
Implementing a Modal Dependent Type Theory

Daniel Gratzer0 Jonathan Sterling1 Lars Birkedal0

August 21, 2019
ICFP ’19
0Aarhus University
1Carnegie Mellon University

0



Modalities

We want to add a single modality MLTT, �.

Γ ` M : �A

!

M ":" A and M only mentions variables of the shape �B

• In staged programming, �A represents precomputed values.
• In modal FRP, �A represents stable types.
• In distributed programming, �A represents globally available values.

� is just a comonad with
an idempotent monad
for a left adjoint.

A Category Theorist

1



Our Contribution: MLTT

We contribute MLTT, a dependent type theory with...

• the box modality, �A
• dependent sums, Σ(A,B)
• dependent products, Π(A,B)

 With both β and η
• natural numbers, nat
• intensional identity types, Id(A,M,N)
• a cumulative hierarchy of universes, U0,U1...

We have constructed a precise syntactic account of MLTT, and proved the
decidability of type-checking for it.

2



Typical Problems with Modalities

We could imagine just dropping all local variables when constructing �A:

tm/lock?!
�Γ ` M : A

�Γ,∆ ` box(M) : �A

In this case box(M) cannot commute with substitution:

box(M)[N/x] could be well-typed while box(M[N/x]) is ill-typed!

We can try versions of this rule,1 but we’ll opt for another approach.

1Prawitz 1967

3



Adding Judgmental Structure

We’ll incorporate Fitch-style judgmental structure2 to handle �A:

(Contexts) Γ F · | Γ,x : A | Γ.

Instead of dropping part of the context we can lock it away:
tm/lock
Γ. ` M : A

Γ ` [M] : �A

tm/var
Γ = Γ0,x : A,Γ1  < Γ1

Γ ` x : A

Crucially, later on we are able to unlock the context:
tm/unlock
Γ ` M : �A

Γ ` [M] : A

2Clouston 2018 4



Adding Judgmental Structure

We’ll incorporate Fitch-style judgmental structure2 to handle �A:

(Contexts) Γ F · | Γ,x : A | Γ.

Instead of dropping part of the context we can lock it away:
tm/lock
Γ. ` M : A

Γ ` [M] : �A

tm/var
Γ = Γ0,x : A,Γ1  < Γ1

Γ ` x : A

Crucially, later on we are able to unlock the context:
tm/unlock
Γ ` M : �A

Γ ` [M] : A
2Clouston 2018 4



Adding Judgmental Structure

We’ll incorporate Fitch-style judgmental structure2 to handle �A:

(Contexts) Γ F · | Γ,x : A | Γ.

Instead of dropping part of the context we can lock it away:
tm/lock
Γ. ` M : A

Γ ` [M] : �A

tm/var
Γ = Γ0,x : A,Γ1  < Γ1

Γ ` x : A

Crucially, later on we are able to unlock the context:
tm/unlock
Γ ` M : �A

Γ ` [M] : A

Not obvious, but these rules
respect substitution!

2Clouston 2018 4



A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) ,

Holes

5



A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , ?

Holes

x : �A ` ? : ��A

5



A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [?]

Holes

x : �A, ` ? : �A

5



A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [[?]]

Holes

x : �A,, ` ? : A

5



A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [[[?]]]

Holes

x : �A ` ? : �A

5



A Small Programming Break

How does our intuition for �A square with [−] and [−]?

Programs

extractA : �A→ A
extractA(x) , [x]

dupA : �A→ ��A

dupA(x) , [[[x]]]

Holes

5



Making Hard Choices: Definitional Equalities for MLTT

We are able to equip �A with both a β and η rule in MLTT:

tm/unlock-lock
Γ. ` M : A

Γ ` [[M]] = M : A

tm/lock-unlock
Γ ` M : �A

Γ ` M = [[M]] : �A

Notice, no commutating conversions, this is a win from the Fitch style.3

The premises of these rules are subtle and important!

Γ. ` M : A =⇒ Γ ` M : A
Γ ` [[M]] : �A 6=⇒ Γ ` M : �A

3Clouston 2018 and Birkedal, Clouston, Mannaa, Møgelberg, Pitts, Spitters 2019

6



Making Hard Choices: Definitional Equalities for MLTT

We are able to equip �A with both a β and η rule in MLTT:

tm/unlock-lock
Γ. ` M : A

Γ ` [[M]] = M : A

tm/lock-unlock
Γ ` M : �A

Γ ` M = [[M]] : �A

Notice, no commutating conversions, this is a win from the Fitch style.3

The premises of these rules are subtle and important!

Γ. ` M : A =⇒ Γ ` M : A
Γ ` [[M]] : �A 6=⇒ Γ ` M : �A

3Clouston 2018 and Birkedal, Clouston, Mannaa, Møgelberg, Pitts, Spitters 2019

6



Taking Stock

What do we have at this point?

• MLTT: a declarative modal dependent type theory.
• We can prove the expected admissibilities: substitution, presupposition, ...
• As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTT behaves well.

Big remaining question: can we implement this?

7



Taking Stock

What do we have at this point?

• MLTT: a declarative modal dependent type theory.
• We can prove the expected admissibilities: substitution, presupposition, ...
• As well as modal admissibilities: lock contraction, strengthening...

Complication: non-local and
sensitive to extensions.

These are important checks to ensure that MLTT behaves well.

Big remaining question: can we implement this?

7



Taking Stock

What do we have at this point?

• MLTT: a declarative modal dependent type theory.
• We can prove the expected admissibilities: substitution, presupposition, ...
• As well as modal admissibilities: lock contraction, strengthening...

These are important checks to ensure that MLTT behaves well.

Big remaining question: can we implement this?

7



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8



Implementing a Type Theory: A General Recipe

The process of implementing some type theory T might follow these steps:

1. Construct a bidirectional syntax for T: T�.
2. Prove that T admits a normalization theorem.
3. Conclude that T enjoys decidable conversion.
4. Prove that T� enjoys decidable type-checking.
5. Prove that every term of T is convertible with a term from T�.
6. Conclude that T� presents T and is implementable.

Many of these proofs rely on the admissiblities we established!

8



Implementing MLTT: Bidirectional Syntax

MLTT is a simple enough that we can extend a bidirectional presentation of MLTT:

• Terms are split into two categories:

(Checkable) N,M F R | λx.M | . . .

(Synthesizable) R,S F (M : A) | x | R(M) | . . .

• We split the judgments along these lines as well:
check
Γ ` M⇐ A

synth
Γ ` S⇒ A

• We can extend the standard rules with the new rules for �A:
Γ. ` M⇐ A

Γ ` [M] ⇐ �A

Γ ` M⇒ �A

Γ ` [M] ⇒ A

9



The Payoff of Bidirectionalism

By restricting MLTT to MLTT� we can obtain the following result:

Theorem
If we can Γ ` A = B type is decidable* then so are Γ ` M⇐ A and Γ ` M⇒ A.

We’ve restricted MLTT�

so that most one rule applies in each case.

*We also need whnfs, but this will follow from how we prove the decidability of conversion.

10



Implementing MLTT: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normA
Γ : TermΓ,A → TermΓ,A,

Completeness:
If Γ ` M1 = M2 : A then normA

Γ(M1) = normA
Γ(M2).

Soundness:
If Γ ` M : A then Γ ` M = normA

Γ(M) : A

Corollary
Γ ` M = N : A ⇐⇒ normA

Γ(M) and normA
Γ(N) are identical.

11



Implementing MLTT: Normalization

Normalization is a common way to decide equality.

Definition
The normalization function has the following type:

normA
Γ : TermΓ,A → TermΓ,A,

Completeness:
If Γ ` M1 = M2 : A then normA

Γ(M1) = normA
Γ(M2).

Soundness:
If Γ ` M : A then Γ ` M = normA

Γ(M) : A

Corollary
Γ ` M = N : A ⇐⇒ normA

Γ(M) and normA
Γ(N) are identical.

11



Normalization-by-Evaluation

In order to actually define normA
Γ we use normalization-by-evaluation.

4

Slogan: evaluate syntax to a computational domain, quote it to a normal form.

• Evaluation performs β-reduction.
• Quotation is type-directed and handles η-expansion.
• The algorithm scales to support �A, even with η.

4Martin-Löf 1975, see Abel 2013 for an overview.

12



A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:
Construct a

Kripke

PER model on the computational domain.
Soundness:

Construct a

double

Kripke cross-language logical relation between the
computational domain and syntax.

The main sources of complexity are the modality and universes.

13



A Sketch of a Proof Sketch

Lots of details to balance here, since we also support a full dependent type theory!

Completeness:
Construct a Kripke PER model on the computational domain.

Soundness:
Construct a double Kripke cross-language logical relation between the
computational domain and syntax.

The main sources of complexity are the modality and universes.

13



Describing Normal Forms for MLTT

After normalization we end up with normal forms, but what do these look like?

Γ ǹe R : Π(A,x.B) Γ ǹf M : A

Γ ǹe R(M) : B[M/x]

Γ ǹe S : Ui
Γ ǹf S : Ui

Γ. ǹf M : A

Γ ǹf [M] : �A

Γ ǹe M : �A

Γ ǹe [M] : A

Corollary
There is no term · ` bad : Π(A,�A)

Observe that neutral terms are synthesizable, normal forms are checkable.5

5Coquand 1996

14



The Full Theorem

Theorem (Decidability of Type-Checking)

• Both Γ ` M⇒ A and Γ ` M⇐ A are decidable.
• If Γ ` M⇒ A or Γ ` M⇐ A then Γ ` M : A.
• If Γ ` M : A, there exists* some N such that Γ ` M = N : A and Γ ` N⇐ A.

This theorem provides the foundation for our implementation of MLTT.

To our knowledge, this is the first such result for MLTT with �A.

*In particular, N , normA
Γ
(M).

15



Conclusions

We contribute MLTT, a dependent type theory with...

• the box modality, �A
• dependent sums, Σ(A,B)
• dependent products, Π(A,B)

 With both β and η
• natural numbers, nat
• intensional identity types, Id(A,M,N)
• a cumulative hierarchy of universes, U0,U1...

We have proved the decidability of typechecking for MLTT, and implemented it.

http://github.com/jozefg/blott

16

http://github.com/jozefg/blott

