $\left.\sigma\right|_{m} B_{0}\left[v_{0}\right] \sim B_{1}\left[v_{1}\right]$. Next, by Lemma 4.1.1 we observe that $\left(C_{i}\right)_{i \in \mathbb{N}}$ is an infinite descending chain for $\tau_{\alpha}=_{m}-<-$ as well. Therefore, if such a chain exists then it is an infinite descending chain for $\tau_{\alpha} \mid={ }_{m}-<-$ starting with $B_{0}\left[v_{0}\right]$. However, this contradicts with our assumption that $\sigma \mid={ }_{m} B_{0}\left[v_{0}\right] \sim B_{1}\left[v_{1}\right]$.

Case.

$$
\frac{\forall m . \sigma \mid={ }_{m} A \sim B}{\operatorname{Box}[\sigma] \mid==_{n} \square A \sim \square B \downarrow R}
$$

We now wish to show that $\sigma={ }_{n} \square A \sim \square B \downarrow R$.
Let us first observe that $\tau_{\alpha}=_{n} \square A \sim \square B \downarrow R$ holds as $\sigma \leq \tau_{\alpha}$.
Next, we wish to show that there is no infinite descending chain starting from $\square A$. Suppose that such a chain exists: $\left(C_{i}\right)_{i \in \mathbb{N}}$ with $\tau_{\alpha} \mid={ }_{n} C_{i+1}<C_{i}$ and $C_{0}=\square A$. We observe that since $\tau_{\alpha} \mid={ }_{n} C_{1}<\square A$ it must be that $\tau_{\alpha} \mid={ }_{n} C_{1} \leq A$. Therefore, $\left(C_{i}\right)_{i>0}$ and A is an infinite descending chain starting with A. This contradicts $\sigma \mid=m A \sim B$.

Corollary 4.1.3. The ordering $\tau_{\alpha}=-<-\Longleftrightarrow \exists m . \tau_{\alpha}=_{m}-<-$ is well-founded on semantic types at stage 0 .

Proof. This follows from Lemma 4.1.1 as well as the fact that \mathbb{N} is well-founded.
We note that this well-ordering of semantic types is also used implicitly by Coq's termination checker in Wieczorek and Biernacki [WB18]; we have explained it explicitly in order to make the mathematical content clear in the absence of a formalization.

4.2 The logical relation for soundness

In order to prove soundness we use a logical relation. Essentially we tie together a syntactic value with its counterpart in the model and show that a value related to a term quotes to that term. We then prove the "fundamental theorem" which in this case proves that a term is related to its evaluation. This part is complicated by the necessity of including a Kripke world again so that this logical relation is fibered over the product of contexts and n.

We define the relation $\Gamma \vdash_{n} t: A ® v \in_{\alpha} A$ and $\Gamma \vdash_{n} A ® A$ type ${ }_{\alpha}$ by mutual induction. The first relation states that a syntactic term is related to a value at some semantic type where the logical relation has been constructed for the first α universes. The second states that a syntactic type is related to a semantic type but again only considering the first α universes. In order to make this definition work, we must ensure that these relations are monotone with respect to α, n, and Γ. On contexts, we define an order $r: \Gamma \leq \Gamma^{\prime}$ when Γ is a weakening of Γ^{\prime}. Weakenings, r, are a special case of substitutions where we restrict the extension rule to only allow the adjoining of variables and remove • and p^{i}. This means that weakenings may extend the identity substitution by variables and are closed under composition.

We will then prove a property akin to compatibility: suppose that $\forall n . \Gamma \vdash_{n} A ® A$ type ${ }_{\alpha}$ then:

1. $\left(\forall n . \Gamma \vdash_{n} t: A ® \geqslant \in_{\alpha} A\right)$ then $\left\lceil\downarrow^{A} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ for some t^{\prime} and $\Gamma \vdash t=t^{\prime}: A$.
2. If $\lceil e\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: A$ then $\Gamma \vdash_{n} t: A ® \uparrow^{A} e \in_{\alpha} A$.

The induction used to define logical relations is complicated so we take a moment now to explicitly state what is going on. We simultaneously define $-\vdash_{n}-:-®-\epsilon_{\alpha} A$ and $-\vdash_{n}-® A$ type ${ }_{\alpha}$ for all α, A, and n such that $\tau_{\alpha} \mid={ }_{n} A \sim A$. The ordering on the triple (α, A, n) is given as follows:

$$
\frac{\beta<\alpha}{(\beta, B, m)<(\alpha, A, n)} \quad \frac{\tau_{\alpha} \mid=_{\min (m, n)} B<A}{(\alpha, B, m)<(\alpha, A, n)}
$$

This is not quite a lexicographical ordering, because the type systems are constrained to be equal in the second clause. However, it is clearly stricter than the lexicographical ordering of two well-founded orderings and so is itself well-founded. The crucial move here is that (assuming that types are valid at all the appropriate worlds) we can move to a semantically smaller type and mostly ignore the index.

Logical relation on types Presupposing $\tau_{\alpha} \neq_{n} C \sim C$, we define $\Gamma \vdash_{n} C ® C$ type ${ }_{\alpha}$ to hold just when one of the following cases applies:

- $\Gamma \vdash_{n} C ®$ nat type ${ }_{\alpha}$ if $\Gamma \vdash C=$ nat type.
- $\Gamma \vdash_{n} C ® \Pi(A, B)$ type $_{\alpha}$ if:
- $\Gamma \vdash C=\Pi(A, B)$ type for some A, B;
$-\Gamma \vdash_{n} A ® A$ type $_{\alpha} ;$
- if $n^{\prime} \leq n$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{n^{\prime}} t: A[r] ® a \in_{\alpha} A$ implies $\Gamma^{\prime} \vdash_{n^{\prime}} B[r . t] ® B[a]$ type ${ }_{\alpha}$.
- $\Gamma \vdash_{n} C ® \Sigma(A, B)$ type ${ }_{\alpha}$ if:
- $\Gamma \vdash C=\Sigma(A, B)$ type for some A, B;
$-\Gamma \vdash_{n} A ® A$ type $_{\alpha} ;$
- if $n^{\prime} \leq n$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{n^{\prime}} t: A[r] ®^{\circledR} a \in_{\alpha} A$ implies $\Gamma^{\prime} \vdash_{n^{\prime}} B[r . t] ® B[a]$ type ${ }_{\alpha}$.
- $\Gamma \vdash_{n} C ® \operatorname{Id}\left(A, v_{0}, v_{1}\right)$ type $_{\alpha}$ if:
$-\Gamma \vdash C=\operatorname{Id}\left(A, t_{0}, t_{1}\right)$ type for some $A, t_{0}, t_{1} ;$
$-\Gamma \vdash_{n} A ® A$ type $_{\alpha} ;$
$-\Gamma \vdash_{n} t_{i}: A ® v_{i} \in_{\alpha} A$ for $i \in\{0,1\}$.
- $\Gamma \vdash_{n} C ® \square A$ type $_{\alpha}$ if:
- $\Gamma \vdash C=\square A$ type for some A;
- for all m, Γ. ® $_{\vdash_{m}} A ® A$ type $_{\alpha}$.
- $\Gamma \vdash_{n} C ® \uparrow^{-} e$ type $_{\alpha}$ if, when $r: \Gamma^{\prime} \leq \Gamma$, there exists C^{\prime} such that $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=C^{\prime}$ and $\Gamma^{\prime} \vdash C[r]=$ C^{\prime} type.
- $\Gamma \vdash_{n} C ® \mathrm{U}_{j}$ type $_{\alpha}$ if $j<\alpha$ and $\Gamma \vdash C=\mathrm{U}_{j}$ type.

Logical relation on terms Presupposing $\tau_{\alpha} \mid={ }_{n} C \sim C \downarrow R$, we define $\Gamma \vdash_{n} t: C ® v \in_{\alpha} C$ to hold just when one of the following cases is applicable:

- $\Gamma \vdash_{n} t: C ® v \in_{\alpha}$ nat if:
- $n \Vdash v \sim v \in R$;
$-\Gamma \vdash C=$ nat type;
- one of the following three cases is applicable:

1. $v=$ zero and $\Gamma \vdash t=$ zero $: C$;
2. $v=\operatorname{succ}\left(v^{\prime}\right), \Gamma \vdash t=\operatorname{succ}\left(t^{\prime}\right): C$, and $\Gamma \vdash_{n} t^{\prime}: C ® v^{\prime} \in_{\alpha}$ nat;
3. $v=\uparrow^{-} e$ and if $r: \Gamma^{\prime} \leq \Gamma$ then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash t[r]=t^{\prime}:$ nat.

- $\Gamma \vdash_{n} t: C ® v \in_{\alpha} \Pi(A, B)$ if:
$-n \Vdash v \sim v \in R$ and $\Gamma \vdash t: C$;
- $\Gamma \vdash C=\Pi(A, B)$ type for some A, B;
$-\Gamma \vdash_{n} A ® A$ type $_{\alpha} ;$
- if $n^{\prime} \leq n$ and $r: \Gamma^{\prime} \leq \Gamma$ then $\Gamma^{\prime} \vdash_{n^{\prime}} t^{\prime}: A[r] ® a \in_{\alpha} A$ implies $\Gamma^{\prime} \vdash_{n^{\prime}} t[r]\left(t^{\prime}\right): B\left[r . t^{\prime}\right] ®$ $\underline{\operatorname{app}}(v, a) \in_{\alpha} B[a]$.
- $\Gamma \vdash_{n} t: C ® v \in_{\alpha} \Sigma(A, B)$ if:
$-n \Vdash v \sim v \in R$ and $\Gamma \vdash t: C$;
- $\Gamma \vdash C=\Sigma(A, B)$ type for some A, B;
- if $n^{\prime} \leq n$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{n^{\prime}} t^{\prime}: A[r] ® \Omega \in_{\alpha} A$ implies $\Gamma^{\prime} \vdash_{n^{\prime}} B\left[r . t^{\prime}\right] ® B[a]$ type ${ }_{\alpha}$;
$-\Gamma \vdash_{n} \mathrm{fst}(t): A ® \underline{\mathrm{fst}}(v) \in_{\alpha} A ;$
$-\Gamma \vdash_{n} \operatorname{snd}(t): B[\mathrm{id} .(\mathrm{fst}(t))]{ }^{\circledR} \underline{\operatorname{snd}}(v) \in_{\alpha} B[\underline{\mathrm{fst}}(v)]$.
- $\Gamma \vdash_{n} t: C ® v \in_{\alpha} \operatorname{Id}\left(A, v_{0}, v_{1}\right)$ if:
$-n \Vdash v \sim v \in R$ and $\Gamma \vdash t: C$;
$-\Gamma \vdash C=\operatorname{Id}\left(A, t_{0}, t_{1}\right)$ type for some $A, t_{0}, t_{1} ;$
$-\Gamma \vdash_{n} A ® A$ type $_{\alpha} ;$
$-\Gamma \vdash_{n} t_{i}: A ® v_{i} \in_{\alpha} A$ for $i \in\{0,1\} ;$
- one of the following cases applies:
* $v=\uparrow^{-} e$ and when $r: \Gamma^{\prime} \leq \Gamma$, then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: C[r]$.
* $\Gamma \vdash t=\operatorname{refl}\left(t^{\prime}\right): C$ and $v=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Gamma \vdash t^{\prime}=t_{i}: A$.
- $\Gamma \vdash_{n} t: C ® v \in_{\alpha} \square A$ if:
$-n \Vdash v \sim v \in R$ and $\Gamma \vdash t: C$;
- $\Gamma \vdash C=\square A$ type for some A
- for all $m, \Gamma . \boldsymbol{Q}_{\vdash_{m}}[t]_{\mathrm{n}}: A ® \underline{\text { open }}(v) \in_{\alpha} A$
- $\Gamma \vdash_{n} t: C ® \uparrow^{-} e_{1} \in_{\alpha} \uparrow^{-} e_{2}$ if, when $r: \Gamma^{\prime} \leq \Gamma$, then $\left\lceil e_{1}\right\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\left\lceil e_{2}\right\rceil_{\left\|\Gamma^{\prime}\right\|}=C^{\prime}$ such that $\Gamma^{\prime}+C[r]=C^{\prime}$ type and $\Gamma^{\prime}+t[r]=t^{\prime}: C[r]$.
- $\Gamma \vdash_{n} t: C ® v \in_{\alpha} \mathrm{U}_{i}$ if:
$-i<\alpha$;
- $n \Vdash v \sim v \in R$;
$-\Gamma \vdash t: C$ and $\Gamma \vdash C=U_{i}$ type;
$-\Gamma \vdash n t ®$ type $_{i}$.
We observe that the above is well-defined using Lemma 4.2.1 below.
Lemma 4.2.1. If $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ then $\tau_{\alpha} \mid={ }_{n} A \sim B \downarrow R$ and $n \Vdash v \sim v \in R$.
Proof. This follows from the fact that each clause of $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ requires $n \Vdash v \sim v \in R$.

4.3 Properties of the logical relation

In this section we prove a number of properties of our logical relation we shall use later in proving soundness (Section 4.4).

Lemma 4.3.1. If $m \leq n$ and $\tau_{\alpha} \mid={ }_{n} A \sim A$ then the following two facts hold.

1. $\Gamma \vdash_{n} T ® A$ type ${ }_{\alpha}$ implies $m \vdash_{\Gamma} T ® A$ type $_{\alpha}$
2. $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ implies $m \vdash_{\Gamma} t: T ® v \in_{\alpha} A$

Proof. This proof is immediate by inspection.
Lemma 4.3.2. If $\tau_{\alpha}=_{n} A \sim A$ then the following two facts hold.

1. $r: \Gamma^{\prime} \leq \Gamma$ and $\Gamma \vdash_{n} T ® A$ type ${ }_{\alpha}$ implies $\Gamma^{\prime} \vdash_{m} T[r] ® A$ type ${ }_{\alpha}$
2. $r: \Gamma^{\prime} \leq \Gamma$ and $\Gamma \vdash_{n} t: T ® v \in_{\alpha}$ A implies $\Gamma^{\prime} \vdash_{m} t[r]: T[r] ® v \in_{\alpha} A$

Proof. This proof is immediate by the composition of weakenings.
Lemma 4.3.3. If $\tau_{\alpha} \models_{n} A \sim A$ and $\Gamma \vdash_{n} T ® A$ type ${ }_{\alpha}$ then $\Gamma \vdash T$ type.
Proof. We proceed by induction on (α, A, n) using the ordering used in the definition of the logical relation. Suppose that this property holds for all $(\beta, B, m)<(\alpha, A, n)$; we proceed by case on A. Since we have $\tau_{\alpha} \mid=_{n} A \sim A$ many cases may be immediately eliminated. The remaining cases are described below.

Case.

$$
\Pi\left(A_{0}, A_{1}\right)
$$

In this case by inversion $\Gamma \vdash_{n} T ® \Pi\left(A_{0}, A_{1}\right)$ type ${ }_{\alpha}$ we must have that the following holds:

- $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type for some T_{0} and T_{1}
- $\Gamma \vdash_{n} T_{0}{ }^{\circledR} A_{0}$ type $_{\alpha}$
- if $n^{\prime} \leq n$ and $r: \Gamma^{\prime} \leq \Gamma$ then $\Gamma^{\prime} \vdash_{n^{\prime}} t: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{n^{\prime}} T_{1}[r . t] ®^{\circledR} A_{1}[a]$ type ${ }_{\alpha}$

Therefore, we have that there exists T_{0} and T_{1} such that $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type. By Theorem 1.2.16 we must have that $\Gamma \vdash T$ type as required.

Case.

$$
\Sigma\left(A_{0}, A_{1}\right)
$$

This case is identical to the case for $\Pi\left(A_{0}, A_{1}\right)$.

Case.

$$
\mathrm{U}_{i}
$$

In this case by inversion on $\Gamma \vdash_{n} T ® \mathrm{U}_{i}$ type ${ }_{\alpha}$ we have $\Gamma \vdash T=\mathrm{U}_{i}$ type and so $\Gamma \vdash T$ type by Theorem 1.2.16.

Case.

In this case by inversion $\Gamma \vdash_{n} T ® \square A^{\prime}$ type ${ }_{\alpha}$ we must have that there is some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type. Therefore, $\Gamma \vdash T$ type by Theorem 1.2.16.

Case.

$$
\operatorname{Id}\left(A^{\prime}, v_{0}, v_{1}\right)
$$

Identical to the previous case.
Case.

$$
\uparrow^{-} e
$$

Identical to the previous case.
Case.
nat
Identical to the previous case.
Lemma 4.3.4. If $\tau_{\alpha}=_{n} A \sim A$ and $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ then $\Gamma \vdash t: T$.
Proof. This follows by case on A. Every clause of $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ includes $\Gamma \vdash t: T$ or that there exists some t^{\prime} such that $\Gamma \vdash t=t^{\prime}: T$ so this is immediate using Theorem 1.2.16.

Lemma 4.3.5. If $\tau_{\alpha} \models_{n} A \sim B \downarrow R$ then the following two facts hold:

1. $\Gamma \vdash_{n} T ® A$ type $_{\alpha}$ then $\Gamma \vdash_{n} T ® B$ type $_{\alpha}$
2. $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ then $\Gamma \vdash_{n} t: T ® v \in_{\alpha} B$
3. $n \Vdash v_{1} \sim v_{2} \in R$ and $\Gamma \vdash_{n} t: T ® v_{1} \in_{\alpha}$ A then $\Gamma \vdash_{n} t: T ® v_{2} \in_{\alpha} A$.

Proof. We proceed by induction on α and we will show the following to be a pre-fixed point:

$$
\begin{aligned}
& \tau_{\alpha}=_{n} A \sim B \downarrow R \quad \forall T, \Gamma, m \leq n .\left(\Gamma \vdash_{m} T ® A \text { type }_{\alpha} \Longleftrightarrow \Gamma \vdash_{m} T ® B \text { type }_{\alpha}\right) \\
& \left(\forall t, T, \Gamma, v, m \leq n .\left(\Gamma \vdash_{m} t: T ® v \in_{\alpha} A \Longleftrightarrow \Gamma \vdash_{m} t: T ® v \in_{\alpha} B\right)\right. \\
& \left.\forall m \leq n, t, T, m \Vdash v_{0} \sim v_{1} \in R .\left(\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha} A_{0} \Longleftrightarrow \Gamma \vdash_{m} t: T ® v_{1} \in_{\alpha} A_{0}\right)\right) \\
& \sigma==_{n} A \sim B \downarrow R
\end{aligned}
$$

In order to do this, we suppose that $\operatorname{Types}_{\alpha}[\sigma]=_{n} A \sim B \downarrow R$. We wish to show $\sigma \models_{n} A \sim B \downarrow R$; we proceed by cases.

Case.

$$
\frac{\sigma\left|=_{n} A_{0} \sim A_{1} \downarrow R_{0} \quad \sigma\right|={ }_{n} R_{0} \gg B_{0}\left[v_{0}\right] \sim B_{1}\left[v_{1}\right] \downarrow R_{1}}{\operatorname{Pi}[\sigma] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow \llbracket \Pi \rrbracket\left(R_{0}, R_{1}\right)}
$$

We set $R=\llbracket \Pi \rrbracket\left(R_{0}, R_{1}\right)$. We to show $\sigma=_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R$ wish to For this, we must show 4 things.

1. $\sigma \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R$.

This is immediate as we can construct $\operatorname{Pi}\left[\tau_{\alpha}\right] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R$ from our assumptions.
2. For all T, Γ, and $m \leq n$ we have $\Gamma \vdash_{m} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ iff $\Gamma \vdash_{m} T ® \Pi\left(A_{1}, B_{1}\right)$ type ${ }_{\alpha}$. We assume $\Gamma \vdash_{m} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$. We wish to show $\Gamma \vdash_{n} T ® \Pi\left(A_{1}, B_{1}\right)$ type ${ }_{\alpha}$. First, we note that $\Gamma \vdash_{m} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ is equivalent:

- $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type for some T_{0} and T_{1}
- $\Gamma \vdash_{m} T_{0}{ }^{\circledR} A_{0}$ type $_{\alpha}$
- If $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ then $\Gamma^{\prime} \vdash_{m^{\prime}} t: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{n^{\prime}} T_{1}[r . t] ®$ $B_{0}[a]$ type $_{\alpha}$
The definition of $\Gamma \vdash_{m} T ® \Pi\left(A_{1}, B_{1}\right)$ type ${ }_{\alpha}$ is almost identical. First, we note that $\Gamma \vdash$ $T=\Pi\left(T_{0}, T_{1}\right)$ type must hold for some T_{0} and T_{1} so it suffices to show the second half of $\Gamma \vdash_{m} T ® \Pi\left(A_{1}, B_{1}\right)$ type $_{\alpha}$. We have $\Gamma \vdash_{m} T_{0} ® A_{1}$ type $_{\alpha}$ immediately from $\sigma \vDash_{n} A_{0} \sim A_{1}$ and our assumption of $\Gamma \vdash_{m} T_{0} ® A_{0}$ type $_{\alpha}$.
We assume we have that $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ and $\Gamma^{\prime} \vdash_{m^{\prime}} t: T_{0}[r] ® \boxtimes \in_{\alpha} A_{1}$. Now in this case we note that $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R_{0}$ tells us that we may conclude $\Gamma^{\prime} \vdash_{m^{\prime}} t: T_{0}[r]$ ® $v \in_{\alpha}$ A_{0}. Therefore, we have the following:

$$
\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}[r . t] @ B_{0}[v] \text { type }_{\alpha}
$$

We observe that from Lemma 4.2 .1 to conclude that $m^{\prime} \Vdash v \sim v \in R_{0}$. Therefore, we have $\sigma \mid=m_{m^{\prime}} B_{0}[v] \sim B_{1}[v]$. Now, from this we have $\Gamma^{\prime} \vdash_{n^{\prime}} T_{1}[r . t] ® B_{1}[v]$ type ${ }_{\alpha}$ as required.
The proof that $\Gamma \vdash_{n} T ® \Pi\left(A_{1}, B_{1}\right)$ type ${ }_{\alpha}$ implies $\Gamma \vdash_{n} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ holds mutatis mutandis.
3. For all T, t, Γ, and $m \leq n$ then $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$ iff $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Pi\left(A_{1}, B_{1}\right)$. Suppose we have some T, t, Γ, and $m \leq n$. We will show only that $\Gamma \vdash_{m} t: T ® v \in_{\alpha}$ $\Pi\left(A_{0}, B_{0}\right)$ implies $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Pi\left(A_{1}, B_{1}\right)$. First, we observe that $\Gamma \vdash_{m} t: T ® \quad v \in_{\alpha}$ $\Pi\left(A_{0}, B_{0}\right)$ holds if and only if the following conditions hold.

- $m \Vdash v \sim v \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type for some T_{0}, T_{1};
- $\Gamma \vdash_{m} T_{0}{ }^{\circledR} A_{0}$ type $_{\alpha}$;
- if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right)$: $T_{1}\left[r . t^{\prime}\right] \circledR^{\circledR} \underline{\operatorname{app}}(v, a) \in_{\alpha} B_{0}[a]$.
We wish to show $\Gamma \vdash_{m} t: T ® \quad v \in_{\alpha} \Pi\left(A_{1}, B_{1}\right)$ which is defined in a similar way. First, we observe that there must be some T_{i} such that $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type, $\Gamma \vdash t: T, m \Vdash v \sim v \in R$ and $\Gamma \vdash_{m} T_{0} ® A_{1}$ type $_{\alpha}$ from our assumption. Therefore, we merely need to show the following last item in order to establish our goal. Suppose that $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ such that $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{1}$. We wish to show $\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ®^{\circledR} \underline{\operatorname{app}}(v, a) \in_{\alpha}$ $B_{1}[a]$.
We may now use $\sigma \neq_{n} A_{0} \sim A_{1}$ to conclude that $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$. Therefore, we may conclude the following:

$$
\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}[r . t] ® \underline{\operatorname{app}}(v, a) \in_{\alpha} B_{0}[a]
$$

However, from $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{1}[r] ® a \in_{\alpha} A_{1}$ we must have that $m^{\prime} \Vdash a \sim a \in R_{0}$ from Lemma 4.2.1 and so $\sigma \neq{ }_{m^{\prime}} B_{0}[a] \sim B_{1}[a]$. Finally, we may use this to conclude the goal:

$$
\Gamma^{\prime} \vdash_{n^{\prime}} t[r]\left(t^{\prime}\right): T_{1}[r . t]{ }^{\circledR} \underline{\operatorname{app}}(v, a) \in_{\alpha} B_{1}[a]
$$

4. If $m \Vdash v_{0} \sim v_{1} \in R$ and $m \leq n$ then $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha} A_{0}$ if and only if $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha}$ A_{0}.
We will show on the forward direction. Suppose we have $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha} A_{0}$. We wish to show $\Gamma \vdash_{m} t: T ® v_{1} \in_{\alpha} A_{0}$ holds. First, by inversion on $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha} A$ we observe that there must be some T_{0} and T_{1} such that $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type, $\Gamma \vdash t: T$, $\Gamma \vdash_{m} T_{0} \circledR A_{0}$ type ${ }_{\alpha}$ and $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ such that $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0} ® w \in_{\alpha} A_{0}$ we have the following:

$$
\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ® \underline{\operatorname{app}}\left(v_{1}, w\right) \in_{\alpha} B_{0}[w]
$$

Now in order to show our goal it suffices to show that have all $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ if $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0} ®\left(\mathbb{R} \in_{\alpha} A_{0}\right.$ then we have the following:

$$
\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ® \underline{\operatorname{app}}\left(v_{2}, w\right) \in_{\alpha} B_{0}[w]
$$

Now, we must have that $m^{\prime} \Vdash w \sim w \in R_{0}$ by Lemma 4.2.1. Therefore, we have $m \Vdash$ $\underline{\operatorname{app}}\left(v_{1}, w\right) \sim \underline{\operatorname{app}}\left(v_{2}, w\right) \in R_{1}(w, w)$. Furthermore, we have $\sigma \mid={ }_{m^{\prime}} B_{0}[w] \sim B_{1}[w] \downarrow R_{1}(w, w)$. By unfolding the definition of σ then, it is apparent that our goal follows from our assumption of $\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ® \underline{\operatorname{app}}\left(v_{1}, w\right) \in_{\alpha} B_{0}[w]$.

Case.

$$
\frac{\sigma\left|{ }_{n} A_{0} \sim A_{1} \downarrow R_{0} \quad \sigma\right|={ }_{n} R_{0} \gg B_{0}\left[v_{0}\right] \sim B_{1}\left[v_{1}\right] \downarrow R_{1}}{\operatorname{Sg}[\sigma] \mid={ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow \llbracket \Sigma \rrbracket\left(R_{0}, R_{1}\right)}
$$

We set $R=\llbracket \Sigma \rrbracket\left(R_{0}, R_{1}\right)$. We to show $\sigma=_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$. For this, we must show 4 things.

1. $\tau_{\alpha} \mid=_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$.

This is immediate as we can construct $\operatorname{Pi}\left[\tau_{\alpha}\right] \neq{ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$ from our assumptions.
2. For all T, Γ, and $m \leq n$ we have $\Gamma \vdash_{m} T ® \Sigma\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ iff $\Gamma \vdash_{m} T ® \Sigma\left(A_{1}, B_{1}\right)$ type ${ }_{\alpha}$. This case is identical to the corresponding case for $\Pi(-,-)$.
3. For all T, t, Γ, and $m \leq n$ then $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ iff $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Sigma\left(A_{1}, B_{1}\right)$. Suppose we have some T, t, Γ, and $m \leq n$. We will show only that $\Gamma \vdash_{m} t: T ® \exists \in_{\alpha}$ $\Sigma\left(A_{0}, B_{0}\right)$ implies $\Gamma \vdash_{m} t: T ® \quad \in \in_{\alpha} \Sigma\left(A_{1}, B_{1}\right)$. First, we observe that $\Gamma \vdash_{m} t: T ® \quad \in \in_{\alpha}$ $\Sigma\left(A_{0}, B_{0}\right)$ is defined as follows:

- $m \Vdash v \sim v \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type for some T_{0}, T_{1};
- if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ®\left(a \in_{\alpha} A_{0}\right.$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}\left[r . t^{\prime}\right] ®$ $B_{0}[a]$ type $_{\alpha}$;
- $\Gamma \vdash_{m} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathbf{f s t}}(v) \in_{\alpha} A_{0} ;$
- $\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\operatorname{id} .(\operatorname{fst}(t))]{ }^{\circledR} \underline{\operatorname{snd}}(v) \in_{\alpha} B_{0}[\underline{\mathrm{fst}}(v)]$.

We wish to show $\Gamma \vdash_{m} t: T ® \quad \in \in_{\alpha} \Sigma\left(A_{1}, B_{1}\right)$. First, we observe that T_{0} and T_{1} such that $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type, $\Gamma \vdash t: T$, and $m \Vdash v \sim v \in R$. We wish to show that the following three facts hold:
a) if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{1}$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}\left[r . t^{\prime}\right] ®$ $B_{1}[a]$ type $_{\alpha} ;$
b) $\Gamma \vdash_{m} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathbf{f s t}}(v) \in_{\alpha} A_{1}$;
c) $\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\operatorname{id} .(\operatorname{fst}(t))] ® \underline{\operatorname{snd}}(v) \in_{\alpha} B_{1}[\underline{\mathrm{fst}}(v)]$.

The first fact is precisely our induction hypothesis. For the second, we note that since $\sigma \mid={ }_{m} A_{0} \sim A_{1}$ we have the first fact from $\Gamma \vdash_{m} \operatorname{fst}(t): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}(v) \in_{\alpha} A_{1}$. For the second, we observe that $m \Vdash v \sim v \in R_{1}$ and so $\sigma \mid==_{m} B_{0}[\underline{\mathbf{f s t}}(v)] \sim B_{1}[\underline{\mathbf{f s t}}(v)]$ holds. The second fact follows from this.
4. If $m \leq n, m \Vdash v_{0} \sim v_{1} \in R$ then $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ iff $\Gamma \vdash_{m} t: T ® v_{1} \in_{\alpha}$ $\Sigma\left(A_{0}, B_{0}\right)$.
We will show on the forward direction. We wish to show $\Gamma \vdash_{m} t: T ® v_{1} \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$. Now, inversion on the assumption tells the following:

- $n \Vdash v_{0} \sim v_{0} \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type for some T_{0}, T_{1};
- if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}\left[r . t^{\prime}\right] ®$ $B_{0}[a]$ type $_{\alpha}$;
- $\Gamma \vdash_{m} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}\left(v_{0}\right) \in_{\alpha} A_{0}$;
- $\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\operatorname{id} .(\underline{f s t}(t))] ® \underline{\operatorname{snd}}\left(v_{0}\right) \in_{\alpha} B_{0}[\underline{\mathbf{f s t}}(v)]$.

In order to show the goal then it suffices to show the following facts (the rest are identical to our assumptions)

- $\Gamma \vdash_{m} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}\left(v_{1}\right) \in_{\alpha} A_{0} ;$
- $\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\operatorname{id} .(\underline{f s t}(t))]{ }^{R} \underline{\operatorname{snd}}\left(v_{1}\right) \in_{\alpha} B_{0}[\underline{\mathbf{f s t}}(v)]$.

First, we observe that $m \Vdash \underline{\mathbf{f s t}}\left(v_{0}\right) \sim \underline{\mathbf{f s t}}\left(v_{1}\right) \in R_{0}$ since $n \Vdash v_{0} \sim v_{1} \in R$ and R is monotone by Lemma 3.2.5.
Next, since $\sigma \mid={ }_{m} A_{0} \sim A_{1} \downarrow R_{1}$ (again using monotonicity) we have the first fact from our assumption that $\Gamma \vdash_{m} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathbf{f s t}}\left(v_{0}\right) \in_{\alpha} A_{0}$.
The second fact is more difficult: we have $m \Vdash \underline{\mathbf{n n d}}\left(v_{0}\right) \sim \underline{\operatorname{snd}}\left(v_{1}\right) \in R_{1}\left(\underline{\mathbf{f s t}}\left(v_{0}\right), \underline{\mathrm{fst}}\left(v_{1}\right)\right)$ and $\sigma \mid={ }_{m} B_{0}\left[v_{0}\right] \sim B_{1}\left[v_{1}\right] \downarrow R_{1}\left(\underline{f s t}\left(v_{0}\right), \underline{\text { fst }}\left(v_{1}\right)\right)$. Therefore, we may conclude the following:

$$
\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\operatorname{id} .(\operatorname{fst}(t))] ®^{\circledR} \underline{\operatorname{snd}}\left(v_{1}\right) \in_{\alpha} B_{0}\left[\underline{\mathrm{fst}}\left(v_{0}\right)\right]
$$

By induction hypothesis it suffices to show $\tau_{\alpha}=_{m} B_{0}\left[\underline{\mathbf{f s t}}\left(v_{0}\right)\right] \sim B_{0}\left[\underline{f s t}\left(v_{1}\right)\right]$. However, we know that $\tau_{\alpha} \neq=_{m} B_{0}\left[\underline{\mathrm{fst}}\left(v_{1}\right)\right] \sim B_{1}\left[\underline{\mathrm{fst}}\left(v_{1}\right)\right]$ by assumption and so Lemma 3.2.5 gives the desired conclusion.

Case.

$$
\frac{\sigma \neq_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim u_{0} \in R \quad n \Vdash v_{1} \sim u_{1} \in R}{\operatorname{Id}[\sigma]=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)}
$$

We wish to show $\sigma \neq{ }_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$. This requires showing three facts.

1. $\tau_{\alpha} \mid={ }_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$

In this case we observe that we have $\sigma \neq_{n} A_{0} \sim A_{1} \downarrow R$, $n \Vdash v_{0} \sim u_{0} \in R$, and $n \Vdash$ $v_{1} \sim u_{1} \in R$. From the first fact we have $\tau_{\alpha}=_{n} A_{0} \sim A_{1} \downarrow R$ and so by closure we have $\tau_{\alpha}=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$.
2. For all T, Γ, and $m \leq n$ we have $\Gamma \vdash_{m} T ® \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ type ${ }_{\alpha}$ iff $\Gamma \vdash_{m} T ® \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)$ type ${ }_{\alpha}$. Suppose that we have $m \leq n$ and $\Gamma \vdash_{m} T ® \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ type ${ }_{\alpha}$. By inversion we then have that $\Gamma \vdash T=\operatorname{ld}\left(T^{\prime}, t_{0}, t_{1}\right)$ type such that $\Gamma \vdash_{m} T^{\prime} ® A_{0}$ type $_{\alpha}$ and $\Gamma \vdash_{m} t_{i}: T^{\prime} ® v_{i} \in_{\alpha} A_{0}$ for $i \in\{0,1\}$.
We have $\Gamma \vdash_{m} T^{\prime}$ ® A_{1} type $_{\alpha}$ as $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$. Next, we use this fact again to conclude that $\Gamma \vdash_{m} t_{i}: T^{\prime} ® u_{i} \in_{\alpha} A_{1}$ for $i \in\{0,1\}$. Therefore, we have by definition that $\Gamma \vdash_{m} \operatorname{Id}\left(T^{\prime}, t_{0}, t_{1}\right) ® \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)$ type $_{\alpha}$
3. For all T, t, Γ, and $m \leq n$ then $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ iff $\Gamma \vdash_{m} t: T ® v \in_{\alpha}$ $\operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)$.
We will show only the forward direction, so suppose that $\Gamma \vdash_{m} t: T ® \quad v \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$. We wish to show $\Gamma \vdash_{m} t: T ® \boxtimes \in_{\alpha} \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)$. First, we observe by inversion on $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ to conclude the following:

- $m \Vdash v \sim v \in \llbracket I d \rrbracket\left(R, u_{0}, u_{1}\right)$ and $\Gamma \vdash t: T ;$
- $\Gamma \vdash T=\operatorname{Id}\left(T^{\prime}, t_{0}, t_{1}\right)$ type for some T^{\prime}, t_{0}, t_{1};
- $\Gamma \vdash_{m} T^{\prime} ® A_{0}$ type $_{\alpha}$;
- $\Gamma \vdash_{m} t_{i}: T^{\prime} ® v_{i} \in_{\alpha} A_{0}$ for $i \in\{0,1\}$;
- one of the following cases applies:
$-v=\uparrow^{-} e$ and when $r: \Gamma^{\prime} \leq \Gamma$, then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$.
$-\Gamma \vdash t=\operatorname{refl}\left(t^{\prime}\right): T$ and $v=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Gamma \vdash t^{\prime}=t_{i}: T^{\prime}$.
Now, in order to establish $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right)$ we must show then that $\Gamma \vdash_{m} t_{i}$: $T^{\prime} ® v_{i} \in_{\alpha} A_{0}$ for $i \in\{0,1\}$ but this holds using our assumption that $\sigma=_{m} A_{0} \sim A_{1}$.

4. if $m \leq n$ and $m \Vdash w_{0} \sim w_{1} \in \llbracket I d \rrbracket\left(R, u_{0}, u_{1}\right)$ then $\Gamma \vdash_{m} t: T ® w_{0} \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ iff $\Gamma \vdash_{m} t: T ® w_{1} \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$
We will show only the forward direction. Suppose that $m \leq n, m \Vdash w_{0} \sim w_{1} \in \llbracket I d \rrbracket\left(R, u_{0}, u_{1}\right)$, and $\Gamma \vdash_{m} t: T ® w_{0} \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$. We wish to show $\Gamma \vdash_{m} t: T ® w_{1} \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$.
We proceed by inversion on $\Gamma \vdash_{m} t: T ® w_{0} \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ to conclude the following facts must hold:

- $m \Vdash w_{0} \sim w_{0} \in \llbracket \mathrm{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\operatorname{Id}\left(T^{\prime}, t_{0}, t_{1}\right)$ type for some T^{\prime}, t_{0}, t_{1};
- $\Gamma \vdash_{m} T^{\prime} ® A_{0}$ type $_{\alpha}$;
- $\Gamma \vdash_{m} t_{i}: T^{\prime} ® v_{i} \in_{\alpha} A_{0}$ for $i \in\{0,1\}$;
- one of the following cases applies:
$-w_{0}=\uparrow^{-} e$ and when $r: \Gamma^{\prime} \leq \Gamma$, then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$.
$-\Gamma \vdash t=\operatorname{refl}\left(t^{\prime}\right): T$ and $w_{0}=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Gamma \vdash t^{\prime}=t_{i}: T^{\prime}$.
In order to obtain the desired conclusion, therefore, we merely must show that one of the following facts is true
- $v=\uparrow^{-} e$ and when $r: \Gamma^{\prime} \leq \Gamma$, then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$.
- $\Gamma \vdash t=\operatorname{refl}\left(t^{\prime}\right): T$ and $w_{1}=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Gamma \vdash t^{\prime}=t_{i}: T^{\prime}$.

However, this follows by case on $m \Vdash w_{0} \sim w_{1} \in \llbracket I d \rrbracket\left(R, u_{0}, u_{1}\right)$ and our assumptions.
Case.

$$
\frac{\forall m . \sigma \neq{ }_{n} A_{0} \sim A_{1} \downarrow S(m) \quad-\Vdash v_{0} \sim v_{1} \in R \Longleftrightarrow \forall n . n \Vdash A_{0} \sim A_{1} \in S(n)}{\operatorname{Box}[\sigma]=_{n} \square A_{0} \sim \square A_{1} \downarrow R}
$$

We wish to show $\sigma \mid={ }_{n} \square A_{0} \sim \square A_{1} \downarrow R$. This requires us to show three facts.

1. $\tau_{\alpha} \mid={ }_{n} \square A_{0} \sim \square A_{1} \downarrow R$

In this case, we observe that for all m we have $\sigma \mid={ }_{m} A_{0} \sim A_{1} \downarrow S(m)$ so $\tau_{\alpha} \mid={ }_{m} A_{0} \sim A_{1} \downarrow$ $S(m)$. Therefore $\tau_{\alpha} \mid={ }_{n} \square A_{0} \sim \square A_{1} \downarrow R$.
2. For all T, Γ, and $m \leq n$ we have $\Gamma \vdash_{m} T ® \square A_{0}$ type $_{\alpha}$ iff $\Gamma \vdash_{m} T ® \square A_{1}$ type $_{\alpha}$. In this case, we will only show the forwards direction. Suppose $\Gamma \vdash_{m} T \mathbb{R} \square A_{0}$ type ${ }_{\alpha}$ holds. We wish to show $\Gamma \vdash_{m} T ® \square A_{1}$ type $_{\alpha}$. Recall that $\Gamma \vdash_{m} T ® \square C$ type ${ }_{\alpha}$ holds if and only if there is some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type and for all $m, \Gamma . \vdash_{m} T^{\prime} ® C$ type ${ }_{\alpha}$.

By our assumption, we then have some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type. We merely need to show that for all m, Γ. $\vdash_{m} T^{\prime} ® A_{1}$ type $_{\alpha}$. However, since by assumption we have $\Gamma . \rho_{\vdash_{m}} T^{\prime} ® A_{0}$ type $_{\alpha}$ this follows from the fact that $\sigma \mid=m A_{0} \sim A_{1}$.
3. For all T, t, Γ, and $m \leq n$ then $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \square A_{0}$ iff $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \square A_{1}$.

For this, we will again show only one direction. Suppose that $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \square A_{0}$. Then we may expand this definition to see that it is equivalent to the following conditions:

- $\Gamma \vdash T=\square T^{\prime}$ type for some T^{\prime}
- $\Gamma \vdash t: T$ and $m \Vdash v \sim v \in R$
- for all $m, \Gamma . \boldsymbol{Q}_{\vdash_{m}}[t]_{\Omega}: T^{\prime}{ }^{\circledR}$ open $(v) \in_{\alpha} A_{0}$

Therefore, we have some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type and $\Gamma \vdash t: T$ and $m \Vdash v \sim v \in R$. We therefore merely need to show for any m^{\prime} that $\Gamma . \Omega \vdash_{m^{\prime}}[t]_{\Omega}: T^{\prime} ® \underline{o p e n}(v) \in_{\alpha} A_{1}$. However, since $\sigma \mid=m_{m^{\prime}} A_{0} \sim A_{1}$ and so this follows from $\Gamma . \vdash_{m}[t]_{\mathrm{m}}: T^{\prime}{ }^{\circledR}$ open(v) $\in_{\alpha} A_{0}$.
4. for any $m \leq n$ if $m \Vdash v_{0} \sim v_{1} \in R$ then $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha} \square A_{0}$ if and only if $\Gamma \vdash_{m} t: T ®$ $v_{1} \in_{\alpha} \square A_{0}$.
For this, we will show only the forward implication. Suppose we have $\Gamma \vdash_{m} t: T ® v_{0} \in_{\alpha}$ $\square A_{0}$. By inversion on this fact we have that there is some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type and

We wish to show $\Gamma \vdash_{m} t: T ® v_{1} \in_{\alpha} \square A_{0}$. Using the above, it suffices to show for all m^{\prime} that $\Gamma . \boldsymbol{Q}_{\vdash_{m^{\prime}}}[t]_{\mathrm{n}}: T^{\prime}$ ® open $\left(v_{1}\right) \in_{\alpha} A_{0}$. However, we have $m^{\prime} \Vdash$ open $\left(v_{0}\right) \sim$ open $\left(v_{2}\right) \in S\left(m^{\prime}\right)$ and $\sigma \mid=m_{m^{\prime}} A_{0} \sim A_{1} \downarrow S\left(m^{\prime}\right)$. Therefore we have the desired conclusion from the definition of σ.

Case.

$$
\frac{e_{0} \sim e_{1} \in \mathcal{N e} \quad n \Vdash \uparrow^{-} e_{0}^{\prime} \sim \uparrow^{-} e_{1}^{\prime} \in R \Longleftrightarrow e_{0}^{\prime} \sim e_{1}^{\prime} \in \mathcal{N} e}{\operatorname{Ne}[\sigma]=_{n} \uparrow^{-} e_{0} \sim \uparrow^{-} e_{1} \downarrow R}
$$

We wish to show $\sigma \mid={ }_{n} \uparrow^{-} e_{0} \sim \uparrow^{-} e_{1} \downarrow R$. In order to do this we first observe that $\tau_{\alpha} \mid=_{n} \uparrow^{-} e_{0} \sim$ $\uparrow^{-} e_{1} \downarrow R$. Furthermore, we have that for any $m \leq n$ that $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0}$ type ${ }_{\alpha}$ is equivalent to the following:

$$
\forall r: \Gamma^{\prime} \leq \Gamma . \exists T^{\prime} .\left\lceil e_{1}\right\rceil_{\left\|\Gamma^{\prime}\right\|}=T^{\prime} \wedge \Gamma^{\prime} \vdash T[r]=T^{\prime} \text { type }
$$

However, $e_{0} \sim e_{1} \in \mathcal{N e}$ and so $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0} \operatorname{type}_{\alpha} \Longleftrightarrow \Gamma \vdash_{m} T ® \uparrow^{-} e_{1} \operatorname{type}_{\alpha}$.
Moreover, $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \uparrow^{-} e_{0}$ if $r: \Gamma^{\prime} \leq \Gamma$, then $\left\lceil e_{1}\right\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\left\lceil e_{2}\right\rceil_{\left\|\Gamma^{\prime}\right\|}=T^{\prime}$ such that $\Gamma^{\prime} \vdash T[r]=T^{\prime}$ type and $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$. However, since $e_{1} \sim e_{2} \in \mathcal{N} e$ we have that this is precisely equivalent to $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \uparrow^{-} e_{2}$ and we're done.
Finally, if $n \Vdash v_{0} \sim v_{1} \in R$ then we have that $v_{i}=\uparrow^{-} e_{i}^{\prime}$ and $e_{0} \sim e_{1} \in \mathcal{N}$. Therefore, $\Gamma \vdash_{m} t: T ®$ $\uparrow^{-} e_{0}^{\prime} \in_{\alpha} \uparrow^{-} e_{0}$ if and only if $\Gamma \vdash_{m} t: T ® \uparrow^{-} e_{1}^{\prime} \in_{\alpha} \uparrow^{-} e_{0}$ by calculation.

Case.

$$
\frac{i<\alpha}{\operatorname{Univ}_{\alpha} \mid={ }_{n} \mathrm{U}_{i} \sim \mathrm{U}_{i} \downarrow\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{j}\right|={ }_{m} A_{0} \sim A_{1}\right\}}
$$

Since in this case both sides of the equality are identical all of the conditions are trivial except the last. The last follows by computation.

Case.

$$
\overline{\operatorname{Nat}[\sigma] \mid={ }_{n} \text { nat } \sim \text { nat } \downarrow \llbracket \mathbb{N} \rrbracket}
$$

Since in this case both sides of the equality are identical all of the conditions are trivial.

Lemma 4.3.6. If $\tau_{\omega} \mid=_{\tau_{\alpha}} n \sim A \downarrow A$ and $\Gamma \vdash T_{1}=T_{2}$ type then the following two facts hold:

1. $\Gamma \vdash_{n} T_{1} ® A$ type $_{\alpha}$ then $\Gamma \vdash_{n} T_{2} ® A$ type $_{\alpha}$.
2. $\Gamma \vdash_{n} t: T_{1} ® v \in_{\alpha}$ A then $\Gamma \vdash_{n} t: T_{2} ® v \in_{\alpha} A$.

Proof. In this case we may observe this by simply case on A (induction is not necessary). In each case the result follows from transitivity of $=$ on types and the conversion rule.

Lemma 4.3.7. If $\tau_{\alpha}=_{n} A \sim A, \Gamma \vdash t_{1}=t_{2}: T$ and $\Gamma \vdash_{n} t_{1}: T ® v \in_{\alpha} A$ then $\Gamma \vdash_{n} t_{2}: T ® v \in_{\alpha} A$.
Proof. In this case we do need some induction. We proceed by showing that the following is a least pre-fixed point:

$$
\begin{aligned}
& \tau_{\alpha} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R \\
& \forall m \leq n, v, \Gamma, t_{1}, t_{2}, T . \Gamma \vdash t_{1}=t_{2}: T \Longrightarrow\left(\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} A_{0} \Longleftrightarrow \Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} A_{0}\right) \\
& \hline \hline
\end{aligned}
$$

$$
\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R
$$

Suppose that we have $\operatorname{Types}_{\alpha}[\sigma] \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$. We wish to show $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.
Case.

$$
\frac{\sigma\left|={ }_{n} A_{0} \sim A_{1} \downarrow R_{0} \quad \sigma\right|={ }_{n} R_{0} \gg B_{0} \sim B_{1} \downarrow R_{1} \quad R=\llbracket \Pi \rrbracket\left(R_{0}, R_{1}\right)}{\operatorname{Pi}[\sigma] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R}
$$

We wish to show $\sigma \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R$. This involves showing two facts:

1. $\tau_{\alpha} \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right)$

This is immediate from the fact that $\sigma \leq \tau_{\alpha}$.
2. for all $m \leq n, v, \Gamma, t_{1}, t_{2}, T$ if $\Gamma \vdash t_{1}=t_{2}: T$ then $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$ iff $\Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$.
We will show that $\Gamma \vdash_{m} t_{1}: T ® \quad v \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$ implies $\Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} \Pi\left(A_{1}, B_{1}\right)$. We may unfold $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$ to see that it is equivalent to the following conditions:

- $n \Vdash v \sim v \in R$ and $\Gamma \vdash t_{1}: T$;
- $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type for some T_{0}, T_{1};
- $\Gamma \vdash_{n} T_{0}{ }^{\circledR} A_{0}$ type $_{\alpha} ;$
- if $m^{\prime} \leq n$ and $r: \Gamma^{\prime} \leq \Gamma$ then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right)$: $T_{1}\left[r . t^{\prime}\right]{ }^{\circledR} \underline{\operatorname{app}}(v, a) \in_{\alpha} B_{0}[a]$.
The first conditions are identical, therefore, it suffices to show for all $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ if $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{1}[r] \circledR a \in_{\alpha} A_{1}$ then the following:

$$
\Gamma^{\prime} \vdash_{m^{\prime}} t_{1}[r]\left(t^{\prime}\right): T_{2}\left[r . t^{\prime}\right] ® \underline{\operatorname{app}}(v, a) \in_{\alpha} A_{2}[a]
$$

We must have $m^{\prime} \Vdash a \sim a \in R$ and so $\sigma \neq_{m^{\prime}} B_{0}[a] \sim B_{1}[a] \downarrow R_{1}(a, a)$. Then, we may conclude from congruence that $\Gamma^{\prime} \vdash t_{1}[r]\left(t^{\prime}\right)=t_{2}[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right]$ and so we have the goal:

$$
\Gamma^{\prime} \vdash_{n^{\prime}} t_{2}[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ® \operatorname{app}(v, a) \in_{\alpha} B_{1}[a]
$$

Case.

$$
\frac{\sigma\left|={ }_{n} A_{0} \sim A_{1} \downarrow R_{0} \quad \sigma\right|={ }_{n} R_{0} \gg B_{0} \sim B_{1} \downarrow R_{1} \quad R=\llbracket \Sigma \rrbracket\left(R_{0}, R_{1}\right)}{\operatorname{Sg}[\sigma] \mid={ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R}
$$

We wish to show $\sigma \mid={ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$. This involves showing two facts:

1. $\tau_{\alpha} \neq{ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$ This is identical to the reasoning in the Pi case.
2. for all $m \leq n, v, \Gamma, t_{1}, t_{2}, T$ if $\Gamma \vdash t_{1}=t_{2}: T$ then $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ iff $\Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$.
We will show that $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ implies $\Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$. We may unfold $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ to see that it is equivalent to the following conditions:

- $n \Vdash v \sim v \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type for some T_{0}, T_{1};
- if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}\left[r . t^{\prime}\right] ®$ $B_{0}[a]$ type $_{\alpha}$;
- $\Gamma \vdash_{n} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}(v) \in_{\alpha} A_{0}$;
- $\Gamma \vdash_{n} \operatorname{snd}(t): T_{1}[\operatorname{id} .(f s t(t))]{ }^{\circledR} \underline{\operatorname{snd}}(v) \in_{\alpha} B_{0}[\underline{\mathbf{f s t}}(v)]$.

So there exists some T_{0}, T_{1} such that $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type and $m \Vdash v \sim v \in R$. In order to show $\Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ we merely need the following facts:

- $\Gamma \vdash_{m} \mathrm{fst}\left(t_{2}\right): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}(v) \in_{\alpha} A_{0}$
- $\Gamma \vdash_{m} \operatorname{snd}\left(t_{2}\right): T_{1}\left[\operatorname{id} .\left(\operatorname{fst}\left(t_{2}\right)\right)\right]{ }^{\circledR} \underline{\operatorname{snd}}(v) \in_{\alpha} B_{0}[\underline{f s t}(v)]$

We quickly note that $\Gamma \vdash \mathrm{fst}\left(t_{1}\right)=\mathrm{fst}\left(t_{2}\right): T_{0}$ and $\Gamma \vdash \operatorname{snd}\left(t_{1}\right)=\operatorname{snd}\left(t_{2}\right): T_{1}\left[\operatorname{id} .\left(\mathrm{fst}\left(t_{1}\right)\right)\right]$ by congruence. We also have $\Gamma \vdash T_{1}\left[\operatorname{id.} .\left(\mathrm{fst}\left(t_{1}\right)\right)\right]=T_{1}\left[\operatorname{id} .\left(\operatorname{fst}\left(t_{2}\right)\right)\right]$ type. We use the latter fact with Lemma 4.3.6 to conclude $\Gamma \vdash_{m} \operatorname{snd}\left(t_{1}\right): T_{1}\left[\operatorname{id} .\left(\operatorname{fst}\left(t_{2}\right)\right)\right]{ }^{\circledR} \underline{\operatorname{snd}}(v) \in_{\alpha} B_{0}[\underline{\mathrm{fst}}(v)]$. We already have by assumption that $\Gamma \vdash_{n} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}(v) \in_{\alpha} A_{0}$.
The conclusion then follows from $\sigma=_{m} A_{0} \sim A_{1}$ and $\sigma=_{m} B_{0}[\underline{\mathbf{f s t}}(v)] \sim B_{1}[\underline{\mathbf{f s t}}(v)]$.
Case.

$$
\frac{\forall m . \sigma \neq m A_{0} \sim A_{1} \downarrow S(m) \quad R \Vdash v_{0} \sim v_{1} \in n \Longleftrightarrow \forall m . S(m) \Vdash \text { open }\left(v_{0}\right) \sim \text { open }\left(v_{1}\right) \in m}{\operatorname{Box}[\sigma]=_{n} \square A_{0} \sim \square A_{1} \downarrow R}
$$

We wish to show $\sigma \neq_{n} \square A_{0} \sim \square A_{1} \downarrow R$.
First we observe that from $\sigma \mid=_{n} A_{0} \sim A_{1} \downarrow S(m)$ we may conclude $\tau_{\alpha} \mid={ }_{n} A_{0} \sim A_{1} \downarrow S(m)$ and so $\tau_{\alpha} \mid={ }_{n} \square A_{0} \sim \square A_{1} \downarrow R$ holds.
Second, we wish to show that if $m \leq n$ and $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \square A_{0}$ such that $\Gamma \vdash t_{1}=t_{2}$ typeT that $\Gamma \vdash_{m} t_{2}: T ® v \in_{\alpha} \square A_{1}$ holds. We unfold $\Gamma \vdash_{m} t_{1}: T ® v \in_{\alpha} \square A_{0}$:

- $n \Vdash v \sim v \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\square T^{\prime}$ type for some T^{\prime}
- for all $m, \Gamma . \boldsymbol{Q}_{\vdash_{m}}[t]_{\mathrm{n}}: T^{\prime}$ (R) open $(v) \in_{\alpha} \square A_{0}$

We wish to show $\Gamma . \vdash_{m} t_{2}: T ® v \in_{\alpha} \square A_{0}$. First, from our assumption we have some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type and $\Gamma \vdash t_{1}: T$ as well as $m \Vdash v \sim v \in R$. We therefore just need to show that for all m^{\prime} that $\Gamma . \underline{\Omega_{m^{\prime}}}\left[t_{2}\right]_{\Omega}: T^{\prime} ® \underline{\text { open }}(v) \in_{\alpha} A_{0}$ holds. First, we observe that we have $\sigma \mid=m_{m^{\prime}} A_{0} \sim A_{1} \downarrow S(m)$ by assumption. Furthermore, by congruence we have $\Gamma . \boldsymbol{O}+\left[t_{1}\right]_{\mathrm{n}}=\left[t_{2}\right]_{\mathrm{n}}: T^{\prime}$. Therefore, since $\Gamma . \boldsymbol{\Omega}_{\vdash_{n^{\prime}}\left[t_{1}\right]_{\mathrm{n}}}: T^{\prime}$ ® $\underline{\text { open }}(v) \in_{\alpha} A_{0}$ we're done.

Case.

$$
\frac{e_{0} \sim e_{1} \in \mathcal{N e} \quad R=\left\{\left(m, \uparrow^{B_{0}} e_{0}, \uparrow^{B_{1}} e_{1}\right) \mid e_{0} \sim e_{1} \in \mathcal{N} e\right\}}{\operatorname{Ne} \mid={ }_{n} \uparrow^{A_{0}} e_{0} \sim \uparrow^{A_{1}} e_{1} \downarrow R}
$$

Immediate by transitivity of $=$ on terms.

Case.

$$
\frac{j<\alpha}{\operatorname{Univ}_{\alpha} \mid={ }_{n} \mathrm{U}_{j} \sim \mathrm{U}_{j} \downarrow\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{j}\right|={ }_{m} A_{0} \sim A_{1}\right\}}
$$

Immediate by Lemma 4.3.6.
Case.

$$
\frac{\sigma \not{ }_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim u_{0} \in R \quad n \Vdash v_{1} \sim u_{1} \in R}{\operatorname{Id}[\sigma] \vDash{ }_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)}
$$

Immediate by transitivity of $=$ on terms.
Case.

$$
\overline{\text { Nat } \mid={ }_{n} \text { nat } \sim \text { nat } \downarrow \llbracket \mathbb{N} \rrbracket}
$$

Immediate by transitivity of $=$ on terms.
Lemma 4.3.8. If $\beta \leq \alpha$ and $\tau_{\beta} \mid=_{n} A \sim A$ then the following holds:

1. If $\Gamma \vdash_{n} T ® A$ type $_{\beta}$ if and only if $\Gamma \vdash_{n} T ® A$ type ${ }_{\alpha}$.
2. If $\Gamma \vdash_{n} t: T ® v \in_{\beta} A$ if and only if $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$.

Proof. In order to do this we show that the following is a pre-fixed point of Types ${ }_{\beta}$:

$$
\begin{aligned}
& \tau_{\beta}=_{A_{0}} A_{1} \sim R \quad\left(\forall m \leq n, \Gamma, T . \Gamma \vdash_{m} T ® A \text { type }_{\beta} \Longleftrightarrow \Gamma \vdash_{m} T ® A \text { type }_{\alpha}\right) \\
& \left(\forall m \leq n, \Gamma, v, t, T . \Gamma \vdash_{m} t: T ® v \in_{\beta} A \Longleftrightarrow \Gamma \vdash_{n} t: T ® v \in_{\alpha} A\right) \\
& \left.\sigma\right|_{A_{0}} A_{1} \sim R
\end{aligned}
$$

All cases are straightforward except the case for $\operatorname{Univ}_{\beta}$. Therefore we only show this case.
Case.

$$
\frac{j<\beta}{\operatorname{Univ}_{\beta} \mid=_{n} \mathrm{U}_{j} \sim \mathrm{U}_{j} \downarrow\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{j}\right|==_{m} A_{0} \sim A_{1}\right\}}
$$

In this case we have some $j<\beta$ and so $j<\alpha$. We set $R=\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{j}\right|={ }_{m} A_{0} \sim A_{1}\right\}$.
We observe that $\tau_{\beta} \mid={ }_{n} \mathrm{U}_{j} \sim \mathrm{U}_{j} \downarrow R$ as τ_{β} is closed under $\operatorname{Univ}_{\beta}$.
Next, observe that $\Gamma \vdash_{m} T ® \mathrm{U}_{j}$ type ${ }_{\alpha}$ if and only if $\Gamma \vdash T=\mathrm{U}_{j}$ type. However, we also have that $\Gamma \vdash_{m} T ® \mathrm{U}_{j}$ type $_{\beta}$ holds if and only if $\Gamma \vdash T=\mathrm{U}_{j}$ type holds.
Moreover, if we have some $m \leq n, \Gamma, t, T$, and v such that $\Gamma \vdash_{m} t: T ® \quad v \in_{\beta} \mathrm{U}_{j}$ then that the following conditions hold:

- $n \Vdash v \sim v \in R$;
- $\Gamma \vdash t: T$ and $\Gamma \vdash T=\mathrm{U}_{i}$ type;
- $\Gamma \vdash_{n} t ®$ type $_{i}$.

These, however, is precisely equivalent the definition of $\Gamma \vdash_{m} t: T ®{ }^{\circledR} v \mathcal{U}_{j}$ as $\alpha \geq \beta$.
Lemma 4.3.9. If $\Gamma \vdash_{n} t: T ® \quad v \in_{\alpha} A$ then $\Gamma \vdash_{n} T ® A$ type ${ }_{\alpha}$.
Proof. In order to show this we proceed by induction on (α, A, n). We proceed by case on $\Gamma \vdash_{n} t$: $T ® \quad v \in_{\alpha} A$. All cases are trivial, however, as we have added all appropriate extra premises to $\Gamma \vdash_{n} t: T ® v \in_{\alpha} A$ to ensure that this fact holds.

We now prove the "compatibility" lemma telling us how what it means for a term and value to be connected by this logical relation. This is the equivalent of Lemma 3.2.7.

Lemma 4.3.10 (Compatibility with quotation). If $\Gamma \vdash T$ type and for all $r: \Gamma^{\prime} \leq \Gamma$ if we have some T^{\prime} such that $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=T^{\prime}$ and $\Gamma^{\prime} \vdash T[r]=T^{\prime}$ type then $\Gamma \vdash_{n} T ® \uparrow^{-} e$ type ${ }_{\alpha}$.

Proof. Suppose that we have $\Gamma \vdash T$ type such that for all $r: \Gamma^{\prime} \leq \Gamma$ and $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=T^{\prime}$ and $\Gamma^{\prime} \vdash T[r]=$ T^{\prime} type. We wish to show $\Gamma \vdash_{n} T ® \uparrow^{-} e$ type ${ }_{\alpha}$ but this is immediate by definition.

Lemma 4.3.11 (Compatibility with quotation). The following three facts hold for any n, α, and A such that $\tau_{\alpha}=_{n} A \sim A$.

1. If $\Gamma \vdash_{n} T ® A$ type $_{\alpha}$ then for all $r: \Gamma^{\prime} \leq \Gamma$, there is some T^{\prime} such that $\lceil A\rangle_{\left\|\Gamma^{\prime}\right\|}^{\mathrm{ty}}=T^{\prime}$ and $\Gamma^{\prime} \vdash T[r]=T^{\prime}$ type.
2. If $\Gamma \vdash_{n} t: T ® \geqslant \in \in_{\alpha}$ A then for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\left\lceil\downarrow^{A} v\right\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$.
3. If $\Gamma \vdash_{n} T ® A$ type ${ }_{\alpha}$ and $\Gamma \vdash t: T$ and iffor some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{n} t: T ® \uparrow^{A} e \in_{\alpha} A$.

Proof. We start by induction on α. We then prove these facts by together by showing $\sigma \neq_{n} A_{0} \sim A_{1} \downarrow R$ is a pre-fixed point. Let $\sigma \neq{ }_{n} A_{0} \sim A_{1} \downarrow R$ hold if and only if the following conditions hold:

- $\tau_{\alpha} \mid={ }_{n} A_{0} \sim A_{1} \downarrow R ;$
- For all $m \leq n$ and $\Gamma \vdash_{m} T ® A$ type ${ }_{\alpha}$ there exists T^{\prime} such that $\lceil A\rceil_{\|\Gamma\|}^{\text {ty }}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type;
- For all $m \leq n$ and $\Gamma \vdash_{m} t: T ® v \in_{\alpha} A$ there exists t^{\prime} such that $\left\lceil\downarrow^{A} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash t=t^{\prime}: T$;
- For all $m \leq n, \Gamma \vdash_{m} T ® A$ type $_{\alpha}, \Gamma \vdash t: T$, and if for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow^{A} e \in_{\alpha} A$.

Suppose that Types ${ }_{\alpha}[\sigma] \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$. We wish to show $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$.
Case.

$$
\frac{\sigma\left|={ }_{n} A_{0} \sim A_{1} \downarrow R_{0} \quad \sigma\right|={ }_{n} R_{0} \gg B_{0} \sim B_{1} \downarrow R_{1} \quad R=\llbracket \Pi \rrbracket\left(R_{0}, R_{1}\right)}{\operatorname{Pi}[\sigma] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R}
$$

We wish to show $\sigma \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R$. We observe that $\sigma \leq \tau_{\alpha}$ and so we have $\operatorname{Pi}\left[\tau_{\alpha}\right] \mid={ }_{n} \Pi\left(A_{0}, B_{0}\right) \sim \Pi\left(A_{1}, B_{1}\right) \downarrow R$. From the definition of τ_{α} we then have $\tau_{\alpha} \models_{n} \Pi\left(A_{0}, B_{0}\right) \sim$ $\Pi\left(A_{1}, B_{1}\right) \downarrow R$. Therefore, we must show three more facts:

Subgoal.
For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ® A$ type ${ }_{\alpha}$ then there is some T^{\prime} such that $\left\lceil\Pi\left(A_{0}, B_{0}\right)\right\rceil_{\|\Gamma\|}^{\text {ty }}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type.
Suppose we have $m \leq n, \Gamma, T, \Gamma \vdash_{m} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$. We wish to show that there is some T^{\prime} such that $\left\lceil\Pi\left(A_{0}, B_{0}\right)\right]_{\|\Gamma\|}^{\text {ty }}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type.
First, we observe by inversion that there is some T_{0} and T_{1} such that $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type. Furthermore, we must have $\Gamma \vdash_{m} T_{0} ® A_{0}$ type $_{\alpha}$. Finally, for any $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ we have that if $\Gamma^{\prime} \vdash_{m^{\prime}} t: T_{0}[r] ®\left(v \in_{\alpha} A_{0}\right.$ then $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}[r . t]{ }^{\circledR} B_{0}[v]$ type ${ }_{\alpha}$.
First, $\sigma \mid={ }_{m} A_{0} \sim A_{0}$ tells us that there exists some T_{0}^{\prime} such that $\left\lceil A_{0}\right\rceil_{\|\Gamma\|}^{\text {ty }}=T_{0}^{\prime}$ and $\Gamma \vdash T_{0}=$ T_{0}^{\prime} type.
Next, again by $\sigma \mid={ }_{m} A_{0} \sim A_{0}$ we deduce that in the context $\Gamma . T_{1}$ that the following holds:

$$
\Gamma . T_{0} \vdash_{m} \operatorname{var}_{0}: T_{0}\left[\mathrm{p}^{1}\right] ® \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|} \in_{\alpha} A_{0}
$$

We also observe that there is an r, p^{1}, such that $r: \Gamma . T_{0} \leq \Gamma$. Therefore, we may use our induction hypothesis to conclude the following:

$$
\Gamma . T_{0} \vdash_{m} T_{1}\left[r . \operatorname{var}_{0}\right] ® B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right] \operatorname{type}_{\alpha}
$$

Moreover, since we have $m \Vdash \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|} \sim \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|} \in R_{0}$ we therefore we have a relation:

$$
\sigma \mid={ }_{m} B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right] \sim B_{1}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right] \downarrow R_{2}\left(\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}, \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right)
$$

Then, by definition of σ we have that there is some T_{1}^{\prime} such that $\left[B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right]\right]_{\left\|\Gamma . T_{0}\right\|}^{\mathrm{ty}}=T_{1}^{\prime}$ and $\Gamma . T_{0} \vdash T_{1}\left[r . \operatorname{var}_{0}\right]=T_{1}^{\prime}$ type. We know that $\Gamma . T_{0} \vdash r \cdot \operatorname{var}_{0}=\mathrm{id}: \Gamma . T_{0}$ as $r=\mathrm{p}^{1}$ and so $\Gamma . T_{0} \vdash T_{1}=T_{1}^{\prime}$ type by transitivity.
However, by inspection on the definition of quotation this tells us that $\left\lceil\Pi\left(A_{0}, B_{0}\right)\right\rceil_{\|\Gamma\|}^{\text {ty }}=$ $\Pi\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ and $\Gamma \vdash \Pi\left(T_{0}, T_{1}\right)=\Pi\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ type by congruence.

Subgoal.

$$
\begin{aligned}
& \text { For any } m \leq n, \Gamma, t, T, v \text {, if } \Gamma \vdash_{m} t: T ® \vee \in_{\alpha} \Pi\left(A_{0}, B_{0}\right) \text { then we have } \\
& \left.\Gamma \downarrow \Pi\left(A_{0}, B_{0}\right) v\right\rceil_{\|\Gamma\|}=t^{\prime} \text { and } \Gamma \vdash t=t^{\prime}: T .
\end{aligned}
$$

Suppose we have $m \leq n, \Gamma, t, T$, and v such that $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$.
We wish to show $\left\lceil\downarrow^{\Pi\left(A_{0}, B_{0}\right)} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
First, we invert upon $\Gamma \vdash_{m} t: T ® \exists \in_{\alpha} A$ to determine that there must be some T_{0} and T_{1} such that $\Gamma \vdash T=\Pi\left(T_{0}, T_{1}\right)$ type, $\Gamma \vdash t: T$, and $m \Vdash v \sim v \in R$. We have $\Gamma \vdash_{m} T_{0} \circledR^{\circledR} A_{0}$ type ${ }_{\alpha}$. We also have that for any $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ that if $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$ then $\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ® \operatorname{app}(v, a) \in_{\alpha} B_{0}[a]$.
Now, from our assumption that $\Gamma \vdash_{m} T_{0} ® A_{0}$ type $_{\alpha}$ and monotonicity, we have that $\Gamma . T_{0} \vdash_{m} T_{0}\left[\mathrm{p}^{1}\right] \circledR A_{0}$ type $_{\alpha}$. We may then use $\sigma \mid={ }_{m} A_{0} \sim A_{0}$ to conclude that $\Gamma . T_{0} \vdash_{m} \operatorname{var}_{0}:$ $T_{0}\left[\mathrm{p}^{1}\right] ® \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|} \in_{\alpha} A_{0}$.
We may use this fact to conclude the following:

$$
\Gamma . T_{0} \vdash_{m} t\left[\mathrm{p}^{1}\right]\left(\operatorname{var}_{0}\right): T_{1}\left[\mathrm{p}^{1} \cdot \operatorname{var}_{0}\right] ®^{\circledR} \underline{\operatorname{app}}\left(v, \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right) \in_{\alpha} B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right]
$$

By closure under = we may simplify this:

$$
\Gamma . T_{0} \vdash_{m} t\left[\mathrm{p}^{1}\right]\left(\operatorname{var}_{0}\right): T_{2} ®^{\circledR} \underline{\operatorname{app}}\left(v, \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right) \in_{\alpha} B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right]
$$

Now, we know that $m \Vdash \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|} \sim \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|} \in R_{0}$ either from Lemma 3.2.7 or from Lemma 4.2.1. We then have $\sigma \mid={ }_{m} B_{0}\left[\uparrow{ }^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right] \sim B_{0}\left[\uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right]$ and so we may conclude that there is some t^{\prime} such that the following two conditions hold:

$$
\begin{gathered}
\left\lceil\downarrow^{B_{0}\left[\uparrow^{\left.A_{0} \operatorname{var}_{\|\Gamma\|}\right]} \underline{\operatorname{app}}\left(v, \uparrow^{A_{0}} \operatorname{var}_{\|\Gamma\|}\right)\right]_{\|\Gamma\|+1}=t^{\prime}}\right. \\
\Gamma . T_{0} \vdash t\left[\mathrm{p}^{1}\right]\left(\operatorname{var}_{0}\right)=t^{\prime}: T_{1}
\end{gathered}
$$

But, we then have that $\left\lceil\downarrow^{\Pi\left(A_{0}, B_{0}\right)} v\right\rceil_{\|\Gamma\|}=\lambda t^{\prime}$ and $\Gamma \vdash t=\lambda t^{\prime}: \Pi\left(T_{0}, T_{1}\right)$ by eta and congruence.

Subgoal.

For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash_{m} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}, \Gamma \vdash t: T$, and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow^{A} e \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$.

Suppose we have $m \leq n, \Gamma, t, T$, and e such $\Gamma \vdash_{m} T ® \Pi\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$.
We wish to show that $\Gamma \vdash_{m} t: T ® \uparrow^{\left(A_{0}, B_{0}\right)} e \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$.
First, we invert on $\Gamma \vdash_{m} T ® A$ type ${ }_{\alpha}$ to conclude that there is some $\Gamma \vdash \Pi\left(T_{0}, T_{1}\right)=T$ type such that $\Gamma \vdash_{m} T_{0} ® A_{0}$ type $_{\alpha}$. We must have that if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ such that $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® v \in_{\alpha} A_{0}$ then we have $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}\left[r . t^{\prime}\right] ® B_{0}[v]$ type ${ }_{\alpha}$.
We wish to show $\Gamma \vdash_{m} t: T ® \uparrow \Pi\left(A_{0}, B_{0}\right) e \in_{\alpha} A$.
We merely need to show that if we have some $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$ such that $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}$: $T_{0}[r]{ }^{\circledR} a \in_{\alpha} A_{0}$ then the following holds:

$$
\Gamma^{\prime} \vdash_{m^{\prime}} t[r]\left(t^{\prime}\right): T_{1}\left[r . t^{\prime}\right] ® \operatorname{app}\left(\uparrow^{A_{0}} e, a\right) \in_{\alpha} B_{0}[a]
$$

Observe that $\underline{\operatorname{app}}\left(\uparrow^{\Pi\left(A_{0}, B_{0}\right)} e, a\right)=\uparrow^{B_{0}[a]} e \cdot \operatorname{app}\left(\downarrow^{A_{0}} a\right)$ and $B_{0}[a]$ is defined from our assumption of $\sigma{=m^{\prime}}^{R_{0}} \gg B_{0} \sim B_{0}$ holds and since $m \Vdash a \sim a \in R_{0}$ by Lemma 4.2.1. Since e.app $\left(\downarrow^{A_{0}} a\right)$ is a neutral so we will apply our induction hypothesis.

First, we have that for all $r^{\prime}: \Gamma^{\prime \prime} \leq \Gamma^{\prime}$ that $\left\lceil\downarrow^{A_{1}} a\right]_{\left\|\Gamma^{\prime}\right\|}=t_{a}$ for some t_{a} such that $\Gamma^{\prime \prime} \vdash t^{\prime}\left[r^{\prime}\right]=$ $t_{a}: T_{0}\left[r \circ r^{\prime}\right]$ from our induction hypothesis.
Now, we had by assumption that $r^{\prime}: \Gamma^{\prime \prime} \leq \Gamma^{\prime}\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t_{f}$ for some t_{f} such that $\Gamma^{\prime \prime} \vdash$ $t\left[r \circ r^{\prime}\right]=t_{a}: T_{0}\left[r \circ r^{\prime}\right]$. We have made use the functoriality of explicit substitutions here along with the transitivity of definitional equality.
Now finally, this tells us that for any $r^{\prime}: \Gamma^{\prime \prime} \leq \Gamma^{\prime}$ that $\left\lceil e \cdot \operatorname{app}\left(\downarrow^{A_{0}} a\right)\right\rceil_{\left\|\Gamma^{\prime}\right\|}=t_{t}$ such that $\Gamma^{\prime \prime}+t[r]\left(t^{\prime}\right)\left[r^{\prime}\right]=t_{t}: T_{1}\left[\left(r . t^{\prime}\right) \circ r^{\prime}\right]$. We may then use the fact that $\sigma \mid=m_{m^{\prime}} B_{0}[a] \sim B_{1}[a]$ to conclude that $\Gamma^{\prime} \vdash_{m^{\prime}} t: T ® \uparrow \Pi\left(A_{0}, B_{0}\right) e \in_{\alpha} \Pi\left(A_{0}, B_{0}\right)$ as required.

Case.

$$
\frac{\sigma\left|{ }_{n} A_{0} \sim A_{1} \downarrow R_{0} \quad \sigma\right|={ }_{n} R_{0} \gg B_{0} \sim B_{1} \downarrow R_{1} \quad R=\llbracket \Sigma \rrbracket\left(R_{0}, R_{1}\right)}{\operatorname{Sg}[\sigma] \mid={ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R}
$$

We wish to show $\sigma \neq_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$. We observe that $\sigma \leq \tau_{\alpha}$ and so we have $\operatorname{Sg}[\sigma] \mid={ }_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$. By definition of τ_{α} we have $\tau_{\alpha}=_{n} \Sigma\left(A_{0}, B_{0}\right) \sim \Sigma\left(A_{1}, B_{1}\right) \downarrow R$.
Therefore, we must show three more facts:

Subgoal.

For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ® \Sigma\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ then there is some T^{\prime} such that $\lceil A\rceil_{\|\Gamma\|}^{\text {ty }}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type.
Identical to case for $\Pi(-,-)$.

Subgoal.

For any $m \leq n, \Gamma, t, T$, v, if $\Gamma \vdash_{m} T ® \Sigma\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ and $\Gamma \vdash_{m} t: T ® v \in_{\alpha}$ $\Sigma\left(A_{0}, B_{0}\right)$ then we have $\left\lceil\downarrow^{\Sigma\left(A_{0}, B_{0}\right)} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.

For this, suppose we have $m \leq n, \Gamma, t, T$, and v. If we have $\Gamma \vdash_{m} t: T ® v \in{ }_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ then we wish to show $\left\lceil\downarrow^{\Sigma\left(A_{0}, B_{0}\right)} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
First, we perform inversion on $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$. This tells us that the following facts hold:

- $m \Vdash v \sim v \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type for some T_{0}, T_{1};
- if $m^{\prime} \leq m$ and $r: \Gamma^{\prime} \leq \Gamma$, then $\Gamma^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[r] ® a \in_{\alpha} A_{0}$ implies $\Gamma^{\prime} \vdash_{m^{\prime}} T_{1}\left[r . t^{\prime}\right] ®$ $B_{0}[a]$ type $_{\alpha}$;
- $\Gamma \vdash_{m} \mathrm{fst}(t): T_{0}{ }^{\circledR} \underline{\mathrm{fst}}(v) \in_{\alpha} A_{0} ;$
- $\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\mathrm{id} .(\mathrm{fst}(t))]{ }^{\circledR} \underline{\operatorname{snd}}(v) \in_{\alpha} B_{0}[\underline{\mathbf{f s t}}(v)]$.

Now, we have $\sigma \mid={ }_{n} A_{0} \sim A_{0}$ and so $\left\lceil\downarrow^{A_{0}} \underline{\mathbf{f s t}}(v)\right\rceil_{\|\Gamma\|}=t_{f}$ such that $\Gamma \vdash \mathrm{fst}(t)=t_{f}: T_{0}$.
Furthermore, since $m \Vdash \underline{\mathbf{f s t}}(v) \sim \underline{\mathbf{f s t}}(v) \in R_{0}$ we must have $\sigma=_{m} B_{0}[\underline{\mathbf{f s t}}(v)] \sim B_{0}[\underline{\mathbf{f s t}}(v)]$.
 $T_{1}[\operatorname{id} .(\operatorname{fst}(t))]$.
Now from these two facts, we have $\left\lceil\downarrow^{\Sigma\left(A_{0}, B_{0}\right)} v\right\rceil_{\|\Gamma\|}=\left(t_{f}, t_{s}\right)$ and so $\Gamma \vdash t=\left(t_{f}, t_{s}\right): T$ by congruence and eta.

Subgoal.

For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \Sigma\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$.
Suppose we have some $m \leq n, \Gamma, \Gamma \vdash t: T$ and that $\Gamma \vdash_{m} T ® \Sigma\left(A_{0}, B_{0}\right)$ type ${ }_{\alpha}$. Suppose further that there is some e such that for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash t[r]=$ $t^{\prime}: T[r]$. We wish to show that $\Gamma \vdash_{m} t: T ® \uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$.
First, we observe by inversion that that we must have $\Gamma \vdash T=\Sigma\left(T_{0}, T_{1}\right)$ type such that $\Gamma \vdash_{m} T_{0} \circledR A_{0}$ type $_{\alpha}$ and for all $\Gamma \vdash_{m} t_{1}: T_{0} ® v_{f} \in_{\alpha} A_{0}$ we also have $\Gamma \vdash_{m} T_{1}\left[\right.$ id. $\left.t_{1}\right] ®$ $B_{0}\left[v_{f}\right]$ type $_{\alpha}$.
Now, in order to show $\Gamma \vdash_{m} t: T ® \uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e \in_{\alpha} \Sigma\left(A_{0}, B_{0}\right)$ it suffices to show the following two facts:

$$
\begin{gathered}
\Gamma \vdash_{m} \operatorname{fst}(t): T_{0}{ }^{\circledR} \underline{\mathbf{f s t}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e\right) \in_{\alpha} A_{0} \\
\Gamma \vdash_{m} \operatorname{snd}(t): T_{1}[\operatorname{id} .(\underline{f s t}(t))] ®^{\circledR} \underline{\operatorname{snd}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e\right) \in_{\alpha} B_{0}\left[\underline{\mathbf{f s t}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e\right)\right]
\end{gathered}
$$

We show the first by observing that $\underline{\operatorname{fst}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e\right)=\uparrow^{A_{0}} e$.fst so it suffices to show that for any $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e . \mathrm{fst}]_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash(\mathrm{fst}(t))[r]=t^{\prime}: T_{0}[r]$. This conclusion is immediate by the definition of quotation and our assumption that this holds for t and e.
We then have that $\Gamma \vdash_{m} T_{1}[\operatorname{id} .(\operatorname{fst}(t))] \circledR^{\circledR} B_{0}\left[\uparrow^{A_{0}} e\right.$.fst $]$ type ${ }_{\alpha}$. Therefore, $B_{0}\left[\uparrow^{A_{0}} e . f s t\right]$ terminates and so $\underline{\mathbf{s n d}}\left(\uparrow^{\Sigma\left(A_{0}, B_{0}\right)} e\right)=\uparrow^{B_{0}\left[\uparrow^{A_{0}} e . f \mathrm{fst}\right]} e$.
In order to show the second part, then, it suffices to show $r: \Gamma^{\prime} \leq \Gamma$ we have $\left\lceil e\right.$. snd $1_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ and $\Gamma^{\prime} \vdash \operatorname{snd}(t)[r]=t^{\prime}: T_{2}[(\operatorname{id} .(\operatorname{fst}(t))) \circ r]$.
This is similar to the case for the first projection: it follows from the definition of quotation and our assumption that this holds for t and e.

Case.

$$
\frac{\forall m . \sigma \mid={ }_{m} A_{0} \sim A_{1} \downarrow S(m) \quad R=\llbracket \square \rrbracket(S)}{\operatorname{Box}\lceil\sigma] \mid={ }_{n} \square A_{0} \sim \square A_{1} \downarrow R}
$$

We wish to show $\sigma=_{n} \square A_{0} \sim \square A_{1} \downarrow R$. We observe that $\sigma \leq \tau_{\alpha}$ and so we have $\operatorname{Box}[\sigma] \mid={ }_{n}$ $\square A_{0} \sim \square A_{1} \downarrow R$. Therefore, we may conclude $\tau_{\alpha} \models_{n} \square A_{0} \sim \square A_{1} \downarrow R$. Therefore, we must show three more facts:

Subgoal.

For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ® \square A_{0}$ type $_{\alpha}$ then there is some T^{\prime} such that $\left\lceil\left.\square A_{0}\right|_{\|\Gamma\|} ^{\mathrm{ty}}=T^{\prime}\right.$ and $\Gamma \vdash T=T^{\prime}$ type.
Suppose we have $m \leq n, \Gamma, T$ and $\Gamma \vdash_{m} T ® \square A_{0}$ type $_{\alpha}$. We wish to show that we have some T^{\prime} such that $\left\lceil\square A_{0}\right\rceil_{\|\Gamma\|}^{\text {ty }}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type.

First, we invert upon on $\Gamma \vdash_{m} T ® \square A_{0}$ type $_{\alpha}$, we then must have that $\Gamma \vdash T=\square T^{\prime}$ type and for all m, we have $\Gamma . \Omega \vdash_{m} T^{\prime} ® A_{0}$ type $_{\alpha}$. Since $\sigma \mid=A_{m} \sim A_{1}$ we may then use the latter fact to conclude that $\left\lceil A_{0}\right\rceil_{\|\Gamma\|}^{\text {ty }}=S$ such that $\Gamma \vdash T^{\prime}=S$ type. By definition, we must have $\left\lceil\square A_{0}\right]_{\|\Gamma\|}^{\text {ty }}=\square S$. Finally, $\Gamma \vdash T=\square S$ type by transitivity and congruence.

Subgoal.

For any $m \leq n, \Gamma, t, T$, v, if $\Gamma \vdash_{m} t: T ® \geqslant \in_{\alpha} \square A_{0}$ then we have $\left\lceil\downarrow^{A} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.

For this, suppose we have $m \leq n, \Gamma, t, T$, v such that $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \square A_{0}$. We wish to show that the following holds: $\left\lceil\downarrow^{\square A_{0}} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
We first perform inversion on $\Gamma \vdash_{m} t: T ® \cup \in_{\alpha} \square A_{0}$. We then have the following facts:

- $m \Vdash v \sim v \in R$ and $\Gamma \vdash t: T$;
- $\Gamma \vdash T=\square T^{\prime}$ type for some T^{\prime}
- for all $m, \Gamma . \boldsymbol{Q}_{\vdash_{m}}[t]_{\mathrm{n}}: T^{\prime}{ }^{\circledR}$ open $(v) \in_{\alpha} A_{0}$

We have $\sigma \mid={ }_{m} A_{0} \sim A_{0}$ by assumption, so from $\Gamma . \boldsymbol{Q}_{\vdash_{m}}[t]_{\Omega}: T^{\prime}{ }^{\circledR} \underline{\text { open }}(v) \in_{\alpha} A_{0}$ we may conclude that there is some t^{\prime} such that $\left\lceil\downarrow^{A_{0}} \text { open }(v)\right\rceil_{\| \Gamma . \boldsymbol{a}_{\|}}=t^{\prime}$ such that $\Gamma . \boldsymbol{\Omega} \vdash[t]_{\boldsymbol{\rho}}=t^{\prime}$: T^{\prime}. By definition of quotation then, we have that $\left\lceil\downarrow^{\square A} v\right\rceil_{\|\Gamma\|}=\left[t^{\prime}\right]_{\Omega}$ and by congruence we have $\Gamma \vdash\left[[t]_{\mathrm{C}}\right]_{\boldsymbol{\varrho}}=\left[t^{\prime}\right]_{\Omega}: \square T^{\prime}$.

Subgoal.

For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \square A_{0}$ type ${ }_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow A_{0} e \in_{\alpha} \square A_{0}$.
Suppose we have $m \leq n, \Gamma, t, T$ such that $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \square A_{0}$ type $_{\alpha}$. Furthermore, suppose we have e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}$: $T[r]$. We wish to show $\Gamma \vdash_{m} t: T ® \uparrow^{\square A_{0}} e \in_{\alpha} A$.
We start by performing inversion on $\Gamma \vdash_{m} T ® A$ type ${ }_{\alpha}$. This tells us that there is some T^{\prime} such that $\Gamma \vdash T=\square T^{\prime}$ type and for all m^{\prime} we have $\Gamma . \vdash_{m^{\prime}} T^{\prime} ® A^{\prime}$ type ${ }_{\alpha}$.
We also observe that for any $r: \Gamma^{\prime} \leq \Gamma$. we have $\lceil e . o p e n\rceil_{\left\|\Gamma^{\prime}\right\|}=\left[t^{\prime}\right]_{\curvearrowleft}$ where $\lceil e\rceil_{\| \Gamma^{\prime} \boldsymbol{\sim}_{\|}}=t^{\prime}$ such that $\Gamma^{\prime} \vdash\left([t]_{\Omega}\right)[r]=t^{\prime}: T^{\prime}[r]$ from our assumption about quotation.
Next, observe that e.open is a neutral. From our prior assumptions then we have that $\Gamma . \boldsymbol{\Omega}_{\vdash^{\prime}}[t]_{\Omega}: T^{\prime} ® \uparrow^{A_{0}} e$.open $\epsilon_{\alpha} A_{0}$. This is sufficient to give us the goal.

Case.

$$
\frac{R=\left\{\left(m, \uparrow^{B_{0}} e_{0}, \uparrow^{B_{1}} e_{1}\right) \mid e_{0} \sim e_{1} \in \mathcal{N e}\right\}}{\mathrm{Ne} \mid={ }_{n} \uparrow^{-} e_{0} \sim \uparrow^{-} e_{1} \downarrow R}
$$

We must show $\sigma=_{n} \uparrow^{-} e_{0} \sim \uparrow^{-} e_{1} \downarrow R$. We therefore immediately have $\tau_{\alpha}=_{n} \uparrow^{-} e_{0} \sim \uparrow^{-} e_{1} \downarrow R$. We just need to show three facts then.

Subgoal.

For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0}$ type ${ }_{\alpha}$ then there is some T^{\prime} such that $\left\lceil\uparrow^{-} e_{0} 7_{\|\Gamma\|}^{\text {ty }}=T^{\prime}\right.$ and $\Gamma \vdash T=T^{\prime}$ type.
Suppose we have $m \leq n, \Gamma, T$ and $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0}$ type $_{\alpha}$. We wish to show that we have some T^{\prime} such that $\left\lceil\uparrow^{-} e_{0} 7_{\|\Gamma\|}^{\text {ty }}=T^{\prime}\right.$ and $\Gamma \vdash T=T^{\prime}$ type. By inversion on $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0}$ type ${ }_{\alpha}$ we have that $\left\lceil e_{0}\right\rceil_{\|\Gamma\|}=T^{\prime}$ and $\Gamma \vdash T[\mathrm{id}]=T^{\prime}$ type completing the proof.
Subgoal.

For any $m \leq n, \Gamma, t, T, v$, if $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \uparrow^{-} e_{0}$ then we have $\left\lceil\downarrow^{\uparrow^{-} e_{0}} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.

For this, suppose we have $m \leq n, \Gamma, t, T, v$ such that $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \uparrow^{-} e_{0}$. We wish to show that the following holds: $\left\lceil\downarrow^{\uparrow} e_{0} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
In this case, we have by inversion that $v=\uparrow^{-} e$ such that $\lceil e\rceil_{\|\Gamma\|}=t^{\prime}$ such that $\Gamma \vdash t[\mathrm{id}]=$ $t^{\prime}: T$ [id]. Our goal follows from transitivity and conversion.

Subgoal.

For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0}$ type $_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow^{-} e_{0} e \in_{\alpha} A$.

Suppose we have $m \leq n, \Gamma, t, T$ such that $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \uparrow^{-} e_{0}$ type $_{\alpha}$. Furthermore, suppose we have e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime}+t[r]=t^{\prime}$: $T[r]$. We wish to show $\Gamma \vdash_{m} t: T ® \uparrow^{-} e_{0} e \in_{\alpha} A$. This is immediate by definition.

Case.

$$
\overline{\text { Nat } \mid={ }_{n} \text { nat } \sim \text { nat } \downarrow \llbracket \mathbb{N} \rrbracket}
$$

We have immediately that $\tau_{\alpha}=_{n}$ nat \sim nat $\downarrow \llbracket \mathbb{N} \rrbracket$. We must show the next three facts.

Subgoal.

For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ®{ }^{\circledR}$ nat type ${ }_{\alpha}$ then there is some T^{\prime} such that $\lceil\text { nat }\rangle_{\|\Gamma\|}^{\text {ty }}=T^{\prime}$ and $\Gamma \vdash T=$ nat $t y p e$.
Since nat and the fact that we have by inversion on $\Gamma \vdash_{m} T ®$ nat type ${ }_{\alpha}$ that $\Gamma \vdash T=$ nat $t y p e$ and so the goal follows by computation.

Subgoal.

For any $m \leq n, \Gamma, t, T, v$, if $\Gamma \vdash_{m} t: T ® v \in_{\alpha}$ nat then we have $\left\lceil\downarrow^{\text {nat }} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
For this, suppose we have $m \leq n, \Gamma, t, T, v$ such that $\Gamma \vdash_{m} t: T ® v \in_{\alpha}$ nat. We wish to show that the following holds: $\left\lceil\downarrow^{\text {nat }} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
We observe that $\Gamma \vdash_{m} t: T ® \quad v \in_{\alpha}$ nat is inductive so we proceed by induction. We must prove three cases.

1. In the first case we have $\Gamma \vdash T=$ nat $t y p e, \Gamma \vdash t=$ zero : nat, and $v=$ zero. Therefore, our goal is immediate by computation.
2. In the second case we have $\Gamma \vdash T=$ nat $t y p e, \Gamma \vdash t=\operatorname{succ}\left(t^{\prime}\right):$ nat, and $v=\operatorname{succ}\left(v^{\prime}\right)$ such that $\Gamma \vdash_{m} t^{\prime}: T ® v^{\prime} \in_{\alpha}$ nat. Our induction hypothesis tells us that there is some s such that $\left\lceil\downarrow^{\text {nat }} v^{\prime}\right\rceil_{\|\Gamma\|}=s$ such that $\Gamma \vdash t^{\prime}=s$: nat. Thus, by congruence and computation we're done.
3. In the final case we have $\Gamma \vdash T=$ nat type, $v=\uparrow^{\text {nat }} e$ such that $\lceil e\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}$: nat. This is exactly the goal however.

Subgoal.

For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ®$ nat type ${ }_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T \mathbb{R} \uparrow^{\text {nat }} e \in_{\alpha} A$.

Immediate by definition of $\Gamma \vdash_{m} t: T ® \bigcap^{\text {nat }} e \in_{\alpha}$ nat

Case.

$$
\frac{\sigma \neq_{n} A_{0} \sim A_{1} \downarrow R \quad n \Vdash v_{0} \sim u_{0} \in R \quad n \Vdash v_{1} \sim u_{1} \in R}{\operatorname{Id}[\sigma]=_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)}
$$

We immediately have $\tau_{\alpha} \mid={ }_{n} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right) \sim \operatorname{Id}\left(A_{1}, u_{0}, u_{1}\right) \downarrow \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$. We must show the next three facts.

Subgoal.
For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ® \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ type ${ }_{\alpha}$ then there is some T^{\prime} such that $\left\lceil\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)\right]_{\|\Gamma\|}^{\mathrm{ty}}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type.
We have by inversion on $\Gamma \vdash_{m} T ® \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ type ${ }_{\alpha}$ that $\Gamma \vdash T=\operatorname{Id}\left(T^{\prime}, t_{0}, t_{1}\right)$ type such that $\Gamma \vdash_{m} T^{\prime} ® A_{0}$ type $_{\alpha}$ and $\Gamma \vdash_{m} t_{i}: T^{\prime} ® v_{i} \in_{\alpha} A_{0}$. We observe that from our assumption of $\sigma \mid={ }_{n} A_{0} \sim A_{1} \downarrow R$ that there must be some T_{0}^{\prime} such that $\left\lceil\left. A_{0}\right|_{\|\Gamma\|} ^{\text {ty }}=T^{\prime}\right.$ and $\Gamma \vdash T^{\prime}=T_{0}^{\prime}$ type. Furthermore, we must have that $\left\lceil\downarrow^{A_{0}} v_{i}\right\rceil_{\|\Gamma\|}=t_{i}^{\prime}$ such that $\Gamma \vdash t_{i}=t_{i}^{\prime}: T^{\prime}$, again from $\sigma \mid=A_{n} \sim A_{1} \downarrow R$. Therefore, we have $\left\lceil\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)\right\rceil_{\|\Gamma\|}^{\text {ty }}=\operatorname{Id}\left(T^{\prime}, t_{0}^{\prime}, t_{1}^{\prime}\right)$. Finally, by congruence we then have $\Gamma \vdash T=\operatorname{ld}\left(T^{\prime}, t_{0}^{\prime}, t_{1}^{\prime}\right)$ type.

Subgoal.

For any $m \leq n, \Gamma, t, T$, v, if $\Gamma \vdash_{m} t: T ® v \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ then we have $\left\lceil\downarrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.

For this, suppose we have $m \leq n, \Gamma, t, T$, v such that $\Gamma \vdash_{m} t: T ® \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$. We wish to show that the following holds: $\left\lceil\downarrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
We proceed by inversion on $\Gamma \vdash_{m} t: T ® \quad v \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$. We therefore conclude that $m \Vdash v \sim v \in \llbracket \mathrm{Id} \rrbracket\left(R, u_{0}, u_{1}\right), \Gamma \vdash t: T, \Gamma \vdash T=\operatorname{Id}\left(T^{\prime}, t_{0}, t_{1}\right)$ type, $\Gamma \vdash_{m} T^{\prime} ® A_{0}$ type ${ }_{\alpha}$, and $\Gamma \vdash_{m} t_{i}: T^{\prime} \circledR v_{i} \in_{\alpha} A_{0}$. We also have that one of the following two facts is true:

- $v=\uparrow^{-} e$ and when $r: \Gamma^{\prime} \leq \Gamma$, then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$.
- $\Gamma \vdash t=\operatorname{refl}\left(t^{\prime}\right): T$ and $v=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Gamma \vdash t^{\prime}=t_{i}: T^{\prime}$.

We proceed by cases on which fact holds. If $v=\uparrow^{-} e$ and when $r: \Gamma^{\prime} \leq \Gamma$, then $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then we have the desired conclusion immediately by picking $r=\mathrm{id}$.
Instead, suppose that $\Gamma \vdash t=\operatorname{refl}\left(t^{\prime}\right): T$ and $v=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Gamma \vdash t^{\prime}=$ $t_{i}: T^{\prime}$. In this case we have $m \Vdash v^{\prime} \sim v_{0} \in R$ as $m \Vdash \operatorname{refl}\left(v^{\prime}\right) \sim \operatorname{refl}\left(v^{\prime}\right) \in \llbracket \operatorname{Id} \rrbracket\left(R, u_{0}, u_{1}\right)$ and $n \Vdash u_{0} \sim v_{0} \in R$. We may therefore conclude that $m \vdash_{\Gamma} t_{0}: T^{\prime} ® v^{\prime} \in_{\alpha} A_{0}$ from Lemma 4.3.5 By induction hypothesis, then, we have that there is some t_{q} such that $\left\lceil\downarrow^{A_{0}} v^{\prime}\right\rceil_{\|\Gamma\|}=t_{q}$ and $\Gamma \vdash t_{0}=t_{q}: T^{\prime}$. Therefore, by transitivity of equality we have $\Gamma \vdash t^{\prime}=t_{q}: T^{\prime}$. Finally, since $\left\lceil\downarrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} \operatorname{refl}\left(v^{\prime}\right)\right\rceil_{\|\Gamma\|}=\operatorname{refl}\left(t_{q}\right)$ by definition we are done by congruence.

Subgoal.

For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$ type ${ }_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} e \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$.
This is follows immediately from the definition of $\Gamma \vdash_{m} t: T ® \uparrow^{\operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)} e \in_{\alpha} \operatorname{Id}\left(A_{0}, v_{0}, v_{1}\right)$.
Case.

$$
\frac{j<\alpha \quad R=\left\{\left(m, A_{0}, A_{1}\right)\left|\tau_{j}\right|={ }_{m} A_{0} \sim A_{1}\right\}}{\operatorname{Univ}_{\alpha} \neq{ }_{n} \mathrm{U}_{j} \sim \mathrm{U}_{j} \downarrow R}
$$

We have immediately that $\tau_{\alpha}=_{n} \mathrm{U}_{j} \sim \mathrm{U}_{j} \downarrow R$. We must show the next three facts.

Subgoal.

For any $m \leq n, \Gamma, T$, if $\Gamma \vdash_{m} T ® \mathrm{U}_{j}$ type ${ }_{\alpha}$ then there is some T^{\prime} such that $\left\lceil\mathrm{U}_{j}\right\rceil_{\|\Gamma\|}^{\mathrm{ty}}=T^{\prime}$ and $\Gamma \vdash T=T^{\prime}$ type.
We have by inversion on $\Gamma \vdash_{m} T ® \mathrm{U}_{j}$ type ${ }_{\alpha}$ that $\Gamma \vdash T=\mathrm{U}_{j}$ type and so the goal follows by computation.

Subgoal.

For any $m \leq n, \Gamma, t, T$, v, if $\Gamma \vdash_{m} t: T ® \prec \in_{\alpha} \mathrm{U}_{j}$ then we have $\left\lceil\downarrow^{\mathrm{U}_{j}} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.

For this, suppose we have $m \leq n, \Gamma, t, T$, v such that $\Gamma \vdash_{m} t: T ®{ }^{\circledR} v \in_{\alpha} \mathrm{U}_{j}$. We wish to show that the following holds: $\left\lceil\downarrow^{U_{j}} v\right\rceil_{\|\Gamma\|}=t^{\prime}$ and $\Gamma \vdash t=t^{\prime}: T$.
By inversion, we have $\Gamma \vdash t: T, \Gamma \vdash T=\mathrm{U}_{j}$ type, $m \Vdash v \sim v \in R$, and $\Gamma \vdash_{m} t ® v$ type $_{j}$. However, our induction hypothesis (recall that we had proceeded by induction on α and $j<\alpha$) applied to the last fact gives us the goal immediately.

Subgoal.
For any $m \leq n, \Gamma, t, T$, if $\Gamma \vdash t: T$ and $\Gamma \vdash_{m} T ® \mathrm{U}_{j}$ type ${ }_{\alpha}$ and if for some e we have for all $r: \Gamma^{\prime} \leq \Gamma$ we have $\lceil e\rceil_{\left\|\Gamma^{\prime}\right\|}=t^{\prime}$ such that $\Gamma^{\prime} \vdash t[r]=t^{\prime}: T[r]$ then $\Gamma \vdash_{m} t: T ® \uparrow^{U_{j}} e \in_{\alpha} \mathrm{U}_{j}$.
This is Lemma 4.3.10 after unfolding $\Gamma \vdash_{m} t: T ® \uparrow^{U_{j}} e \in_{\alpha} \mathrm{U}_{j}$.
Corollary 4.3.12. If $\Gamma \vdash_{n} T_{0} ® A$ type $_{\alpha}$ and $\Gamma \vdash_{n} T_{1} ® A$ type ${ }_{\alpha}$ then $\Gamma \vdash T_{0}=T_{1}$ type.
Proof. From Lemma 4.3 .11 we have that $\lceil A\rceil_{\|\Gamma\| .}^{\mathrm{ty}}=T^{\prime}$ such that $\Gamma \vdash T_{0}=T^{\prime}$ type and $\Gamma \vdash T_{1}=T^{\prime}$ type. Therefore, the conclusion follows from transitivity.

4.4 Soundness

Lemma 4.4.1. Any substitution $\Gamma \vdash \delta: \Delta$. A is definitionally equal to a substitution of the form $\delta^{\prime} . t$.
Proof. We observe that $\Gamma \vdash \mathrm{id} \circ \delta=\delta: \Delta . A$ and thus $\Gamma \vdash\left(\mathrm{p}^{1} \cdot \mathrm{var}_{0}\right) \circ \delta=\delta: \Delta . A$. Finally, this gives us the goal:

$$
\Gamma \vdash\left(\mathrm{p}^{1} \circ \delta\right) \cdot \operatorname{var}_{0}[\delta]=\delta: \Delta \cdot A
$$

Lemma 4.4.2. If Γ ctx then $\Gamma \vdash \mathrm{id}: \Gamma^{\curvearrowleft}$
Proof. Immediate by the lifting rule.
Before stating soundness recall that by completeness (Theorem 3.3.5) if $\Gamma \vdash T$ type and $n \Vdash \rho_{1}=\rho_{2}: \Gamma$ then $\tau_{\omega} \mid={ }_{n} \llbracket T \rrbracket_{\rho_{1}} \sim \llbracket T \rrbracket_{\rho_{2}}$.

We must also extend our logical relation to substitutions now. This defines a relation $\Delta \vdash_{n} \delta: \Gamma ®{ }^{\circledR} \rho$. This relation is defined by induction on Γ. We shall say that $\Delta \vdash_{n} \delta: \Gamma ®{ }^{\circledR} \rho$ holds when one of the following cases apply:

- $\Delta \vdash_{n} \delta: \cdot ® \cdot$ if $\Delta \vdash \delta: \cdot$
- $\Delta \vdash_{n} \delta: Г . T ® \rho . v$ if:
- $\Delta \vdash \delta=\delta^{\prime} . t: \Gamma . T$ for some $\delta^{\prime}, t ;$
- $\tau_{\omega} \mid=_{n} \llbracket T \rrbracket_{\rho} \sim \llbracket T \rrbracket_{\rho} ;$
$-\Delta \vdash_{n} t: T\left[\delta^{\prime}\right] ® v \in_{\omega} \llbracket T \rrbracket_{\rho} ;$
$-\Delta \vdash_{n} \delta^{\prime}: \Gamma$ ® ρ
- $\Delta \vdash_{n} \delta: \Gamma . \Omega{ }^{\circledR} \rho$ if $\Delta c t x$ and there exists some m such that $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma ® \rho$.

We now prove some facts about this definition.
Lemma 4.4.3. $\Delta \vdash_{n} \delta: \Gamma ® \rho$ is monotone in both n and Δ (the latter with respect to weakenings).
Proof. This is a corollary of Lemma 4.3.1.
Lemma 4.4.4. If $\Delta \vdash_{n} \delta: \Gamma ® \rho$ then Δ ctx.
Proof. Follows immediately by case on Γ.
Lemma 4.4.5. If $\Delta \vdash_{n} \delta_{1}: \Gamma ® \rho$ and $\Delta \vdash \delta_{1}=\delta_{2}: \Gamma$ then $\Delta \vdash_{n} \delta_{2}: \Gamma ® \rho$.
Proof. Follows immediately from the transitivity of $=$ and by induction on Γ.
Lemma 4.4.6. If $\Delta \vdash_{n} \delta: \Gamma ® \rho$ then there exists an $m \leq n$ such that $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma^{\curvearrowleft} ® \Omega$.
Proof. This follows by induction on Γ.
Case.

$$
\Gamma=
$$

In this case we must show $\Delta^{\curvearrowleft} \vdash_{m} \delta: \cdot ® \rho$ and so $\Delta \vdash \delta: \cdot$ and $\rho=\cdot$. The conclusion follows by Lemma 1.2.5.

Case.

$$
\Gamma=\Gamma^{\prime} . T
$$

In this case we must show $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma^{\prime} \curvearrowleft . T ® \rho$. We start by observing that $\Delta \vdash \delta=\delta^{\prime} . t: \Gamma^{\prime} . T$ such that $\tau_{\omega}=_{n} \llbracket T \rrbracket_{\rho} \sim \llbracket T \rrbracket_{\rho}, \Delta \vdash_{n} t: T\left[\delta^{\prime}\right] ® \quad v \in_{\omega} \llbracket T \rrbracket_{\rho}$ and $\Delta \vdash_{n} \delta^{\prime}: \Gamma^{\prime} ® \rho$. By induction hypothesis we have that there is some $m \leq n$ such that $\Delta^{\curvearrowleft} \vdash_{m} \delta^{\prime}: \Gamma^{\prime \infty} ® \Omega$. We have $\Delta^{\curvearrowleft} \vdash_{m} t: T\left[\delta^{\prime}\right] ® \quad v \in_{\omega} \llbracket T \rrbracket_{\rho}$ by Lemmas 4.3.1 and 4.3.2. We have $\tau_{\omega}=_{m} \llbracket T \rrbracket_{\rho} \sim \llbracket T \rrbracket_{\rho}$ by Lemma 3.2.5. Finally, we have $\Delta^{\curvearrowleft} \vdash \delta=\delta^{\prime} . t: \Gamma^{\prime \infty} . T$ from Lemma 1.2.10.

Case.

$$
\Gamma=\Gamma^{\prime}
$$

In this case we must show $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma^{\prime \curvearrowleft} ® \Omega$. We start by observing that there is some m such that $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma^{\prime} \circledR \rho$ and $\Delta c t x$. By Lemma 4.4 .3 we may assume that $m \leq n$. Next, by induction hypothesis we have $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma^{\prime \infty} ® \rho$ as required. We have $\Delta^{\curvearrowleft} c t x$ from Lemma 1.2.5.

We can now define an auxiliary predicate which we will use to prove soundness:

$$
\begin{aligned}
& \Gamma \vdash_{n} T \text { type } \triangleq \\
& \quad \forall m \leq n . \Delta \vdash_{m} \gamma: \Gamma ® \rho \Longrightarrow \Delta \vdash_{m} T[\gamma] ® \llbracket T \rrbracket_{\rho} \text { type }_{\omega} \\
& \Gamma \vdash_{n} t: T \triangleq \\
& \quad \forall m \leq n . \Delta \vdash_{m} \gamma: \Gamma ® \rho \Longrightarrow \Delta \vdash_{m} t[\gamma]: T[\gamma] ® \llbracket t \rrbracket_{\rho} \in_{\omega} \llbracket T \rrbracket_{\rho} \\
& \Gamma \vdash_{n} \delta: \Delta \triangleq \\
& \quad \forall m \leq n . \Gamma^{\prime} \vdash_{m} \gamma: \Gamma ® \rho \Longrightarrow \Gamma^{\prime} \vdash_{m} \delta \circ \gamma: \Delta ® \llbracket \delta \rrbracket_{\rho}
\end{aligned}
$$

Theorem 4.4.7 (Soundness). The following facts hold:

1. If $\Gamma \vdash T$ type then $\Gamma \vDash_{n} T$ type for any n.
2. If $\Gamma \vdash t: T$ then $\Gamma \vDash_{n} t: T$ for any n.
3. If $\Gamma \vdash \delta: \Delta$ then $\Gamma \vDash_{n} \delta: \Delta$ for any n.

Proof. We prove these facts by mutual induction on the input derivation.

1. If $\Gamma \vdash T$ type then $\Gamma \vDash_{n} T$ type for any n.

Case.

$$
\frac{\Gamma c t x}{\Gamma+U_{i} t y p e}
$$

In this case we have no induction hypothesis and we wish to show $\Gamma F_{n} U_{i}$ type for all n.
In order to show this, suppose we have $m \leq n, \Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show $\Delta \vdash_{m}$ $\mathrm{U}_{i}[\delta] \circledR \llbracket \mathrm{U}_{i} \rrbracket_{\rho}$ type $_{\omega}$. First, we observe that $\llbracket \mathrm{U}_{i} \rrbracket_{\rho}=\mathrm{U}_{i}$ by definition independent of ρ. Therefore, in order to show $\Delta \vdash_{m} \mathrm{U}_{i}[\delta] \circledR \llbracket \mathrm{U}_{i} \rrbracket_{\rho}$ type ${ }_{\omega}$ we merely need to show that $i<\omega$ and $\Delta \vdash \mathrm{U}_{i}[\delta]=\mathrm{U}_{i}$ type. Both are immediate.
Case.

$$
\frac{\Gamma c t x}{\Gamma \vdash \text { nat } t y p e}
$$

In this case we have no induction hypothesis and we wish to show ΓF_{n} nat type for all n. In order to show this, suppose we have $m \leq n, \Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show $\Delta \vdash_{m}$ nat $[\delta]{ }^{\circledR} \llbracket \mathrm{nat} \rrbracket_{\rho}$ type $_{\omega}$. First, we observe that $\llbracket \mathrm{nat} \rrbracket_{\rho}=$ nat.
Therefore, in order to show $\Delta \vdash_{m}$ nat $[\delta] ®$ nat type ${ }_{\omega}$ we merely need to show $\Delta \vdash \operatorname{nat}[\delta]=$ nat type. Both are immediate.
Case.

$$
\frac{\Gamma . \boldsymbol{\Omega}^{+}+T \text { type }}{\Gamma \vdash \square T \text { type }}
$$

For this, we have by induction hypothesis that $\Gamma . \boldsymbol{F}_{n} T$ type for all n. We wish to show $\Gamma F_{n} \square T$ type for all n. Suppose we have some arbitrary n and suppose that we have some $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show $\Delta \vdash_{m}(\square T)[\delta] ® \llbracket \square T \rrbracket_{\rho}$ type $_{\omega}$.
We have $\Delta c t x$ from Lemma 4.4.4. Therefore, $\Delta^{\curvearrowleft} \vdash$ id : Δ from Lemma 1.2.5. Next, we use Lemma 4.4.3 with $\Delta \vdash_{m} \delta: \Gamma ® \rho$ to conclude that $\Delta^{\curvearrowleft} \vdash_{m} \delta \circ$ id $: \Gamma ® \rho$. By Lemma 4.4.5 we then have $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma ® \rho$. Finally, by definition we may conclude that $\Delta . \vdash_{m^{\prime}} \delta: \Gamma . \Omega$ ® ρ for all m^{\prime}.

We may then instantiate our induction hypothesis with this fact to conclude that for all m^{\prime} we have $\Delta . \boldsymbol{Q}_{\vdash_{m^{\prime}}} T[\delta] ® \llbracket T \rrbracket_{\rho}$ type $_{\omega}$.
Next, we have by definition that $\llbracket \square T \rrbracket_{\rho}=\square \llbracket T \rrbracket_{\rho}$. Again by definition we have that $\Delta \vdash_{m}$ $(\square T)[\delta] ® \square \llbracket T \rrbracket_{\rho}$ type ${ }_{\omega}$ holds if and only if there is some T^{\prime} such that $\Delta \vdash(\square T)[\delta]=$ $\square T^{\prime}$ type and such that for all m^{\prime} we have $\Delta . \vdash_{m^{\prime}} T^{\prime}{ }^{\circledR} \llbracket T \rrbracket_{\rho}$ type ${ }_{\omega}$. For this, we pick $T^{\prime}=T[\delta]$. We have $\Delta \vdash(\square T)[\delta]=\square T^{\prime}$ type and the next goal follows from our instantiated induction hypothesis.

Case.

$$
\frac{\Gamma \vdash T \text { type } \quad \Gamma \vdash t_{i}: T}{\Gamma \vdash \operatorname{ld}\left(T, t_{0}, t_{1}\right) \text { type }}
$$

First, we have by induction hypothesis that $\Gamma F_{n} T$ type and $\Gamma F_{n} t_{i}: T$. We wish to show $\Gamma F_{n} \operatorname{Id}\left(T, t_{0}, t_{1}\right)$ type.
we suppose we have some $m \leq n, \Delta \vdash \delta: \Gamma$ such that $\Delta \vdash_{m} \delta: \Gamma ® \rho$, we wish to show $\left.\Delta \vdash_{m}\left(\operatorname{Id}\left(T, t_{0}, t_{1}\right)\right)[\delta] ® \llbracket \operatorname{Id}\left(T, t_{0}, t_{1}\right) \rrbracket\right]_{\rho}$ type $_{\omega}$.

First, we observe that we have $\Delta \vdash_{m} T[\delta] ® \llbracket T \rrbracket_{\rho}$ type $_{\omega}, \Delta \vdash_{m} t_{0}[\delta]: T[\delta] ®_{\circledR} \llbracket t_{0} \rrbracket_{\rho} \in_{\omega} \llbracket T \rrbracket_{\rho}$, and $\Delta \vdash_{m} t_{1}[\delta]: T[\delta] ® \llbracket t_{1} \rrbracket_{\rho} \in_{\omega} \llbracket T \rrbracket_{\rho}$.
We observe next that in order to prove our goal that it suffices to show the following:

$$
\Delta \vdash_{m} \operatorname{Id}\left(T[\delta], t_{0}[\delta], t_{1}[\delta]\right) ® \operatorname{Id}\left(\llbracket T \rrbracket_{\rho}, \llbracket t_{0} \rrbracket_{\rho}, \llbracket t_{1} \rrbracket_{\rho}\right) \text { type }_{\omega}
$$

Therefore, we must show the following facts:

- $\Gamma \vdash \operatorname{Id}\left(T[\delta], t_{0}[\delta], t_{1}[\delta]\right)=\operatorname{ld}\left(T^{\prime}, t_{0}^{\prime}, t_{1}^{\prime}\right)$ type for some $T^{\prime}, t_{0}^{\prime}, t_{1}^{\prime}$;
- $\Gamma \vdash_{n} T^{\prime} ® \llbracket T \rrbracket_{\rho}$ type $_{\alpha}$;
- $\Gamma \vdash_{n} t_{i}^{\prime}: T^{\prime} \circledR \llbracket t_{i} \rrbracket_{\rho} \in_{\alpha} \llbracket T \rrbracket_{\rho}$ for $i \in\{0,1\}$.

The first of these follow by reflexivity and the remaining two follow our induction hypothesis. Case.

$$
\frac{\Gamma \vdash T_{1} \text { type } \quad \Gamma . T_{1} \vdash T_{2} \text { type }}{\Gamma \vdash \Pi\left(T_{1}, T_{2}\right) \text { type }}
$$

First, we have by induction hypothesis that $\Gamma F_{n} T_{1}$ type and $\Gamma . T_{1} F_{n} T_{2}$ type. We wish to show $\Gamma \vDash_{n} \Pi\left(T_{1}, T_{2}\right)$ type. Therefore, we suppose we have some $m \leq n, \Delta \vdash \delta: \Gamma$ such that $\Delta \vdash_{m} \delta: \Gamma ® \rho$, we wish to show $\Delta \vdash_{m} \Pi\left(T_{1}, T_{2}\right)[\delta] ® \llbracket \Pi\left(T_{1}, T_{2}\right) \rrbracket_{\rho}$ type ${ }_{\omega}$.
First, we observe that the following holds:

$$
\Delta \vdash \Pi\left(T_{1}, T_{2}\right)[\delta]=\Pi\left(T_{1}[\delta], T_{2}\left[\left(\delta \circ \mathrm{p}^{1}\right) \cdot \mathrm{var}_{0}\right]\right) \text { type }
$$

Therefore, by Lemma 4.3.6 it suffices to show $\Delta \vdash_{m} \Pi\left(T_{1}[\delta], T_{2}\left[\left(\delta \circ \mathrm{p}^{1}\right) . \mathrm{var}_{0}\right]\right) ® \llbracket \llbracket \Pi\left(T_{1}, T_{2}\right) \rrbracket_{\rho}$ type ${ }_{\omega}$. By calculation, we have $\llbracket \Pi\left(T_{1}, T_{2}\right) \rrbracket_{\rho}=\Pi\left(\llbracket T_{1} \rrbracket_{\rho}, T_{2} \triangleleft \rho\right)$.
Now we may unfold this definition and see that we must show the following:

- $\Delta \vdash_{m} T_{1}^{\prime} ® \llbracket T_{1} \rrbracket_{\rho}$ type $_{\omega}$
- if $m^{\prime} \leq m$ and $r: \Delta^{\prime} \leq \Delta$ such that $\Delta^{\prime} \vdash_{m^{\prime}} t: T_{1}^{\prime}[r] ® a \in_{\omega} \llbracket T_{1} \rrbracket_{\rho}$ then $\Delta^{\prime} \vdash_{m^{\prime}} T_{2}^{\prime}[r . t] ®$ $\llbracket T_{2} \rrbracket_{\rho . a}$ type $_{\omega}$
For some T_{i}^{\prime} such that $\Delta \vdash \Pi\left(T_{1}[\delta], T_{2}\left[\left(\delta \circ \mathrm{p}^{1}\right) \cdot \operatorname{var}_{0}\right]\right)=\Pi\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$ type. Now such a T_{i}^{\prime} is straightforward.
Next, we have $\Delta \vdash_{m} T_{1}[\delta] ® \llbracket T_{1} \rrbracket_{\rho}$ type ${ }_{\omega}$ from our induction hypothesis and the fact that $\Delta \vdash_{m} \delta: \Gamma ® \rho$.
Therefore, suppose we have some $m^{\prime} \leq m$ and $r: \Delta^{\prime} \leq \Delta$ along with $\Delta^{\prime} \vdash_{m^{\prime}} t: T_{1}[\delta][r] ®$ $a \in_{\omega} \llbracket T_{1} \rrbracket_{\rho}$. We wish to show this:

$$
\Delta^{\prime} \vdash_{m^{\prime}} T_{2}[(\delta \circ r) . t] ® \llbracket T_{2} \rrbracket_{\rho . a} \text { type }_{\omega}
$$

In this, we have simplified the goal using the following fact:

$$
\Delta^{\prime} \vdash\left(\left(\delta \circ \mathrm{p}^{1}\right) \cdot \operatorname{var}_{0}\right) \circ(r . t)=(\delta \circ r) . t: \Delta
$$

In order to show this, we will use our induction hypothesis: $\Gamma . T_{1} F_{n} T_{2}$ type. It will suffice to show $\Delta^{\prime} \vdash_{m^{\prime}}(\delta \circ r) . t: \Gamma . T_{1} ® \rho$.a. In order to show this we must show $\Delta^{\prime} \vdash_{m^{\prime}} t$: $\left.T_{1}[\delta \circ r] ® a \in_{\omega} \llbracket T_{1} \rrbracket\right]_{\rho}$ and $\Delta^{\prime} \vdash_{m^{\prime}} \delta \circ r: \Gamma ® \rho$. The first follows from our assumption of $\Delta \vdash_{m} t: T_{1}[\delta] ® a \in_{\omega} \llbracket T_{1} \rrbracket_{\rho}$ and Lemmas 4.3.1 and 4.3.2. The second follows from $\Delta \vdash_{m} \delta: \Gamma ® \rho$ and Lemma 4.4.3.

Case.

$$
\frac{\Gamma \vdash T_{1} \text { type } \quad \Gamma . T_{1} \vdash T_{2} \text { type }}{\Gamma \vdash \Sigma\left(T_{1}, T_{2}\right) \text { type }}
$$

This case is identical to the previous case.

Case.

$$
\frac{\Gamma \vdash T: \mathrm{U}_{i}}{\Gamma \vdash T \text { type }}
$$

In this case we have $\Gamma F_{n} T: U_{i}$ and we wish to show $\Gamma F_{n} T$ type. Suppose we have some $m \leq n$ and $\Delta \vdash \delta: \Gamma$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$, we wish to show $\Delta \vdash_{m} T[\delta] ® \llbracket T \rrbracket_{\rho}$ type $_{\omega}$.
We observe that from our induction hypothesis we then have the following:

$$
\Delta \vdash_{m} T[\delta]: \mathrm{U}_{i} ® \llbracket T \rrbracket_{\rho} \in_{\omega} \mathrm{U}_{i}
$$

By inversion then, we have $\Delta \vdash_{m} T[\delta] ® \llbracket T \rrbracket_{\rho}$ type ${ }_{i}$. Since $i<\omega$ we have the desired conclusion from Lemma 4.3.8.

Case.

$$
\frac{\Gamma \vdash \delta: \Delta \quad \Delta \vdash T \text { type }}{\Gamma \vdash T[\delta] \text { type }}
$$

In this case we have $\Delta F_{n} T$ type and $\Gamma F_{n} \delta: \Delta$ by induction hypothesis and wish to show $m \vdash \Gamma$ type $T[\delta]$. Suppose we have some $m \leq n$ and $\Delta^{\prime} \vdash \delta^{\prime}: \Gamma$ and $\Delta^{\prime} \vdash_{m} \delta^{\prime}: \Gamma ® \rho$, we wish to show $\Delta^{\prime} \vdash_{m} T\left[\delta \circ \delta^{\prime}\right] ® \llbracket T \rrbracket_{\rho}$ type $_{\omega}$.
First, we observe that $\Delta^{\prime} \vdash \delta \circ \delta^{\prime}: \Delta$. Furthermore, from $\Delta^{\prime} F_{n} \delta: \Gamma$ we have that $\Delta^{\prime} \vdash_{m} \delta \circ \delta^{\prime}: \Gamma ® \llbracket \delta \rrbracket_{\rho}$. We may then instantiate our other induction hypothesis with this to conclude that $\Delta^{\prime} \vdash_{m} T\left[\delta \circ \delta^{\prime}\right] ® \llbracket T \rrbracket_{\llbracket \delta \rrbracket_{\rho}}$ type ${ }_{\omega}$ holds. By definition, we have $\llbracket T \rrbracket_{\llbracket \delta \rrbracket_{\rho}}=\llbracket T[\delta] \rrbracket_{\rho}$ concluding this case.
2. If $\Gamma \vdash t: T$ then $\Gamma \vDash_{n} t: T$ for any n.

Case.

$$
\frac{\Gamma_{1} \cdot T \cdot \Gamma_{2} c t x \quad \mathbf{Q} \notin \Gamma_{2} \quad k=\left\|\Gamma_{2}\right\|}{\Gamma_{1} \cdot T \cdot \Gamma_{2}+\operatorname{var}_{k}: T\left[\mathrm{p}^{k}\right]}
$$

In this case we have no induction hypothesis. We wish to show $\Gamma_{1} \cdot T \cdot \Gamma_{2} \vDash_{n} \operatorname{var}_{k}: T\left[\mathrm{p}^{k}\right]$.
Suppose we have $m \leq n, \Delta \vdash \delta: \Gamma_{1} \cdot T . \Gamma_{2}$, and $\Delta \vdash_{m} \delta: \Gamma_{1} \cdot T \cdot \Gamma_{2}{ }^{\circledR} \rho$. We wish to show the following:

$$
\Delta \vdash_{m} \operatorname{var}_{k}[\delta]: T\left[\mathrm{p}^{k} \circ \delta\right] ® \llbracket \operatorname{var}_{k} \rrbracket_{\rho} \in_{\omega} \llbracket T\left[\mathrm{p}^{k}\right] \rrbracket_{\rho}
$$

We observe that since $\notin \Gamma_{2}$ we have by inversion on $\Delta \vdash_{m} \delta: \Gamma_{1} \cdot T \cdot \Gamma_{2} ® \rho$ that $\rho=$ $\rho^{\prime} . v_{1} \ldots . v_{k}$ and $\Delta \vdash \delta=\delta^{\prime} . t_{1} \ldots . t_{k}: \Gamma_{1} . T . \Gamma_{2}$ such that $\Delta \vdash_{m} \delta^{\prime}: \Gamma_{1} ® \rho^{\prime}$ and $\Delta \vdash_{m} t_{1}$: $T\left[\delta^{\prime}\right] ® v_{1} \in_{\omega} \llbracket T \rrbracket_{\rho^{\prime}}$.
Next we observe that $\llbracket \operatorname{var}_{k} \rrbracket_{\rho}=\rho(k)=v_{1}$ and $\Delta \vdash \operatorname{var}_{k}[\delta]=t_{1}: T\left[\delta^{\prime}\right]$. We note that $\Delta \vdash \mathrm{p}^{k} \circ \delta=\delta^{\prime}: \Gamma_{1}$ and so we may turn the latter fact into $\Delta \vdash \operatorname{var}_{k}[\delta]=t_{1}: T\left[\mathrm{p}^{k} \circ \delta\right]$.
From this equality of substitutions we also have $\Delta \vdash_{m} t_{1}: T\left[\mathrm{p}^{k} \circ \delta\right]{ }^{\circledR} v_{1} \in_{\omega} \llbracket T \rrbracket_{\rho^{\prime}}$ by Lemma 4.3.6. By calculation we also have that $\llbracket T \rrbracket_{\rho^{\prime}}=\llbracket T\left[\mathrm{p}^{k}\right] \rrbracket_{\rho}$ and so we have $\Delta \vdash_{m} t_{1}: T\left[\mathrm{p}^{k} \circ \delta\right] ®{ }^{\circledR} \in_{\omega} \llbracket T\left[\mathrm{p}^{k}\right] \rrbracket_{\rho}$.
Finally, we are done by Lemma 4.3.7 and $\Delta \vdash \operatorname{var}_{k}[\delta]=t_{1}: T\left[p^{k} \circ \delta\right]$.
Case.

$$
\frac{\Gamma \vdash T_{0} \text { type } \quad \Gamma . T_{0} \vdash t: T_{1}}{\Gamma \vdash \lambda(t): \Pi\left(T_{0}, T_{1}\right)}
$$

In this case, we have $\Gamma F_{n} T_{0}$ type and $\Gamma . T_{0} F_{n} t: T_{1}$ by induction hypothesis. We wish to show $\Gamma F_{n} \lambda(t): \Pi\left(T_{0}, T_{1}\right)$.
Suppose we have some $m \leq n, \Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show the following:

$$
\Delta \vdash_{m} \lambda(t)[\delta]:\left(\Pi\left(T_{0}, T_{1}\right)\right)[\delta] ® \llbracket \lambda t \rrbracket_{\rho} \in_{\omega} \llbracket \Pi\left(T_{0}, T_{1}\right) \rrbracket_{\rho}
$$

First, we observe by calculation that $\llbracket \lambda(t) \rrbracket_{\rho}=\lambda(t \triangleleft \rho)$ and $\llbracket \Pi\left(T_{0}, T_{1}\right) \rrbracket_{\rho}=\Pi\left(\llbracket T_{0} \rrbracket_{\rho}, T_{1} \triangleleft \rho\right)$. Next, we will use the following two definitional equalities.

$$
\begin{gathered}
\Delta \vdash \Pi\left(T_{0}, T_{1}\right)[\delta]=\Pi\left(T_{0}[\delta], T_{1}\left[\delta \circ \mathrm{p}^{1} \cdot \mathrm{var}_{0}\right]\right) \text { type } \\
\Delta \vdash(\lambda(t))[\delta]=\lambda\left(t\left[\delta \circ \mathrm{p}^{1} \cdot \operatorname{var}_{0}\right]\right): \Pi\left(T_{0}, T_{1}\right)[\delta]
\end{gathered}
$$

We may then simplify our goal by Lemmas 4.3 .6 and 4.3 .7 to the following:

$$
\Delta \vdash_{m} \lambda\left(t\left[\delta \circ \mathrm{p}^{1} \cdot \operatorname{var}_{0}\right]\right): \Pi\left(T_{0}[\delta], T_{1}\left[\delta \circ \mathrm{p}^{1} \cdot \operatorname{var}_{0}\right]\right) ® \lambda(t \triangleleft \rho) \in_{\omega} \Pi\left(\llbracket T_{0} \rrbracket_{\rho}, T_{1} \triangleleft \rho\right)
$$

In order to show this, we unfold the definition. It suffices to show that two facts hold:
Subgoal.

$$
\Delta \vdash_{m} T_{0}[\delta] ® \llbracket T_{0} \rrbracket_{\rho} \text { type }_{\omega}
$$

This follows from our induction hypothesis. We instantiate $\Gamma \vDash_{n} T_{0}$ type with $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$ and the conclusion is immediate.
Subgoal.
For all $m^{\prime} \leq m$ and $r: \Delta^{\prime} \leq \Delta$ if $\Delta^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[\delta \circ r] ® \boxtimes \in \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}$ then we have the following:

$$
\Delta^{\prime} \vdash_{m^{\prime}}\left(\lambda\left(t\left[\delta \circ \mathrm{p}^{1} . \operatorname{var}_{0}\right]\right)\right)[r]\left(t^{\prime}\right): T_{1}\left[\delta \circ \mathrm{p}^{1} . \operatorname{var}_{0}\right]\left[r . t^{\prime}\right] ®^{\circledR} \underline{\operatorname{app}}(\lambda(t \triangleleft \rho), v) \in_{\omega} T_{1} \triangleleft \rho[v]
$$

First, we use Lemmas 4.3.6 and 4.3.7 again to simplify our goal to the following:

$$
\Delta^{\prime} \vdash_{m^{\prime}} t\left[(\delta \circ r) \cdot t^{\prime}\right]: T_{1}\left[(\delta \circ r) \cdot t^{\prime}\right] ® \llbracket t \rrbracket_{\rho . v} \in_{\omega} \llbracket T_{1} \rrbracket_{\rho . v}
$$

In order to show this we will use our second induction hypothesis. We pick $m^{\prime} \leq n$ by transitivity. If we can show that $\Delta^{\prime} \vdash_{m^{\prime}}(\delta \circ r) \cdot t^{\prime}: \Gamma \cdot T_{0} ® \rho . v$ we are done. We observe from the definition that since $\Delta^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}[\delta \circ r] ® \boxtimes \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}$ holds by assumption we merely need to show $\Delta^{\prime} \vdash_{m^{\prime}} \delta \circ r: \Gamma ® \rho$. Next, by Lemma 4.4.3 it suffices to show $\Delta \vdash_{m} \delta: \Gamma ® \rho$ but this is immediate by assumption.
Case.

$$
\frac{\Gamma \vdash T_{0} \text { type }}{} \quad \Gamma . T_{0} \vdash T_{1} \text { type } \quad \Gamma \vdash t_{0}: \Pi\left(T_{0}, T_{1}\right) \quad \Gamma \vdash t_{1}: T_{0}
$$

We have by induction hypothesis that $\Gamma \vDash_{n} T_{0}$ type, $\Gamma . T_{0} \vDash_{n} T_{1}$ type, $\Gamma \vDash_{n} t_{0}: \Pi\left(T_{0}, T_{1}\right)$ and $\Gamma \vDash_{n} t_{1}: T_{0}$. We wish to show $\Gamma F_{n} t_{0}\left(t_{1}\right): T_{1}\left[\right.$ id. $\left.t_{0}\right]$. We set $T=\Pi\left(T_{0}, T_{1}\right)$.
Suppose we have some $m \leq n, \Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show the following:

$$
\Delta \vdash_{m} t_{0}\left(t_{1}\right)[\delta]: T_{1}\left[\left(\mathrm{id} . t_{1}\right) \circ \delta\right] ®^{\mathbb{a p p}}\left(\llbracket t_{0} \rrbracket_{\rho}, \llbracket t_{1} \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{1} \rrbracket_{\rho \cdot \llbracket t_{1} \rrbracket_{\rho}}
$$

We instantiate our induction hypotheses with m, δ, and ρ. We then have $\Delta \vdash_{m} t_{0}: T[\delta] ®$ $\llbracket t_{0} \rrbracket_{\rho} \in_{\omega} \llbracket T \rrbracket_{\rho}$ and $\Delta \vdash_{m} t_{1}: T_{0}[\delta] ® \llbracket t_{1} \rrbracket_{\rho} \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}$.
By inversion on the first of these facts we must then have that there is some T_{0}^{\prime} and T_{1}^{\prime} such that $\Delta \vdash_{m} T_{0}^{\prime} ® \llbracket T_{0} \rrbracket{ }_{\rho}$ type $_{\omega}$ and such that for all $\Delta \vdash_{m} t^{\prime}: T_{0}^{\prime}{ }^{\circledR} v \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}$ we have $\Delta \vdash_{m} t_{0}\left(t^{\prime}\right): T_{1}^{\prime}\left[\right.$ id. $\left.t^{\prime}\right]{ }^{\circledR} \underline{\operatorname{app}}\left(\llbracket t_{0} \rrbracket_{\rho}, v\right) \in_{\omega} \llbracket T_{1} \rrbracket_{\rho . v}$
Now, we observe that by Corollary 4.3 .12 we must have $\Delta \vdash T_{0}[\delta]=T_{0}^{\prime}$ type. Therefore, from our second induction hypothesis and the second fact we have obtained from inversion, we may conclude the following:

$$
\Delta \vdash_{m} t_{0}\left(t_{1}\right): T_{1}^{\prime}\left[\mathrm{id} . t_{1}\right] ® \llbracket t_{0}\left(t_{1}\right) \rrbracket_{\rho} \in_{\omega} \llbracket T_{1} \rrbracket_{\rho \cdot \llbracket t_{1} \rrbracket_{\rho}}
$$

In order to obtain the desired conclusion, therefore, we must show that $\Delta \vdash T_{1}\left[\delta . t_{1}\right]=$ $T_{1}^{\prime}\left[\right.$ id. $\left.t_{1}\right]$ type holds. This follows form Corollary 4.3.12 and our induction hypothesis of $\Gamma . T_{0} \vDash_{n} T_{1}$ type. From the latter we have $\Delta \vdash_{m} T_{1}\left[\mathrm{id} . t_{1}\right] ® \llbracket T_{1} \rrbracket_{\rho . \llbracket t_{1} \rrbracket_{\rho}}$ type ${ }_{\omega}$. From our earlier conclusion and Lemma 4.3 .9 we may have $\Delta \vdash_{m} T_{1}^{\prime}\left[\right.$ id. $\left.t_{1}\right] ® \llbracket T_{1} \rrbracket_{\rho . \llbracket t_{1} \rrbracket_{\rho}}$ type ${ }_{\omega}$. Therefore, we have the desired equality of types by Corollary 4.3.12.

Case.

$$
\frac{\Gamma \vdash A: \mathrm{U}_{i} \quad \Gamma . A \vdash B: \mathrm{U}_{i}}{\Gamma \vdash \Pi(A, B): \mathrm{U}_{i}}
$$

Identical to the case for $\Gamma \vdash \Pi(A, B)$ type.
Case.

$$
\frac{\Gamma \vdash t_{0}: T_{0} \quad \Gamma . T_{0} \vdash T_{1} \text { type } \quad \Gamma \vdash t_{1}: T_{1}\left[\text { id. } t_{0}\right]}{\Gamma \vdash\left\langle t_{0}, t_{1}\right\rangle: \Sigma\left(T_{0}, T_{1}\right)}
$$

In this case, by induction hypothesis we have $\Gamma \vDash_{n} t_{0}: T_{0}, \Gamma \cdot T_{0} F_{n} T_{1}$ type, and $\Gamma \vDash_{n} t_{1}$: T_{1} [id. t_{0}]. We wish to show $\Gamma F_{n}\left\langle t_{0}, t_{1}\right\rangle: \Sigma\left(T_{0}, T_{1}\right)$.
Suppose we have some $m \leq n, \Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show the following:

$$
\Delta \vdash_{n}\left\langle t_{0}, t_{1}\right\rangle[\delta]:\left(\Sigma\left(T_{0}, T_{1}\right)\right)[\delta] ® \llbracket\left\langle t_{0}, t_{1}\right\rangle \rrbracket_{\rho} \in_{\omega} \llbracket \Sigma\left(T_{0}, T_{1}\right) \rrbracket_{\rho}
$$

First, we observe that $\llbracket \Sigma\left(T_{0}, T_{1}\right) \rrbracket_{\rho}=\Sigma\left(\llbracket T_{0} \rrbracket_{\rho}, \llbracket T_{1} \rrbracket_{\rho}\right)$. Therefore, we must show that that $\Delta \vdash\left(\Sigma\left(T_{0}, T_{1}\right)\right)[\delta]=\Sigma\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ type, $\Delta \vdash\left\langle t_{0}, t_{1}\right\rangle[\delta]: \Sigma\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$, and the following three facts:
a) $\forall m^{\prime} \leq m, r: \Delta^{\prime} \leq \Delta . \Delta^{\prime} \vdash_{m^{\prime}} t^{\prime}: T_{0}^{\prime}[r] ® a \in_{\omega} \llbracket T_{0} \rrbracket \rho \Longrightarrow \Delta_{\rho}^{\prime} \vdash_{m^{\prime}} T_{1}^{\prime}\left[r . t^{\prime}\right]$ ® $T_{1} \triangleleft \rho[a]$ type $_{\omega}$
b) $\Delta \vdash_{m} t_{0}[\delta]: T_{0}^{\prime}{ }^{\circledR} \underline{\mathbf{f s t}}\left(\llbracket\left\langle t_{0}, t_{1}\right\rangle \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{0} \rrbracket{ }_{\rho}$
c) $\Delta \vdash_{m} t_{1}[\delta]: T_{1}^{\prime}\left[\mathrm{id} . t_{0}[\delta]\right]{ }^{\circledR} \underline{\operatorname{snd}}\left(\llbracket\left\langle t_{0}, t_{1}\right\rangle \rrbracket_{\rho}\right) \in_{\omega} T_{1} \triangleleft \rho\left[\underline{\mathbf{f s t}}\left(\llbracket\left\langle t_{0}, t_{1}\right\rangle \rrbracket_{\rho}\right)\right]$

We have simplified these goals without further comment by Lemma 4.3 .7 to save space.
We choose $T_{0}^{\prime}=T_{0}[\delta]$ and $T_{1}^{\prime}=T_{1}\left[\left(\delta \circ \mathrm{p}^{1}\right) \cdot \operatorname{var}_{0}\right]$. This immediately gives us $\Delta \vdash\left\langle t_{0}, t_{1}\right\rangle[\delta]$: $\Sigma\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ so we merely need to show the above three facts.
The first fact then follows from our induction hypothesis of $\Gamma . T_{0} F_{n} T_{1}$ type. For the second, we observe by that $\underline{\mathbf{f s t}}\left(\llbracket\left\langle t_{0}, t_{1}\right\rangle \rrbracket_{\rho}\right)=\llbracket t_{0} \rrbracket_{\rho}$ and so this goal is precisely our induction hypothesis of $\Gamma F_{n} t_{0}: T_{0}$. For the third, we observe that $\underline{\operatorname{snd}}\left(\mathbb{\llbracket}\left\langle t_{0}, t_{1}\right\rangle \rrbracket_{\rho}\right)=\llbracket t_{1} \rrbracket_{\rho}$. This simplifies our goal to the following (again using Lemma 4.3.7):

$$
\Delta \vdash_{m} t_{1}[\delta]: T_{1}\left[\delta . t_{0}[\delta]\right] ® \llbracket t_{1} \rrbracket_{\rho} \in_{\omega} \llbracket T_{1} \rrbracket_{\rho \cdot \llbracket t_{0} \rrbracket_{\rho}}
$$

This is again handled by our induction hypothesis.
Case.

$$
\frac{\Gamma \vdash T_{0} \text { type } \quad \Gamma \vdash t: \Sigma\left(T_{0}, T_{1}\right)}{\Gamma \vdash \mathrm{fst}(t): T_{0}}
$$

In this case we have by induction hypothesis that $\Gamma \vDash_{n} T_{0}$ type and $\Gamma \vDash_{n} t: \Sigma\left(T_{0}, T_{1}\right)$. We wish to show $\Gamma F_{n} \mathrm{fst}(t): T_{0}$.
Suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show the following:

$$
\Delta \vdash_{m}(\operatorname{fst}(t))[\delta]: T_{0}[\delta] ® \underline{\mathrm{fst}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}
$$

We start by instantiating our induction hypothesis of $\Gamma F_{n} t: \Sigma\left(T_{0}, T_{1}\right)$. This tells us that the following holds:

$$
\Delta \vdash_{m} t[\delta]: \Sigma\left(T_{0}, T_{1}\right)[\delta] ® \llbracket t \rrbracket_{\rho} \in_{\omega} \llbracket \Sigma\left(T_{0}, T_{1}\right) \rrbracket_{\rho}
$$

Therefore, we have $\Delta \vdash \Sigma\left(T_{0}, T_{1}\right)[\delta]=\Sigma\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ type such that, in particular, $\Delta \vdash_{m}$ fst $(t[\delta])$: $T_{0}^{\prime}{ }^{\circledR} \underline{\mathrm{fst}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}$. Now we may use Corollary 4.3 .12 with $\Gamma \vDash_{n} T_{0}$ type to conclude that $\Delta \vdash T_{0}[\delta]=T_{0}^{\prime}$ type. Finally, by Lemmas 4.3 .6 and 4.3 .7 we then have the desired goal:

$$
\Delta \vdash_{m}(\operatorname{fst}(t))[\delta]: T_{0}[\delta] \mathbb{R} \underline{\operatorname{fst}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{0} \rrbracket_{\rho}
$$

Case.

$$
\frac{\Gamma \vdash T_{0} \text { type } \quad \Gamma . T_{0} \vdash T_{1} \text { type } \quad \Gamma \vdash t: \Sigma\left(T_{0}, T_{1}\right)}{\Gamma \vdash \operatorname{snd}(t): T_{1}[\operatorname{id.} .(\mathrm{fst}(t))]}
$$

In this case we have by induction hypothesis that $\Gamma F_{n} T_{0}$ type, $\Gamma . T_{0} F_{n} T_{1}$ type and $\Gamma F_{n} t: \Sigma\left(T_{0}, T_{1}\right)$. We wish to show $\Gamma F_{n} \mathrm{fst}(t): T_{0}$.
Suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show the following:

$$
\Delta \vdash_{m}(\operatorname{snd}(t))[\delta]: T_{1}[\delta \cdot \operatorname{fst}(t[\delta])]{ }^{\circledR} \underline{\operatorname{snd}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{1} \rrbracket_{\rho \cdot \llbracket \operatorname{fst}(t) \rrbracket \rrbracket_{\rho}}
$$

We start by instantiating our induction hypothesis of $\Gamma F_{n} t: \Sigma\left(T_{0}, T_{1}\right)$. This tells us that the following holds:

$$
\Delta \vdash_{m} t[\delta]:\left(\Sigma\left(T_{0}, T_{1}\right)\right)[\delta] ® \llbracket t \rrbracket_{\rho} \in_{\omega} \llbracket \Sigma\left(T_{0}, T_{1}\right) \rrbracket_{\rho}
$$

Inversion on this tells us that there is some $\Delta \vdash\left(\Sigma\left(T_{0}, T_{1}\right)\right)[\delta]=\Sigma\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ type such that the following holds:

$$
\begin{gathered}
\Delta \vdash_{m} \operatorname{fst}((t[\delta])): T_{0}^{\prime}{ }^{\circledR} \underline{\operatorname{fst}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{0} \rrbracket_{\rho} \\
\Delta \vdash_{m} \operatorname{snd}((t[\delta])): T_{1}^{\prime}[\operatorname{id.fst}((t[\delta]))]{ }^{\circledR} \underline{\operatorname{snd}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T_{1} \rrbracket_{\rho . \underline{\mathrm{fst}}\left(\llbracket t \rrbracket_{\rho}\right)}
\end{gathered}
$$

From the first fact, Corollary 4.3.12 and our induction hypothesis that $\Gamma \vDash_{n} T_{0}$ type we may conclude that $\Delta \vdash T_{0}[\delta]=T_{0}^{\prime}$ type holds. We then have from the second fact, Corollary 4.3.12, and our induction hypothesis that $\Gamma . T_{0} F_{n} T_{1}$ type that the following equality is true:

$$
\Delta \vdash T_{1}[\delta .(\operatorname{fst}(t[\delta]))]=T_{1}^{\prime}[\operatorname{id} .(\operatorname{fst}(t[\delta]))] \text { type }
$$

Therefore, we may conclude from Lemmas 4.3.6 and 4.3.7 that our desired goal holds.
Case.

$$
\frac{\Gamma \vdash A: \mathrm{U}_{i} \quad \Gamma . A \vdash B: \mathrm{U}_{i}}{\Gamma \vdash \Sigma(A, B): \mathrm{U}_{i}}
$$

Identical to the case for $\Gamma \vdash \Sigma(A, B)$ type.
Case.

$$
\frac{\Gamma c t x}{\Gamma \vdash \text { zero }: \text { nat }}
$$

In this case we wish to show that ΓF_{n} zero : nat holds. Suppose that we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show that $\Delta \vdash_{m}$ zero $[\delta]$: nat $[\delta] ®$ zero ϵ_{ω} nat. In order to show this it suffices to show $\Delta \vdash_{m}$ zero : nat \mathbb{R} zero ϵ_{ω} nat and this is immediate by definition.
Case.

$$
\frac{\Gamma \vdash t: \text { nat }}{\Gamma \vdash \operatorname{succ}(t): \text { nat }}
$$

In this case we wish to show that $\Gamma F_{n} \operatorname{succ}(t)$: nat holds and we have by induction hypothesis that $\Gamma F_{n} t$: nat. Suppose that we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We must show $\Delta \vdash_{m} \operatorname{succ}(t)[\delta]: \operatorname{nat}[\delta] ®^{\operatorname{succ}}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega}$ nat.
First, observe by our induction hypothesis that we have $\Delta \vdash_{m} t[\delta]$: nat $\mathbb{\circledR} \llbracket t \rrbracket_{\rho} \in_{\omega}$ nat. Therefore, the goal follows by definition.

Case.

$$
\Gamma . \text { nat } \vdash \text { type } \quad \Gamma \vdash t_{0}: \text { nat } \quad \Gamma \vdash t_{1}: T[\text { id.zero }] \quad \Gamma . \text { nat. } T \vdash t_{2}: T\left[\mathrm{p}^{2} . \operatorname{succ}\left(\operatorname{var}_{1}\right)\right]
$$

$$
\Gamma \vdash \operatorname{natrec}\left(T, t_{0}, t_{1}, t_{2}\right): T\left[\mathrm{id} . t_{1}\right]
$$

In this case we have by induction hypothesis that Γ.nat $F_{n} T$ type, $\Gamma \vDash_{n} t_{0}:$ nat, $\Gamma \vDash_{n} t_{1}$: $T\left[\right.$ id.zero], and Γ.nat. $T F_{n} t_{2}: T\left[p^{2} . \operatorname{succ}\left(\operatorname{var}_{1}\right)\right]$. We wish to show that $\Gamma F_{n} \operatorname{natrec}\left(T, t_{0}, t_{1}, t_{2}\right):$ T [id. t_{0}] holds.
For this, suppose we have some $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We first observe that we have $\Delta \vdash_{m} t_{0}[\delta]$: nat $\circledR \llbracket t_{0} \rrbracket_{\rho} \epsilon_{\omega}$ nat. This relation is inductively defined so we proceed by induction. There are 3 subcases to consider:
Subcase. $\Delta \vdash t_{0}[\delta]=$ zero : nat and $\llbracket t_{0} \rrbracket_{\rho}=$ zero.
In this case we wish to show that the following holds:

$$
\Delta \vdash_{m} \operatorname{natrec}\left(T, t_{0}, t_{1}, t_{2}\right)[\delta]: T\left[\operatorname{id.} t_{0}\right][\delta] ® \llbracket \operatorname{natrec}\left(T, t_{0}, t_{1}, t_{2}\right) \rrbracket_{\rho} \in_{\omega} \llbracket T\left[\operatorname{id} . t_{0}\right] \rrbracket_{\rho}
$$

We can reduce this as natrec $(-,-,-,-)$ reduces at zero. It suffices to show the following instead:

$$
\Delta \vdash_{m} t_{1}[\delta]: T[\text { id.zero }][\delta] ® \llbracket t_{1} \rrbracket_{\rho} \in_{\omega} \llbracket T[\text { id.zero }] \rrbracket_{\rho}
$$

However, this follows precisely from our induction hypothesis that $\Gamma F_{n} t_{1}: T$ [id.zero].
Subcase. $\Delta \vdash t_{0}[\delta]=\operatorname{succ}\left(t_{0}^{\prime}\right):$ nat, $\llbracket t_{0} \rrbracket_{\rho}=\operatorname{succ}(v)$ and $\Delta \vdash_{m} t_{0}^{\prime}:$ nat $\mathbb{B} v \in_{\omega} \rho$.
In this case we wish to show that the following holds (after some simplifications):
$\Delta \vdash_{m} t_{2}\left[\delta . t_{0}[\delta] \cdot \operatorname{rec}(\ldots)\right]: T\left[\delta . \operatorname{succ}\left(t_{0}^{\prime}\right)\right] \circledR \llbracket t_{2} \rrbracket_{\rho . v . \operatorname{natrec}\left(T \triangleleft \rho, \llbracket t_{1} \rrbracket_{\rho}, t_{2} \triangleleft \rho, v\right)} \in_{\omega} \llbracket T\left[\operatorname{id} . t_{0}\right] \rrbracket_{\rho}$
We have by induction hypothesis that the following holds:

$$
\Delta \vdash_{m} \operatorname{rec}(\ldots): T\left[\delta . t_{0}^{\prime}\right] \circledR^{\circledR} \underline{\operatorname{natrec}}\left(T \triangleleft \rho, \llbracket t_{1} \rrbracket_{\rho}, t_{2} \triangleleft \rho, v\right) \in_{\omega} \llbracket T \rrbracket_{\rho . v}
$$

Therefore, the goal holds from our induction hypothesis of Γ.nat. $T F_{n} t_{2}: T\left[\mathrm{p}^{2} \cdot \operatorname{succ}\left(\operatorname{var}_{1}\right)\right]$.
Subcase. We have $\llbracket t_{0} \rrbracket_{\rho}=\uparrow^{\text {nat }} e$ and for all $r: \Delta^{\prime} \leq \Delta$ we have $\lceil e\rceil_{\left\|\Delta^{\prime}\right\|}=t^{\prime}$ and $\Delta^{\prime} \vdash$ $t_{0}[r \circ \delta]=t^{\prime}:$ nat.
In this case we wish to show

$$
\Delta \vdash_{m} \operatorname{natrec}\left(T, t_{0}, t_{1}, t_{2}\right)[\delta]: T\left[\delta \cdot t_{0}[\delta]\right] ® e . n a t r e c\left(T \triangleleft \rho, \llbracket t_{1} \rrbracket_{\rho}, t_{2} \triangleleft \rho\right) \in_{\omega} \llbracket T \rrbracket_{\rho . \text { nnat }_{e}}
$$

In this case we use Lemma 4.3.11. Specifically, we must show that for all $r: \Delta^{\prime} \leq \Delta$ that $\left\lceil e . \operatorname{natrec}\left(T \triangleleft \rho, \llbracket t_{1} \rrbracket_{\rho}, t_{2} \triangleleft \rho\right)\right\rceil_{\left\|\Delta^{\prime}\right\|}=t^{\prime}$ such that the following holds:

$$
\Delta^{\prime} \vdash \operatorname{natrec}\left(T, t_{0}, t_{1}, t_{2}\right)[r \circ \delta]=t^{\prime}: T\left[r \circ \delta . t_{0}[\delta]\right]
$$

This follows from our assumption about e as well as our induction hypothesis of ΓF_{n} $t_{0}:$ nat, $\Gamma \vDash_{n} t_{1}: T\left[\right.$ id.zero], and Γ.nat. $T \vDash_{n} t_{2}: T\left[\mathrm{p}^{2} . \operatorname{succ}\left(\operatorname{var}_{1}\right)\right]$.
Case.

$$
\frac{\Gamma c t x}{\Gamma \vdash \text { nat }: \mathrm{U}_{i}}
$$

Identical to the case for $\Gamma \vdash$ nat type.

$$
\frac{\Gamma \vdash T: \mathrm{U}_{i} \quad \Gamma \vdash t_{i}: T}{\Gamma \vdash \operatorname{Id}\left(T, t_{0}, t_{1}\right): \mathrm{U}_{i}}
$$

Identical to the case for $\Gamma \vdash \operatorname{Id}\left(T, t_{0}, t_{1}\right)$ type.

Case.

$$
\frac{\Gamma \vdash T \text { type } \quad \Gamma \vdash t: T}{\Gamma \vdash \operatorname{refl}(t): \operatorname{Id}(T, t, t)}
$$

Suppose that $\Gamma \vDash_{n} T$ type and $\Gamma \vDash_{n} t: T$, we wish to show $\Gamma \vDash_{n} \operatorname{refl}(t): \operatorname{Id}(T, t, t)$.
For this, suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show the following:

$$
\Delta \vdash_{m} \operatorname{refl}(t)[\delta]:(\operatorname{Id}(T, t, t))[\delta] ® \llbracket \operatorname{refl}(t) \rrbracket_{\rho} \in_{\omega} \llbracket \operatorname{Id}(T, t, t) \rrbracket_{\rho}
$$

We first observe that we can simplify this goal to the following:

$$
\Delta \vdash_{m} \operatorname{refl}(t[\delta]): \operatorname{Id}(T[\delta], t[\delta], t[\delta]) ® \operatorname{refl}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \operatorname{Id}\left(\llbracket T \rrbracket_{\rho}, \llbracket t \rrbracket_{\rho}, \llbracket t \rrbracket_{\rho}\right)
$$

By unfolding the definition of the logical relation at $\operatorname{Id}\left(\llbracket T \rrbracket_{\rho}, \llbracket t \rrbracket_{\rho}, \llbracket t \rrbracket_{\rho}\right)$, we must show the following:

- $\Delta \vdash_{n} T[\delta] ® \llbracket T \rrbracket_{\rho}$ type $_{\alpha}$
- $\Delta \vdash_{n} t[\delta]: T[\delta] ® \llbracket t \rrbracket_{\rho} \in_{\alpha} \llbracket T \rrbracket_{\rho}$

Both of these follow from our induction hypothesis.
Case.

$$
\begin{aligned}
& \Gamma \vdash T \text { type } \quad \Gamma \vdash u_{1}, u_{2}: T \quad \Gamma . T . T\left[\mathrm{p}^{1}\right] \cdot \operatorname{ld}\left(T\left[\mathrm{p}^{2}\right], \mathrm{var}_{1}, \mathrm{var}_{0}\right) \vdash C \text { type } \\
& \Gamma . T \vdash t_{1}: C\left[{\left.\mathrm{id} . \operatorname{var}_{0} \cdot \operatorname{var}_{0} \cdot \operatorname{refl}\left(\operatorname{var}_{0}\right)\right] \quad \Gamma \vdash t_{2}: \operatorname{Id}\left(T, u_{1}, u_{2}\right)}_{\Gamma \vdash \mathrm{J}\left(C, t_{1}, t_{2}\right): C\left[\operatorname{id} \cdot u_{1} \cdot u_{2} \cdot t_{2}\right]}^{l}\right.
\end{aligned}
$$

In this case we have from our induction hypothesis that $\Gamma F_{n} T$ type, $\Gamma F_{n} u_{1}, u_{2}: T$, $\Gamma . T . T\left[\mathrm{p}^{1}\right] . \operatorname{Id}\left(T\left[\mathrm{p}^{2}\right], \operatorname{var}_{1}, \operatorname{var}_{0}\right) \vDash_{n} C$ type, $\Gamma . T \vDash_{n} t_{1}: C\left[i d . \operatorname{var}_{0}\right.$. var $\left._{0} . \operatorname{refl}\left(\operatorname{var}_{0}\right)\right]$, and $\Gamma \vDash_{n} t_{2}:$ $\operatorname{Id}\left(T, u_{1}, u_{2}\right)$.
We wish to show $\Gamma \vDash_{n} \mathrm{~J}\left(C, t_{1}, t_{2}\right): C\left[i d . u_{1} \cdot u_{2} \cdot t_{2}\right]$.
First, assume that we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show the following:

$$
\Delta \vdash_{m} \mathrm{~J}\left(C, t_{1}, t_{2}\right)[\delta]: C\left[\delta \cdot u_{1}[\delta] \cdot u_{2}[\delta] \cdot t_{2}[\delta]\right] \mathbb{\circledR} \llbracket \mathrm{J}\left(C, t_{1}, t_{2}\right) \rrbracket_{\rho} \in_{\omega} \llbracket C \rrbracket_{\rho \cdot \llbracket u_{1} \rrbracket_{\rho} \cdot \llbracket u_{2} \rrbracket_{\rho} \cdot \llbracket t_{2} \rrbracket_{\rho}}
$$

In order to show this, we observe that by induction hypothesis we have $\Delta \vdash_{m} t_{2}[\delta]$: $\operatorname{Id}\left(T, u_{1}, u_{2}\right)[\delta] \llbracket \llbracket t_{2} \rrbracket_{\rho} \in_{\omega} \llbracket \operatorname{Id}\left(T, u_{1}, u_{2}\right) \rrbracket_{\rho}$. By inversion on this fact we have that one of the following two cases applies:

- $\llbracket t_{2} \rrbracket_{\rho}=\uparrow^{-} e$ and when $r: \Delta^{\prime} \leq \Delta$, then $\lceil e\rceil_{\left\|\Delta^{\prime}\right\|}=t^{\prime}$ such that $\Delta^{\prime} \vdash t_{2}[\delta][r]=t^{\prime}: T[\delta][r]$.
- $\Delta \vdash t_{2}[\delta]=\operatorname{refl}\left(t^{\prime}\right): \operatorname{Id}\left(T, u_{1}, u_{2}\right)[\delta]$ and $\llbracket t_{2} \rrbracket_{\rho}=\operatorname{refl}\left(v^{\prime}\right)$ for some t^{\prime}, v^{\prime} such that $\Delta \vdash t^{\prime}=u_{i}[\delta]: T[\delta]$.

We proceed by cases on this. In the first case we have that $\llbracket t_{2} \rrbracket_{\rho}=\uparrow^{-} e$. We also observe from our induction hypothesis that the following equality holds:

$$
\llbracket \mathrm{J}\left(C, t_{1}, t_{2}\right) \rrbracket_{\rho}=\uparrow \llbracket C \rrbracket_{\rho \cdot \llbracket u_{1} \rrbracket_{\rho} \cdot \llbracket u_{2} \rrbracket_{\rho} \cdot \llbracket t_{2} \rrbracket_{\rho}}^{e} . \mathrm{J}\left(C \triangleleft \rho, t_{1} \triangleleft \rho, \llbracket T \rrbracket_{\rho}, \llbracket u_{1} \rrbracket_{\rho}, \llbracket u_{2} \rrbracket_{\rho}\right)
$$

In order to show our goal then, it suffices to show that for all $r: \Delta^{\prime} \leq \Delta$ that there is some t^{\prime} such that

$$
\left\lceil e . \mathrm{J}\left(C \triangleleft \rho, t_{1} \triangleleft \rho, \llbracket T \rrbracket_{\rho}, \llbracket u_{1} \rrbracket_{\rho}, \llbracket u_{2} \rrbracket_{\rho}\right)\right\rceil_{\left\|\Delta^{\prime}\right\|}=t^{\prime}
$$

Moreover, we must have the following equality:

$$
\Delta^{\prime} \vdash \mathrm{J}\left(C, t_{1}, t_{2}\right)[r \circ \delta]=t^{\prime}: C\left[\mathrm{id} . u_{1} \cdot u_{2} \cdot t_{2}\right][r \circ \delta]
$$

However, this holds using our induction hypothesis and the assumption that for all $r: \Delta^{\prime} \leq \Delta$, then $\lceil e\rceil_{\left\|\Delta^{\prime}\right\|}=t^{\prime \prime}$ such that $\Delta^{\prime} \vdash t_{2}[\delta][r]=t^{\prime \prime}: T[\delta][r]$

For the second case, we have that $\llbracket t_{2} \rrbracket_{\rho}=\operatorname{refl}\left(v^{\prime}\right)$ and $\Delta \vdash t_{2}[\delta]=\operatorname{refI}\left(t^{\prime}\right): \operatorname{Id}\left(T, u_{1}, u_{2}\right)[\delta]$. In this case, we may simplify our goal to the following:

$$
\Delta \vdash_{m} t_{1}\left[\delta \cdot t^{\prime}\right]: C\left[\delta \cdot u_{1}[\delta] \cdot u_{2}[\delta] \cdot t_{2}[\delta]\right] ® \llbracket t_{1} \rrbracket_{\rho \cdot v^{\prime}} \in_{\omega} \llbracket C \rrbracket_{\rho \cdot \llbracket u_{1} \rrbracket_{\rho} \cdot \llbracket u_{2} \rrbracket_{\rho \cdot} \cdot \llbracket t_{2} \rrbracket_{\rho}}
$$

In this case we wish to apply our induction hypothesis for t_{1} :

$$
\Gamma . T \vDash_{n} t_{1}: C\left[\mathrm{id}^{2} \cdot \operatorname{var}_{0} \cdot \operatorname{var}_{0} \cdot \operatorname{refl}\left(\operatorname{var}_{0}\right)\right]
$$

This allows us to conclude the following:

$$
\Delta \vdash_{m} t_{1}\left[\delta \cdot t^{\prime}\right]: C\left[\delta \cdot t^{\prime} \cdot t^{\prime} \cdot \operatorname{refl}\left(t^{\prime}\right)\right] ® \llbracket t_{1} \rrbracket_{\rho \cdot v^{\prime}} \in_{\omega} \llbracket C \rrbracket_{\rho \cdot v^{\prime} \cdot v^{\prime} \cdot \operatorname{refl}\left(v^{\prime}\right)}
$$

Now, we may use Lemma 4.3 .6 to simplify this to the following:

$$
\Delta \vdash_{m} t_{1}\left[\delta \cdot t^{\prime}\right]: C\left[\delta \cdot u_{1}[\delta] \cdot u_{2}[\delta] \cdot t_{2}[\delta]\right] \mathbb{\circledR} \llbracket t_{1} \rrbracket_{\rho \cdot v^{\prime}} \in_{\omega} \llbracket C \rrbracket_{\rho \cdot v^{\prime} \cdot v^{\prime} \cdot \operatorname{refl}\left(v^{\prime}\right)}
$$

Finally, we have Г.T.T[$\left.{ }^{1}\right] \cdot \operatorname{ld}\left(T\left[p^{2}\right], v a r_{1}\right.$, var $\left._{0}\right) \vdash C$ type. We use Theorem 3.3.5 together with the following pair of environments:

$$
m \Vdash \rho \cdot v^{\prime} \cdot v^{\prime} \cdot \operatorname{refl}\left(v^{\prime}\right)=\rho \cdot \llbracket u_{1} \rrbracket_{\rho} \cdot \llbracket u_{2} \rrbracket_{\rho} \cdot \llbracket t_{2} \rrbracket_{\rho}: \Gamma \cdot T \cdot T\left[\mathrm{p}^{1}\right] \cdot \operatorname{Id}\left(T\left[\mathrm{p}^{2}\right], \operatorname{var}_{1}, \operatorname{var}_{0}\right)
$$

This tells us that $\tau_{\omega} \mid=_{m} \llbracket C \rrbracket_{\rho \cdot v^{\prime} . v^{\prime} . \operatorname{ref}\left(v^{\prime}\right)} \sim \llbracket C \rrbracket_{\rho \cdot \llbracket u_{1} \rrbracket_{\rho \cdot} \cdot \llbracket u_{2} \rrbracket_{\rho} . \llbracket t_{2} \rrbracket_{\rho} \text {. Our goal then follows }}$ from Lemma 4.3.5.

Case.

$$
\frac{\Gamma . \boldsymbol{\Omega}+t: T}{\Gamma \vdash[t]_{\mathbf{\varrho}}: \square T}
$$

We have by induction hypothesis in this case that Γ. $\boldsymbol{R}_{n} t: T$. We wish to show $\Gamma \vDash_{n}[t]_{\text {@ }}$: $\square T$. For this, suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show the following:

$$
\left.\Delta \vdash_{m}[t]_{\boldsymbol{\rho}}[\delta]:(\square T)[\delta] ® \llbracket[t]_{\mathbf{@}}\right]_{\rho} \in_{\omega} \llbracket \square T \rrbracket_{\rho}
$$

We can calculate to reduce this to the following:

$$
\Delta \vdash_{m}[t[\delta]]_{\mathbf{@}}: \square T[\delta] ® \operatorname{shut}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \square \llbracket T \rrbracket_{\rho}
$$

Now in order to show this it suffices to show for all m^{\prime},

By calculation this simplifies to the following $\Delta . \vdash_{m^{\prime}} t[\delta]: T[\delta]{ }^{\circledR} \llbracket t \rrbracket_{\rho} \in \in_{\omega} \llbracket T \rrbracket_{\rho}$. In order to show this, first we observe that $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma ® \rho$ from Lemmas 4.4.3 and 4.4.5. Therefore, $\Delta . \vdash_{m^{\prime}} \delta: \Gamma . \Omega \rho$ by definition. Finally, instantiating our induction hypothesis with this gives us our goal.
Case.

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma^{\curvearrowleft} \vdash t: \square T}{\Gamma \vdash[t]_{\curvearrowleft}: T}
$$

We have by induction hypothesis in this case that $\Gamma F_{n} T$ type and $\Gamma . \boldsymbol{R}_{n} t: T$. We wish to show $\Gamma F_{n}[t]_{\text {@ }}: \square T$. For this, suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show the following:

$$
\Delta \vdash_{m}[t]_{\infty}[\delta]:(\square T)[\delta] ® \llbracket[t]_{\Omega} \rrbracket_{\rho} \in_{\omega} \llbracket \square T \rrbracket_{\rho}
$$

We observe by Lemma 4.4.6 that $\Delta^{\curvearrowleft} \vdash_{m} \delta: \Gamma^{\circledR} ® \rho$. We therefore may instantiate our induction hypothesis to conclude the following:

$$
\Delta^{\curvearrowleft} \boldsymbol{Q}_{\vdash_{m}}[t[\delta]]_{\mathrm{n}}: T^{\prime} \text { ® } \underline{\text { open }}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T \rrbracket_{\rho}
$$

Where $\Delta^{\curvearrowleft} \vdash \square(T[\delta])=\square T^{\prime}$ type. Now, by Lemmas 4.3.2 and 4.4.2 we have that this gives us the following:

$$
\Delta \vdash_{m}[t[\delta]]_{\Omega}: T^{\prime} \circledR \underline{\text { open }}\left(\llbracket t \rrbracket_{\rho}\right) \in_{\omega} \llbracket T \rrbracket_{\rho}
$$

Now, from Corollary 4.3.12, our induction hypothesis, and calculation this gives us the goal:

$$
\Delta \vdash_{m}[t]_{\infty}[\delta]: T[\delta] ® \llbracket[t]_{\Omega} \rrbracket_{\rho} \in_{\omega} \llbracket T \rrbracket_{\rho}
$$

Case.

$$
\frac{\Gamma . \Omega \vdash A: \mathrm{U}_{i}}{\Gamma \vdash \square A: \mathrm{U}_{i}}
$$

Identical to the case for $\Gamma \vdash \square A$ type.
Case.

$$
\frac{\Gamma c t x}{\Gamma \vdash U_{i}: U_{i+1}}
$$

Identical to the case for $\Gamma \vdash \mathrm{U}_{i}$ type.
Case.

$$
\frac{\Gamma \vdash A: U_{i}}{\Gamma \vdash A: \mathrm{U}_{i+1}}
$$

Identical to the case for $\Gamma \vdash \mathrm{U}_{i}$ type.
Case.

$$
\frac{\Gamma \vdash \delta: \Delta \quad \Delta \vdash t: A}{\Gamma \vdash t[\delta]: A[\delta]}
$$

This case mirrors the case for $\Gamma \vdash T[\delta]$ type.
Case.

$$
\frac{\Gamma \vdash A=B \text { type } \quad \Gamma \vdash t: A}{\Gamma \vdash t: B}
$$

Immediate from Lemma 4.3.6.
3. If $\Gamma \vdash \delta: \Delta$ then $\Gamma F_{n} \delta: \Delta$ for any n.

Case.

$$
\frac{\Gamma c t x}{\Gamma \vdash \cdot:}
$$

For this, suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma ® \rho$. We wish to show $\Delta \vdash_{m} \cdot \circ \delta: \Gamma ® \llbracket \cdot \rrbracket_{\rho}$. By calculation $\llbracket \cdot \rrbracket_{\rho}=\cdot$. The goal then follows by applying a rule.

Case.

$$
\frac{\Gamma_{1} c t x}{} \quad \Gamma_{2} c t x \quad \Gamma_{1} \triangleright_{\Omega} \Gamma_{2} .
$$

For this, suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma_{1}{ }^{\circledR} \rho$. We wish to show $\Delta \vdash_{m}$ id $\circ \delta:$ $\Gamma_{2}{ }^{\circledR} \llbracket \mathrm{id} \rrbracket \rho$. By calculation, this is equivalent to $\Delta \vdash_{m}$ iddelta $: \Gamma_{2}{ }^{\circledR} \rho$. This is a result of Lemma 4.3.2.

Case.

$$
\frac{\Delta \vdash T \text { type } \quad \Gamma \vdash \delta: \Delta \quad \Gamma \vdash t: T[\delta]}{\Gamma \vdash \delta . t: \Delta . T}
$$

In this case, we have by induction hypothesis that $\Delta \vDash_{n} T$ type, $\Gamma \vDash_{n} \delta: \Delta$, and $\Gamma \vDash_{n} t: T[\delta]$. We wish to show $\Gamma F_{n} \delta . t: \Delta . T$.
For this, suppose we have $m \leq n$ and $\Delta^{\prime} \vdash_{m} \delta^{\prime}: \Gamma ® \rho$. We wish to show the following:

$$
\Delta^{\prime} \vdash_{m}(\delta . t) \circ \delta^{\prime}: \Delta . T ® \llbracket \delta \rrbracket_{\rho} \cdot \llbracket t \rrbracket_{\rho}
$$

By calculation, it suffices to show the following:

$$
\Delta^{\prime} \vdash_{m}\left(\delta \circ \delta^{\prime}\right) \cdot t\left[\delta^{\prime}\right]: \Delta \cdot T ® \llbracket \delta \rrbracket_{\rho} \cdot \llbracket t \rrbracket_{\rho}
$$

In order to do this, we merely need to show $\Delta^{\prime} \vdash_{m} \delta \circ \delta^{\prime}: \Delta ® \llbracket \delta \rrbracket_{\rho}, \tau_{\omega} \mid={ }_{n} \llbracket T \rrbracket_{\rho} \sim \llbracket T \rrbracket_{\rho}$, and $\Delta^{\prime} \vdash_{m} t\left[\delta^{\prime}\right]: T\left[\delta \circ \delta^{\prime}\right] ® \llbracket t \rrbracket_{\rho} \in_{\omega} \llbracket T[\delta] \rrbracket_{\rho}$. The second is a result of Theorem 3.3.5 and the remaining two are immediate from our induction hypothesis.

Case.

$$
\frac{\Gamma_{1} \vdash \delta_{1}: \Gamma_{2} \quad \Gamma_{2} \vdash \delta_{2}: \Gamma_{3}}{\Gamma_{1} \vdash \delta_{2} \circ \delta_{1}: \Gamma_{3}}
$$

In this case, we have by induction hypothesis that $\Gamma_{1} F_{n} \delta_{1}: \Gamma_{2}$, and $\Gamma_{2} F_{n} \delta_{2}: \Gamma_{3}$. We wish to show $\Gamma_{1} F_{n} \delta_{2} \circ \delta_{1}: \Gamma_{3}$.
We assume we have $m \leq n$ and $\Gamma_{0} \vdash_{m} \delta^{\prime}: \Gamma_{1} \circledR \rho$. We then have $\Gamma_{0} \vdash_{m} \delta_{1} \circ \delta^{\prime}: \Gamma_{2} \circledR \llbracket \delta_{1} \rrbracket_{\rho}$. We then have the following:

$$
\Gamma_{0} \vdash_{m}\left(\delta_{2} \circ \delta_{1}\right) \circ \delta^{\prime}: \Gamma_{3} ® \llbracket \delta_{2} \rrbracket_{\llbracket \delta_{1} \rrbracket_{\rho}}
$$

Calculation tells us that $\llbracket \delta_{2} \rrbracket_{\llbracket \delta_{1} \rrbracket_{\rho}}=\llbracket \delta_{2} \circ \delta_{1} \rrbracket_{\rho}$ finishing this case.
Case.

$$
\frac{\Gamma_{1} c t x \quad \Gamma_{1}{ }^{\curvearrowleft} \vdash \delta: \Gamma_{2}}{\Gamma_{1} \vdash \delta: \Gamma_{2} . \mathbf{a}}
$$

In this case, we have by induction hypothesis that $\Gamma_{1}{ }^{\wedge} \vDash_{n} \delta: \Gamma_{2}$ and we wish to show $\Gamma_{1} F_{n} \delta: \Gamma_{2}$.
We assume we have $m \leq n$ and $\Gamma_{0} \vdash_{m} \delta^{\prime}: \Gamma_{1} ® \rho$. We then have that there is some m^{\prime} such that $\Gamma_{0}{ }^{\curvearrowleft} \vdash_{m^{\prime}} \delta^{\prime}: \Gamma_{1}{ }^{\complement}$ ® ρ by Lemma 4.4.6. We then have $\Gamma_{0}{ }^{\curvearrowleft} \vdash_{m^{\prime}} \delta \circ \delta^{\prime}: \Gamma_{2} \circledR \llbracket \delta \rrbracket_{\rho}$. Therefore, by definition we have $\Gamma_{0} \vdash_{m^{\prime}} \delta \circ \delta^{\prime}: \Gamma_{2} .{ }^{\circledR} \llbracket \delta \rrbracket_{\rho}$ as required.

Case.

$$
\frac{\Gamma_{1} \cdot \Gamma_{2} c t x \quad \Gamma_{1}^{\prime} c t x \quad \Gamma_{1} \triangleright_{\mathrm{Q}} \Gamma_{1}^{\prime} \quad k=\left\|\Gamma_{2}\right\| \quad \text { 日 } \notin \Gamma_{2}}{\Gamma_{1} \cdot \Gamma_{2} \vdash \mathrm{p}^{k}: \Gamma_{1}^{\prime}}
$$

Suppose we have $m \leq n$ and $\Delta \vdash_{m} \delta: \Gamma_{1} \cdot \Gamma_{2} ® \rho$. We wish to show $\Delta \vdash_{m} \mathrm{p}^{k} \circ \delta: \Gamma_{1}^{\prime}{ }^{\circledR} \rho$. This follows by Lemma 4.4.3.

Lemma 4.4.8. If Γ ctx and $\uparrow \Gamma=\rho$ then $\Gamma \vdash_{n}$ id : $\Gamma ® \rho$.
Proof. We proceed by induction on Γ ctx.
Case.

$$
\overline{c t x}
$$

In this case we must show that $\cdot \vdash_{n}$ id $: \cdot ® \cdot$ This is immediate as $\cdot \vdash$ id $: \cdot$.

Case.

$$
\frac{\Gamma c t x}{\Gamma . \mathbf{Q}_{c t x}}
$$

In this case we have by induction hypothesis that $\Gamma \vdash_{n}$ id : $\Gamma \circledR \rho$ where $\uparrow \Gamma=\rho$. We therefore
 we have the desired conclusion by definition.

Case.

$$
\frac{\Gamma c t x \quad \Gamma \vdash T \text { type }}{\Gamma . T c t x}
$$

In this case we have by induction hypothesis that $\Gamma \vdash_{n}$ id : Γ ® ρ where $\uparrow \Gamma=\rho$. We therefore must show that $\Gamma . T \vdash_{n}$ id : $\Gamma . T ® \rho . \operatorname{var}_{\|\Gamma\|}$. First, we observe that it suffices to show $\Gamma . T \vdash_{n} \mathrm{p}^{1}$.var $_{0}$: $\Gamma . T ® \rho \cdot \operatorname{var}_{\|\Gamma\|}$. Now, from $\Gamma \vdash T$ type we may conclude that $\Gamma . T F_{n} \operatorname{var}_{0}: T\left[\mathrm{p}^{1}\right]$. Therefore, we have some A such that $\tau_{\omega}=_{n} A \sim A \downarrow R, \llbracket T \rrbracket_{\rho}=A$, and $\Gamma . T \vdash_{n} \operatorname{var}_{0}: T\left[p^{1}\right] ® \uparrow^{A} \operatorname{var}_{\|\Gamma\|} \epsilon_{\omega} A$.
Next, we observe that by Lemma 4.4.3 that $\Gamma . T \vdash_{n} \mathrm{p}^{1}: \Gamma ® \rho$ holds and so we have the desired conclusion by definition.

Corollary 4.4.9. If $\Gamma \vdash t: T$ and $\underline{n b e}_{\Gamma}^{T}(t)=t^{\prime}$ then $\Gamma \vdash t=t^{\prime}: T$.
Proof. From Theorem 4.4 .7 we have that $\Gamma F_{n} t: T$. Therefore, by Lemma 4.4.8 we have that $\Gamma \vdash_{n} t$: $T ® \llbracket t \rrbracket_{\rho} \in_{\omega} \llbracket T \rrbracket_{\rho}$ where $\uparrow \Gamma=\rho$. From Lemma 4.3.11, then, we have that $\left\lceil\downarrow \llbracket T \rrbracket_{\rho} \llbracket t \rrbracket_{\rho}\right]_{\|\Gamma\|}=t^{\prime}$ such that $\Gamma \vdash t=t^{\prime}: T$. This gives the desired goal.

Bibliography

[Abe13] Andreas Abel. "Normalization by Evaluation: Dependent Types and Impredicativity". Habilitation. Ludwig-Maximilians-Universität München, 2013.
[ACP09] Andreas Abel, Thierry Coquand, and Miguel Pagano. "A Modular Type-Checking Algorithm for Type Theory with Singleton Types and Proof Irrelevance". In: Typed Lambda Calculi and Applications. Ed. by Pierre-Louis Curien. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 5-19. IsBN: 978-3-642-02273-9.
[All87] Stuart Frazier Allen. "A non-type-theoretic semantics for type-theoretic language". PhD thesis. Ithaca, NY, USA: Cornell University, 1987.
[Ang19] Carlo Angiuli. "Computational Semantics of Cartesian Cubical Type Theory". To appear. PhD thesis. Pittsburgh, PA, USA: Carnegie Mellon University, 2019.
[AR14] Abhishek Anand and Vincent Rahli. "Towards a Formally Verified Proof Assistant". In: Interactive Theorem Proving: 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, Fuly 14-17, 2014. Proceedings. Ed. by Gerwin Klein and Ruben Gamboa. Cham: Springer International Publishing, 2014, pp. 27-44. ISBN: 978-3-319-08970-6.
[AVW17] Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. "Normalization by Evaluation for Sized Dependent Types". In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017), 33:1-33:30. Issn: 2475-1421.
[Clo+18] Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, and Bas Spitters. "Modal Dependent Type Theory and Dependent Right Adjoints". 2018. UrL: https: //arxiv.org/abs/1804.05236.
[Clo18] Ranald Clouston. "Fitch-Style Modal Lambda Calculi". In: Foundations of Software Science and Computation Structures. Ed. by Christel Baier and Ugo Dal Lago. Cham: Springer International Publishing, 2018, pp. 258-275. ISBN: 978-3-319-89366-2.
[CM16] Thierry Coquand and Bassel Mannaa. "The Independence of Markov's Principle in Type Theory". In: 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Ed. by Delia Kesner and Brigitte Pientka. Vol. 52. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, 17:1-17:18. ISBN: 978-3-95977-010-1. Doi: 10.4230/LIPIcs.FSCD.2016.17. URL: http://drops.dagstuhl.de/opus/volltexte/2016/5993.
[Coq96] Thierry Coquand. "An algorithm for type-checking dependent types". In: Science of Computer Programming 26.1 (1996), pp. 167-177. IssN: 0167-6423. DoI: https://doi.org/10.1016/ 0167-6423(95)00021-6. URL: http://www.sciencedirect.com/science/article/ pii/0167642395000216.
[Cra98] Karl Crary. "Type-Theoretic Methodology for Practical Programming Languages". PhD thesis. Ithaca, NY: Cornell University, Aug. 1998.
[Dyb96] Peter Dybjer. "Internal type theory". In: Types for Proofs and Programs: International Workshop, TYPES '95 Torino, Italy, Fune 5-8, 1995 Selected Papers. Ed. by Stefano Berardi and Mario Coppo. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 120-134. ISBN: 978-3-540-70722-6.
[Gra13] Johan G. Granström. Treatise on Intuitionistic Type Theory. Springer Publishing Company, Incorporated, 2013. ISBN: 94-007-3639-8.
[SH18a] Jonathan Sterling and Robert Harper. coq-guarded-type-theory. 2018. URL: https : //github.com/jonsterling/coq-guarded-type-theory.
[SH18b] Jonathan Sterling and Robert Harper. "Guarded Computational Type Theory". In: LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2018.
[The18] The Agda Development Team. agda-flat. 2018. URL: https://github.com/agda/agda/ tree/flat.
[WB18] Paweł Wieczorek and Dariusz Biernacki. "A Coq Formalization of Normalization by Evaluation for Martin-Löf Type Theory". In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2018. Los Angeles, CA, USA: ACM, 2018, pp. 266-279. ISBN: 978-1-4503-5586-5. DOI: $10.1145 / 3167091$. URL: http ://doi . acm . org/10.1145/3167091.

[^0]: ${ }^{1}$ In fact, it was the first instance!

