Implementing a Modal Dependent Type Theory

Daniel Gratzer® Jonathan Sterling®  Lars Birkedal®

August 21, 2019
ICFP 19

OAarhus University
TCarnegie Mellon University



We want to add a single modality MLTT, O.
T'rM: DA

A
M":" A and M only mentions variables of the shape oB

e In staged programming, OA represents precomputed values.
e In modal FRP, OA represents stable types.
e In distributed programming, OA represents globally available values.

,~~"oisjusta comonad with S----"~ T A Category Theorist

)
{an idempotent monad \/\ O
\
> for a left adjoint. /S X
Soo N N //‘>’



Our Contribution: MLTT,

We contribute MLTTg, a dependent type theory with...

e the box modality, oA

dependent sums, 3(A,B) With both g and n
dependent products, II(A, B)
natural numbers, nat

intensional identity types, Id(A,M,N)

e a cumulative hierarchy of universes, Ug, U...

We have constructed a precise syntactic account of MLTTg, and proved the
decidability of type-checking for it.



Typical Problems with Modalities

We could imagine just dropping all local variables when constructing oA:

T™M/LOCK?!
aol'rM: A

ol A + box(M) : DA

In this case box(M) cannot commute with substitution:
box(M)[N/x] could be well-typed while box(M[N/x]) is ill-typed!

We can try versions of this rule,” but we'll opt for another approach.

TPrawitz 1967



Adding Judgmental Structure

We'll incorporate Fitch-style judgmental structure? to handle DA:
(Contexts) T == -|Lx:A|L.@

Instead of dropping part of the context we can lock it away:

TM/LOCK TM/VAR
rarmM:A I'=Tgx:AT4 a¢l,
'k [Mg:OA Crx:A

2Clouston 2018 4



Adding Judgmental Structure

We'll incorporate Fitch-style judgmental structure? to handle DA:
(Contexts) T == -|Lx:A|L.@

Instead of dropping part of the context we can lock it away:

TM/LOCK TM/VAR
rarmM:A I'=Tyx:AT a¢l,
'k [Mg:OA Crx:A
Crucially, later on we are able to unlock the context:
TM/UNLOCK
' +M:DA
T+ [Mg:A

2Clouston 2018 4



Adding Judgmental Structure

We'll incorporate Fitch-style judgmental structure? to handle DA:
(Contexts) T == -|Lx:A|L.@

Instead of dropping part of the context we can lock it away:

T™M/LOCK TM/VAR
rarmM:A I'=Tyx:AT a¢l,
'+ [Mg: DA T'rx:A
Crucially, later on we are able to unlock the context:
TM/UNLOCK
™ cM: oA Not obvious, but these rules
—F - M A respect substitution!

2Clouston 2018 4



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs

extracty : 0A — A

extracta(x) £ [x|g



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs Holes

extracty : 0A — A

extracta(x) £ [x|g

dups : DA — ODA

dupa(x) =7

X:O0A+7:00A



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs Holes

extracty : 0A — A

extracta(x) £ [x|g

dups : DA — ODA
dupa(x) = [?]a

X:OA8F7:0A



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs Holes

extracty : 0A — A

extracta(x) £ [x|g

dups : DA — ODA
dupa(x) = [[?]ala

X:oOAB8&8r7:A



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs Holes

extracty : 0A — A

extracta(x) £ [x|g

dups : DA — ODA

dupa(x) = [[?elala

X:O0ArR?7:0A



A Small Programming Break

How does our intuition for oA square with [~]gp and [-]g?
Programs Holes

extracty : 0A — A

extracta(x) £ [x|g

dups : DA — ODA

dupa(x) = [[Xlalala



Making Hard Choices: Definitional Equalities for MLTT,

We are able to equip oA with both a B8 and 5 rule in MLTTg:

TM/UNLOCK-LOCK TM/LOCK-UNLOCK
r*arM:A F'rM:OA
I'*r [[M]ﬂ]‘\ =M:A I'EM= HM]“]Q : DA

Notice, no commutating conversions, this is a win from the Fitch style.

3Clouston 2018 and Birkedal, Clouston, Mannaa, Mggelberg, Pitts, Spitters 2019



Making Hard Choices: Definitional Equalities for MLTT,

We are able to equip oA with both a B8 and 5 rule in MLTTg:

TM/UNLOCK-LOCK TM/LOCK-UNLOCK
r*arM:A F'rM:OA
I'*r [[M]ﬂ]‘\ =M:A I'EM= HM]“]Q : DA

Notice, no commutating conversions, this is a win from the Fitch style.

The premises of these rules are subtle and important!

I“8rM:A = TFM:A
'+ [[Mapla:0A = 't M: DA

3Clouston 2018 and Birkedal, Clouston, Mannaa, Mggelberg, Pitts, Spitters 2019



Taking Stock

What do we have at this point?

e MLTTg: a declarative modal dependent type theory.
e We can prove the expected admissibilities: substitution, presupposition, ...

e As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTTg behaves well.



Taking Stock

Complication: non-local and
What do we have at this point? sensitive to extensions.

e MLTTg: a declarative modal dependent type theory.
e We can prove the expected admissibilities: substitution, presupposition, ...

e As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTTg behaves well.



Taking Stock

What do we have at this point?

e MLTTg: a declarative modal dependent type theory.
e We can prove the expected admissibilities: substitution, presupposition, ...

e As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTTg behaves well.

Big remaining question: can we implement this?



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: TS.
Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that TS enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T= presents T and is implementable.

Many of these proofs rely on the admissiblities we established!



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: T.
Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that TS enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T= presents T and is implementable.

Many of these proofs rely on the admissiblities we established!



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: T.

Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that TS enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T= presents T and is implementable.

Many of these proofs rely on the admissiblities we established!



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: T.
Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that T enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T= presents T and is implementable.

Many of these proofs rely on the admissiblities we established!



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: T.
Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that TS enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T= presents T and is implementable.

Many of these proofs rely on the admissiblities we established!



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

Construct a bidirectional syntax for T: T.
Prove that T admits a normalization theorem.
Conclude that T enjoys decidable conversion.
Prove that TS enjoys decidable type-checking.

Prove that every term of T is convertible with a term from TS.

o Gl S WP S

Conclude that T presents T and is implementable.

Many of these proofs rely on the admissiblities we established!



Implementing MLTT,: Bidirectional Syntax

MLTTg is a simple enough that we can extend a bidirectional presentation of MLTT:

e Terms are split into two categories:

(Checkable) N, M
(Synthesizable) R,S

RiAx.M| ...
(M:A)| x| RM)| ...

e We split the judgments along these lines as well:
CHECK SYNTH
'EM&A I'rS=A
e We can extend the standard rules with the new rules for DA:
rarMeA I'“rM= DA

'+ [Mg<=DA 'k [Mo=A



The Payoff of Bidirectionalism

By restricting MLTTg to I\/\LTT;.:> we can obtain the following result:

Theorem X
If we can T+ A = B type is decidable” thensoareT’r M <= AandT'+ M = A

We've restricted MLTTZ so that most one rule applies in each case.

“We also need whnfs, but this will follow from how we prove the decidability of conversion.

10



Implementing MLTT,: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normlé : Termr o — Termr 4,

Completeness:

If T+ My = M3 : A then norm#(M;) = normf,(Ms).
Soundness:

IfT+M:AthenT r M = normf(M) : A

I



Implementing MLTT,: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normlé : Termr o — Termr 4,

Completeness:

If T+ My = M3 : A then norm#(M;) = normf,(Ms).
Soundness:

IfT+M:AthenT r M = normf(M) : A
Corollary

I'M=N:A < norm{ (M) and normf (N) are identical.

I



Normalization-by-Evaluation

In order to actually define normlﬁ we use normalization-by-evaluation.*

Slogan: evaluate syntax to a computational domain, quote it to a normal form.

e Evaluation performs B-reduction.
e Quotation is type-directed and handles n-expansion.

e The algorithm scales to support OA, even with 7.

“Martin-Lof 1975, see Abel 2013 for an overview.

12



A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:

Construct a PER model on the computational domain.
Soundness:

Construct a Kripke cross-language logical relation between the

computational domain and syntax.

The main sources of complexity are the modality and universes.

13



A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:
Construct a Kripke PER model on the computational domain.

Soundness:
Construct a double Kripke cross-language logical relation between the

computational domain and syntax.

The main sources of complexity are the modality and universes.

13



Describing Normal Forms for MLTT,

After normalization we end up with normal forms, but what do these look like?

P R:I(AX.B) TH M:A rfes:
T "¢ R(M) : B[M/X] refs:u;
rafm:A " M : DA
I (Mg : DA D8 Mg : A

Corollary
There is no term - + bad : II(A,0A)

Observe that neutral terms are synthesizable, normal forms are checkable.

>Coquand 1996

14



The Full Theorem

Theorem (Decidability of Type-Checking)

e BothT'- M= AandT + M < A are decidable.
e f[T-M=AorTrM<=AthenT +M:A
o IfT + M: A there exists” some N suchthatTrM=N:Aand T+ N < A.

This theorem provides the foundation for our implementation of MLTT,.

To our knowledge, this is the first such result for MLTT with DA.

In particular, N £ normf\(M).

15



Conclusions

We contribute MLTTg, a dependent type theory with...

e the box modality, oA

dependent sums, 3(A,B) With both g and n
dependent products, II(A, B)

natural numbers, nat

intensional identity types, Id(A,M,N)
e a cumulative hierarchy of universes, Ug, U;...

We have proved the decidability of typechecking for MLTTg, and implemented it.
http://github.com/jozefg/blott


http://github.com/jozefg/blott

