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We want to add a single modality MLTT, O.
T'rM: DA

A
M":" A and M only mentions variables of the shape oB

e In staged programming, OA represents precomputed values.
e In modal FRP, OA represents stable types.
e In distributed programming, OA represents globally available values.
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Our Contribution: MLTT,

We contribute MLTTg, a dependent type theory with...

e the box modality, oA

dependent sums, 3(A,B) With both g and n
dependent products, II(A, B)
natural numbers, nat

intensional identity types, Id(A,M,N)

e a cumulative hierarchy of universes, Ug, U...

We have constructed a precise syntactic account of MLTTg, and proved the
decidability of type-checking for it.



Typical Problems with Modalities

We could imagine just dropping all local variables when constructing oA:

T™M/LOCK?!
aol'rM: A

ol A + box(M) : DA

In this case box(M) cannot commute with substitution:
box(M)[N/x] could be well-typed while box(M[N/x]) is ill-typed!

We can try versions of this rule,” but we'll opt for another approach.

TPrawitz 1967



Adding Judgmental Structure

We'll incorporate Fitch-style judgmental structure? to handle DA:
(Contexts) T == -|Lx:A|L.@

Instead of dropping part of the context we can lock it away:

TM/LOCK TM/VAR
rarmM:A I'=Tgx:AT4 a¢l,
'k [Mg:OA Crx:A
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Instead of dropping part of the context we can lock it away:

TM/LOCK TM/VAR
rarmM:A I'=Tyx:AT a¢l,
'k [Mg:OA Crx:A
Crucially, later on we are able to unlock the context:
TM/UNLOCK
' +M:DA
T+ [Mg:A
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Adding Judgmental Structure

We'll incorporate Fitch-style judgmental structure? to handle DA:
(Contexts) T == -|Lx:A|L.@

Instead of dropping part of the context we can lock it away:

T™M/LOCK TM/VAR
rarmM:A I'=Tyx:AT a¢l,
'+ [Mg: DA T'rx:A
Crucially, later on we are able to unlock the context:
TM/UNLOCK
™ cM: oA Not obvious, but these rules
—F - M A respect substitution!

2Clouston 2018 4



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs

extracty : 0A — A

extracta(x) £ [x|g
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A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs Holes

extracty : 0A — A

extracta(x) £ [x|g

dups : DA — ODA

dupa(x) = [[Xlalala



Making Hard Choices: Definitional Equalities for MLTT,

We are able to equip oA with both a B8 and 5 rule in MLTTg:

TM/UNLOCK-LOCK TM/LOCK-UNLOCK
r*arM:A F'rM:OA
I'*r [[M]ﬂ]‘\ =M:A I'EM= HM]“]Q : DA

Notice, no commutating conversions, this is a win from the Fitch style.

3Clouston 2018 and Birkedal, Clouston, Mannaa, Mggelberg, Pitts, Spitters 2019



Making Hard Choices: Definitional Equalities for MLTT,

We are able to equip oA with both a B8 and 5 rule in MLTTg:

TM/UNLOCK-LOCK TM/LOCK-UNLOCK
r*arM:A F'rM:OA
I'*r [[M]ﬂ]‘\ =M:A I'EM= HM]“]Q : DA

Notice, no commutating conversions, this is a win from the Fitch style.

The premises of these rules are subtle and important!

I“8rM:A = TFM:A
'+ [[Mapla:0A = 't M: DA

3Clouston 2018 and Birkedal, Clouston, Mannaa, Mggelberg, Pitts, Spitters 2019



Taking Stock

What do we have at this point?

e MLTTg: a declarative modal dependent type theory.
e We can prove the expected admissibilities: substitution, presupposition, ...

e As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTTg behaves well.
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Taking Stock

What do we have at this point?

e MLTTg: a declarative modal dependent type theory.
e We can prove the expected admissibilities: substitution, presupposition, ...

e As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTTg behaves well.

Big remaining question: can we implement this?



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: TS.
Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that TS enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T= presents T and is implementable.

Many of these proofs rely on the admissiblities we established!
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Implementing MLTT,: Bidirectional Syntax

MLTTg is a simple enough that we can extend a bidirectional presentation of MLTT:

e Terms are split into two categories:

(Checkable) N, M
(Synthesizable) R,S

RiAx.M| ...
(M:A)| x| RM)| ...

e We split the judgments along these lines as well:
CHECK SYNTH
'EM&A I'rS=A
e We can extend the standard rules with the new rules for DA:
rarMeA I'“rM= DA

'+ [Mg<=DA 'k [Mo=A



The Payoff of Bidirectionalism

By restricting MLTTg to I\/\LTT;.:> we can obtain the following result:

Theorem X
If we can T+ A = B type is decidable” thensoareT’r M <= AandT'+ M = A

We've restricted MLTTZ so that most one rule applies in each case.

“We also need whnfs, but this will follow from how we prove the decidability of conversion.
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Implementing MLTT,: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normlé : Termr o — Termr 4,

Completeness:

If T+ My = M3 : A then norm#(M;) = normf,(Ms).
Soundness:

IfT+M:AthenT r M = normf(M) : A

I



Implementing MLTT,: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normlé : Termr o — Termr 4,

Completeness:

If T+ My = M3 : A then norm#(M;) = normf,(Ms).
Soundness:

IfT+M:AthenT r M = normf(M) : A
Corollary

I'M=N:A < norm{ (M) and normf (N) are identical.

I



Normalization-by-Evaluation

In order to actually define normlﬁ we use normalization-by-evaluation.*

Slogan: evaluate syntax to a computational domain, quote it to a normal form.

e Evaluation performs B-reduction.
e Quotation is type-directed and handles n-expansion.

e The algorithm scales to support OA, even with 7.

“Martin-Lof 1975, see Abel 2013 for an overview.
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A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:

Construct a PER model on the computational domain.
Soundness:

Construct a Kripke cross-language logical relation between the

computational domain and syntax.

The main sources of complexity are the modality and universes.

13



A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:
Construct a Kripke PER model on the computational domain.

Soundness:
Construct a double Kripke cross-language logical relation between the

computational domain and syntax.

The main sources of complexity are the modality and universes.
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Describing Normal Forms for MLTT,

After normalization we end up with normal forms, but what do these look like?

P R:I(AX.B) TH M:A rfes:
T "¢ R(M) : B[M/X] refs:u;
rafm:A " M : DA
I (Mg : DA D8 Mg : A

Corollary
There is no term - + bad : II(A,0A)

Observe that neutral terms are synthesizable, normal forms are checkable.

>Coquand 1996
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The Full Theorem

Theorem (Decidability of Type-Checking)

e BothT'- M= AandT + M < A are decidable.
e f[T-M=AorTrM<=AthenT +M:A
o IfT + M: A there exists” some N suchthatTrM=N:Aand T+ N < A.

This theorem provides the foundation for our implementation of MLTT,.

To our knowledge, this is the first such result for MLTT with DA.

In particular, N £ normf\(M).

15



Conclusions

We contribute MLTTg, a dependent type theory with...

e the box modality, oA

dependent sums, 3(A,B) With both g and n
dependent products, II(A, B)

natural numbers, nat

intensional identity types, Id(A,M,N)
e a cumulative hierarchy of universes, Ug, U;...

We have proved the decidability of typechecking for MLTTg, and implemented it.
http://github.com/jozefg/blott
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