
Implementing a Modal Dependent Type Theory

Daniel Gratzer0 Jonathan Sterling1 Lars Birkedal0

August 21, 2019
ICFP ’19
0Aarhus University
1Carnegie Mellon University

0

Modalities

We want to add a single modality MLTT, �.

Γ ` M : �A

!

M ":" A and M only mentions variables of the shape �B

• In staged programming, �A represents precomputed values.
• In modal FRP, �A represents stable types.
• In distributed programming, �A represents globally available values.

� is just a comonad with
an idempotent monad
for a left adjoint.

A Category Theorist

1

Our Contribution: MLTT

We contribute MLTT, a dependent type theory with...

• the box modality, �A
• dependent sums, Σ(A,B)
• dependent products, Π(A,B)

 With both β and η
• natural numbers, nat
• intensional identity types, Id(A,M,N)
• a cumulative hierarchy of universes, U0,U1...

We have constructed a precise syntactic account of MLTT, and proved the
decidability of type-checking for it.

2

Typical Problems with Modalities

We could imagine just dropping all local variables when constructing �A:

tm/lock?!
�Γ ` M : A

�Γ,∆ ` box(M) : �A

In this case box(M) cannot commute with substitution:

box(M)[N/x] could be well-typed while box(M[N/x]) is ill-typed!

We can try versions of this rule,1 but we’ll opt for another approach.

1Prawitz 1967

3

Adding Judgmental Structure

We’ll incorporate Fitch-style judgmental structure2 to handle �A:

(Contexts) Γ F · | Γ,x : A | Γ.

Instead of dropping part of the context we can lock it away:
tm/lock
Γ. ` M : A

Γ ` [M] : �A

tm/var
Γ = Γ0,x : A,Γ1  < Γ1

Γ ` x : A

Crucially, later on we are able to unlock the context:
tm/unlock
Γ ` M : �A

Γ ` [M] : A

2Clouston 2018 4

Adding Judgmental Structure

We’ll incorporate Fitch-style judgmental structure2 to handle �A:

(Contexts) Γ F · | Γ,x : A | Γ.

Instead of dropping part of the context we can lock it away:
tm/lock
Γ. ` M : A

Γ ` [M] : �A

tm/var
Γ = Γ0,x : A,Γ1  < Γ1

Γ ` x : A

Crucially, later on we are able to unlock the context:
tm/unlock
Γ ` M : �A

Γ ` [M] : A
2Clouston 2018 4

Adding Judgmental Structure

We’ll incorporate Fitch-style judgmental structure2 to handle �A:

(Contexts) Γ F · | Γ,x : A | Γ.

Instead of dropping part of the context we can lock it away:
tm/lock
Γ. ` M : A

Γ ` [M] : �A

tm/var
Γ = Γ0,x : A,Γ1  < Γ1

Γ ` x : A

Crucially, later on we are able to unlock the context:
tm/unlock
Γ ` M : �A

Γ ` [M] : A

Not obvious, but these rules
respect substitution!

2Clouston 2018 4

A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) ,

Holes

5

A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , ?

Holes

x : �A ` ? : ��A

5

A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [?]

Holes

x : �A, ` ? : �A

5

A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [[?]]

Holes

x : �A,, ` ? : A

5

A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [[[?]]]

Holes

x : �A ` ? : �A

5

A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [[[x]]]

Holes

5

Making Hard Choices: Definitional Equalities for MLTT

We are able to equip �A with both a β and η rule in MLTT:

tm/unlock-lock
Γ. ` M : A

Γ ` [[M]] = M : A

tm/lock-unlock
Γ ` M : �A

Γ ` M = [[M]] : �A

Notice, no commutating conversions, this is a win from the Fitch style.3

The premises of these rules are subtle and important!

Γ. ` M : A =⇒ Γ ` M : A
Γ ` [[M]] : �A 6=⇒ Γ ` M : �A

3Clouston 2018 and Birkedal, Clouston, Mannaa, Møgelberg, Pitts, Spitters 2019

6

Making Hard Choices: Definitional Equalities for MLTT

We are able to equip �A with both a β and η rule in MLTT:

tm/unlock-lock
Γ. ` M : A

Γ ` [[M]] = M : A

tm/lock-unlock
Γ ` M : �A

Γ ` M = [[M]] : �A

Notice, no commutating conversions, this is a win from the Fitch style.3

The premises of these rules are subtle and important!

Γ. ` M : A =⇒ Γ ` M : A
Γ ` [[M]] : �A 6=⇒ Γ ` M : �A

3Clouston 2018 and Birkedal, Clouston, Mannaa, Møgelberg, Pitts, Spitters 2019

6

Taking Stock

What do we have at this point?

• MLTT: a declarative modal dependent type theory.
• We can prove the expected admissibilities: substitution, presupposition, ...
• As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTT behaves well.

Big remaining question: can we implement this?

7

Taking Stock

What do we have at this point?

• MLTT: a declarative modal dependent type theory.
• We can prove the expected admissibilities: substitution, presupposition, ...
• As well as modal admissibilities: lock contraction, strengthening...

Complication: non-local and
sensitive to extensions.

These are important checks to ensure that MLTT behaves well.

Big remaining question: can we implement this?

7

Taking Stock

What do we have at this point?

• MLTT: a declarative modal dependent type theory.
• We can prove the expected admissibilities: substitution, presupposition, ...
• As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTT behaves well.

Big remaining question: can we implement this?

7

Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8

Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8

Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8

Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8

Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8

Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8

Implementing MLTT: Bidirectional Syntax

MLTT is a simple enough that we can extend a bidirectional presentation of MLTT:

• Terms are split into two categories:

(Checkable) N,M F R | λx.M | . . .

(Synthesizable) R,S F (M : A) | x | R(M) | . . .

• We split the judgments along these lines as well:
check
Γ ` M⇐ A

synth
Γ ` S⇒ A

• We can extend the standard rules with the new rules for �A:
Γ. ` M⇐ A

Γ ` [M] ⇐ �A

Γ ` M⇒ �A

Γ ` [M] ⇒ A

9

The Payoff of Bidirectionalism

By restricting MLTT to MLTT� we can obtain the following result:

Theorem
If we can Γ ` A = B type is decidable* then so are Γ ` M⇐ A and Γ ` M⇒ A.

We’ve restricted MLTT�

so that most one rule applies in each case.

*We also need whnfs, but this will follow from how we prove the decidability of conversion.

10

Implementing MLTT: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normA
Γ : TermΓ,A → TermΓ,A,

Completeness:
If Γ ` M1 = M2 : A then normA

Γ(M1) = normA
Γ(M2).

Soundness:
If Γ ` M : A then Γ ` M = normA

Γ(M) : A

Corollary
Γ ` M = N : A ⇐⇒ normA

Γ(M) and normA
Γ(N) are identical.

11

Implementing MLTT: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normA
Γ : TermΓ,A → TermΓ,A,

Completeness:
If Γ ` M1 = M2 : A then normA

Γ(M1) = normA
Γ(M2).

Soundness:
If Γ ` M : A then Γ ` M = normA

Γ(M) : A

Corollary
Γ ` M = N : A ⇐⇒ normA

Γ(M) and normA
Γ(N) are identical.

11

Normalization-by-Evaluation

In order to actually define normA
Γ we use normalization-by-evaluation.

4

Slogan: evaluate syntax to a computational domain, quote it to a normal form.

• Evaluation performs β-reduction.
• Quotation is type-directed and handles η-expansion.
• The algorithm scales to support �A, even with η.

4Martin-Löf 1975, see Abel 2013 for an overview.

12

A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:
Construct a

Kripke

PER model on the computational domain.
Soundness:

Construct a

double

Kripke cross-language logical relation between the
computational domain and syntax.

The main sources of complexity are the modality and universes.

13

A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:
Construct a Kripke PER model on the computational domain.

Soundness:
Construct a double Kripke cross-language logical relation between the
computational domain and syntax.

The main sources of complexity are the modality and universes.

13

Describing Normal Forms for MLTT

After normalization we end up with normal forms, but what do these look like?

Γ ǹe R : Π(A,x.B) Γ ǹf M : A

Γ ǹe R(M) : B[M/x]

Γ ǹe S : Ui
Γ ǹf S : Ui

Γ. ǹf M : A

Γ ǹf [M] : �A

Γ ǹe M : �A

Γ ǹe [M] : A

Corollary
There is no term · ` bad : Π(A,�A)

Observe that neutral terms are synthesizable, normal forms are checkable.5

5Coquand 1996

14

The Full Theorem

Theorem (Decidability of Type-Checking)

• Both Γ ` M⇒ A and Γ ` M⇐ A are decidable.
• If Γ ` M⇒ A or Γ ` M⇐ A then Γ ` M : A.
• If Γ ` M : A, there exists* some N such that Γ ` M = N : A and Γ ` N⇐ A.

This theorem provides the foundation for our implementation of MLTT.

To our knowledge, this is the first such result for MLTT with �A.

*In particular, N , normA
Γ
(M).

15

Conclusions

We contribute MLTT, a dependent type theory with...

• the box modality, �A
• dependent sums, Σ(A,B)
• dependent products, Π(A,B)

 With both β and η
• natural numbers, nat
• intensional identity types, Id(A,M,N)
• a cumulative hierarchy of universes, U0,U1...

We have proved the decidability of typechecking for MLTT, and implemented it.

http://github.com/jozefg/blott

16

http://github.com/jozefg/blott

